首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Islet amyloid polypeptide (IAPP)-derived amyloid is frequently deposited in the islets of Langerhans in patients with chronic non-insulin-dependent diabetes mellitus (NIDDM). When human islets were implanted under the renal capsule in nude mice, amyloid occurred in 73% of the grafts within 2 weeks. In this study, we compare the deposition of amyloid in islets from a transgenic mouse strain expressing human IAPP (hIAPP) and in normal human islets after implantation in nude mice. The implantations were performed as follows: (1) nondiabetic recipients were given islets from transgenic mice alone, (2) human islets were implanted in the upper pole of the kidney and islets from transgenic mice were implanted in the lower pole of the kidney, (3) grafts containing a mixture of human and transgenic islets were implanted, and (4) transgenic islets and islets from nontransgenic littermates were implanted in therapeutic numbers into recipients made diabetic by a single injection of alloxan prior to implantation. The implants were removed after various periods from 4 days to 8 weeks. The implants were either fixed in Formalin, stained for amyloid, and viewed in polarized light, or processed for immunoelectron microscopy and studied after immunolabeling with specific antibodies against IAPP. We found that the course of amyloid deposition differed significantly between human islets and hIAPP-expressing mouse islets. In human islets, amyloid was mainly deposited intracellularly and only small amounts of amyloid were found extracellularly. In contrast, in islets from transgenic mice, amyloid was exclusively deposited extracellularly and deposition in this site was preceded by an aggregation of immunoreactive material along the basement membrane. These findings point to separate mechanisms for amyloid formation in these two models.  相似文献   

2.
Summary Human islets of Langerhans were transplanted to the subcapsular space of the kidneys of nude mice which were either normoglycaemic or made diabetic with alloxan. After 2 weeks, the transplants were processed for light and electron microscopical analyses. In all transplants, islet amyloid polypeptide (IAPP)-positive cells were found with highest frequency in normoglycaemic animals. IAPP-positive amyloid was seen in 16 out of 22 transplants (73%), either by polarisation microscopy after Congo red staining or by immune electron microscopy. At variance with previous findings of amyloid deposits exclusively in the extracellular space of islets of non-insulin-dependent diabetic patients, the grafted islets contained intracellular amyloid deposits as well. There was no clear difference in occurrence of amyloid between diabetic and non-diabetic animals. The present study indicates that human islets transplanted into nude mice very soon present IAPP-positive amyloid deposits. This technique may provide a valuable model for studies of the pathogenesis of islet amyloid and its impact on islet cell function.Abbreviations IAPP Islet amyloid polypeptide - NIDDM non-insulin-dependent diabetes mellitus  相似文献   

3.
《Islets》2013,5(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets.

Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid.

Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece.

Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

4.
Tomita T 《Islets》2012,4(3):223-232
Aims/hypothesis: Islet amyloid polypeptide (IAPP) is a chief constituent of amyloid deposits in pancreatic islets, characteristic histopathology for type 2 diabetes. The goal of this study was to analyze islet cell composition in diabetic islets for the process of transforming water-soluble IAPP in β-cells to water-insoluble amyloid deposits by Immunocytochemical staining using different dilutions of anti-IAPP antibody. IAPP in β-cell granules may initiate β-cell necrosis through apoptosis to form interstitial amyloid deposits in type 2 diabetic islets. Results: Control islets revealed twice as much β-cells as α-cells whereas 15 of 18 type 2 diabetic cases (83%) revealed α- cells as major cells in larger islets. Diabetic islets consisted of more larger islets with more σ-cells than β-cells, which contribute to hyperglucagonemia. In control islets, percentage of IAPP-positive cells against β-cells was 40–50% whereas percentage for type 2 diabetic islets was about 25%. Amyloid deposits in diabetic islets were not readily immunostained for IAPP using 1: 800 diluted antibody, however, 1: 400 and 1: 200 diluted solutions provided stronger immunostaining in early stages of islet amyloidogenesis after treating the deparaffinized sections with formic acid. Methods: Using commercially available rabbit antihuman IAPP antibody, immunocytochemical staining was performed on 18 cases of pancreatic tissues from type 2 diabetic subjects by systematically immunostaining for insulin, glucagon, somatostatin (SRIF) and IAPP compared with controls. Sizes of islets were measured by 1 cm scale, mounted in 10X eye piece. Conclusions/Interpretation: α cells were major islet cells in majority of diabetic pancreas (83%) and all diabetic islets contained less IAPP-positive cells than controls, indicating that IAPP deficiency in pancreatic islets is responsible for decreased IAPP in blood. In diabetic islets, water-soluble IAPP disappeared in β-cell granules, which transformed to water-insoluble amyloid deposits. Amyloid deposits were not readily immunostained using IAPP 1: 800 diluted antibody but were stronger immunostained for IAPP in early stages of amyloid deposited islets using less diluted solutions after formic acid treatment. In early islet amyloidogenesis, dying β-cell cytoplasm was adjacently located to fine amyloid fibrils, supporting that IAPP in secretary granules from dying β cells served as nidus for islet β-sheet formation.  相似文献   

5.
Karlsson E  Sandler S 《Diabetologia》2001,44(8):1015-1018
Aims/hypothesis: We aimed to clarify the role of islet amyloid polypeptide, which is expressed at early embryonic onset, in the proliferation and cell death of neonatal islet cells. Methods: Fetal islets were prepared from pregnant rats on gestational day 21. Islets were cultured in RPMI 1640 (11.1 mmol/l glucose) + 10 % fetal calf serum (FCS) for 48 h, followed by a 24-h culture period in RPMI 1640 (5.6 mmol/l glucose) + 1 % FCS. The islets were then exposed to rat islet amyloid polypeptide (1–10 nmol/l) for 24 h. Results: Iselt amyloid polypeptide increased islet DNA synthesis (dpm/μg of DNA · 6 h) (control 1 % FCS: 3634 ± 662; 1 nmol/l 6347 ± 1535; 10 nmol/l 5157 ± 769; p < 0.05 islet amyloid polypeptide vs control). In accordance with this, a doubling of the autoradiographic labelling index was seen in immunocytochemically stained islet beta cells after exposure to 1 and 10 nmol/l islet amyloid polypeptide. Islet amyloid polypeptide at 1 nmol/l increased the islet insulin content (202 ± 25 % of control; p < 0.01) and the 24-h medium insulin concentration (1 nmol/l islet amyloid polypeptide: 143 ± 19 % of control; p < 0.05) but at 10 nmol/l islet amyloid polypeptide these changes did not attain statistical difference. Islet amyloid polypeptide did not have any marked effect on the islet cell death frequency, suggesting that islet amyloid polypeptide is a more potent promoter of proliferation than of programmed cell death. Conclusion/interpretation: Our data indicate islet amyloid polypeptide is a potential regulator of proliferation in neonatal pancreatic islet cells, an effect which can partly be attributed to the proliferation of beta cells. [Diabetologia (2001) 44: 1015–1018] Received: 14 March 2001 and in revised form: 7 May 2001  相似文献   

6.
《Islets》2013,5(4):166-174
Aims/hypothesis: Islet amyloid polypeptide is originally isolated as the chief constituent of amyloid deposits in type 2 diabetic islets. Islet amyloid polypeptide hyposecretion was known in type 1 diabetics and this study aimed to detect possibly reduced islet amyloid polypeptide-positive cells in type 1 diabetic islets. Results: Non-diabetic control islets showed about 60% of islet cells were insulin cells, and 60% of insulin cells were positive for IAPP. In type 1 diabetic islets, islets were generally smaller than control islets, consisting of weaker positive cells for insulin and islet amyloid polypeptide. Medium-sized islets still retained some insulin positive cells, whereas islet amyloid polypeptide positive cells were much less or even absent, but some insulin-negative cells were weakly islet amyloid polypeptide positive. An occasional extra-large islet, representing regenerating islets, consisting of more than 100 islet cells revealed less than 35% insulin and 20% islet amyloid polypeptide positive cells with relatively increased glucagon and somatostatin cells. Both normal and type 1 diabetic islets revealed scattered, densely insulin and islet amyloid polypeptide positive sickle-shaped cytoplasm without granular appearance, consistent with degenerating insulin cells. Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunostaning was performed on ten cases of type 1 diabetic pancreata and eight non-diabetic controls. Both control and type 1 diabetic pancreata were systematically immunostained for insulin, glucagon, somatostatin and islet amyloid polypeptide.

Conclusion/Interpretation: Control islets consisted of about 60% insulin cells, and about 34% of islet cells were amyloid polypeptide positive with scattered and densely positive for insulin and islet amyloid polypeptide without granular appearance, consistent with degenerating β cells. All islets, including occasional extra-large islets from type 1 diabetics, showed less insulin cells and less islet amyloid polypeptide positive cells with twice increased glucagon and somatostatin cells of the control islets, but some insulin-negative cells were positive for islet amyloid polypeptide, suggesting the presence of islet amyloid polypeptide in degenerating and extra-large regenerating islets. Thus, this immunocytochemical staining revealed generally less islet amyloid positive cells in type 1 diabetic islets, corresponding to severe hyposecretion of islet amyloid polypeptide in type 1 diabetics.  相似文献   

7.
Alarcon C  Verchere CB  Rhodes CJ 《Endocrinology》2012,153(5):2082-2087
Dysfunctional islet amyloid polypeptide (IAPP) biosynthesis and/or processing are thought contribute to formation of islet amyloid in type 2 diabetes. However, it is unclear how normal pro-IAPP biosynthesis and processing are regulated to be able to define such dysfunction. Here, it was found that acute exposure to high glucose concentrations coordinately regulated the biosynthesis of pro-IAPP, proinsulin, and its proprotein convertase PC1/3 in normal isolated rat islets, without affecting their respective mRNA levels. Pro-7B2 biosynthesis, like that of pro-PC2, did not appreciably change, but this was likely due to a much higher expression in pancreatic α-cells masking glucose regulation of their biosynthesis in β-cells. Biosynthesis of pro-SAAS, the putative PC1/3 chaperone, was unaffected by glucose, consistent with its scarce expression in β-cells. We conclude that translational control of pro-IAPP biosynthesis, in parallel to the pro-PC1/3, pro-PC2, and pro-7B2 proprotein-processing endopeptidases/chaperones, is the predominate mechanism to produce IAPP in islet β-cells.  相似文献   

8.
Tomita T 《Islets》2011,3(4):166-174

Aims/hypothesis:

Islet amyloid polypeptide is originally isolated as the chief constituent of amyloid deposits in type 2 diabetic islets. Islet amyloid polypeptide hyposecretion was known in type 1 diabetics and this study aimed to detect possibly reduced islet amyloid polypeptide-positive cells in type 1 diabetic islets.

Results:

Non-diabetic control islets showed about 60% of islet cells were insulin cells, and 60% of insulin cells were positive for IAPP. In type 1 diabetic islets, islets were generally smaller than control islets, consisting of weaker positive cells for insulin and islet amyloid polypeptide. Medium-sized islets still retained some insulin positive cells, whereas islet amyloid polypeptide positive cells were much less or even absent, but some insulin-negative cells were weakly islet amyloid polypeptide positive. An occasional extra-large islet, representing regenerating islets, consisting of more than 100 islet cells revealed less than 35% insulin and 20% islet amyloid polypeptide positive cells with relatively increased glucagon and somatostatin cells. Both normal and type 1 diabetic islets revealed scattered, densely insulin and islet amyloid polypeptide positive sickle-shaped cytoplasm without granular appearance, consistent with degenerating insulin cells.

Methods:

Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunostaning was performed on ten cases of type 1 diabetic pancreata and eight non-diabetic controls. Both control and type 1 diabetic pancreata were systematically immunostained for insulin, glucagon, somatostatin and islet amyloid polypeptide.

Conclusion/Interpretation:

Control islets consisted of about 60% insulin cells, and about 34% of islet cells were amyloid polypeptide positive with scattered and densely positive for insulin and islet amyloid polypeptide without granular appearance, consistent with degenerating β-cells. All islets, including occasional extra-large islets from type 1 diabetics, showed less insulin cells and less islet amyloid polypeptide positive cells with twice increased glucagon and somatostatin cells of the control islets, but some insulin-negative cells were positive for islet amyloid polypeptide, suggesting the presence of islet amyloid polypeptide in degenerating and extra large regenerating islets. Thus, this immunocytochemical staining revealed generally less islet amyloid positive cells in type 1 diabetic islets, corresponding to severe hyposecretion of islet amyloid polypeptide in type 1 diabetics.Key words: immunocytochemistry, islet amyloid polypeptide, pancreatic islets, type 1 diabetes  相似文献   

9.
Islet amyloid polypeptide (IAPP) is the constituent peptide of amyloid deposits found in the islets of non-insulin-dependent diabetic patients. Formation of islet amyloid is associated with a progressive destruction of insulin-producing beta cells. Factors responsible for the conversion of IAPP into insoluble amyloid fibrils are unknown. Both the amino acid sequence of human IAPP (hIAPP) and hypersecretion of hIAPP have been implicated as factors for amyloid fibril formation in man. We have generated transgenic mice using rat insulin promoter-hIAPP or rat IAPP (rIAPP) gene constructs. No fibrillar islet amyloid was detectable in vivo in these normoglycemic mice, although small amorphous perivascular accumulations of IAPP were observed in hIAPP mice only. To determine the effects of glucose on IAPP secretion and fibrillogenesis, pancreatic islets from transgenic and control mice were examined in vitro. Islet IAPP secretion and content were increased in transgenic islets compared with control islets. IAPP-immunoreactive fibrils were formed at both intra- and extracellular sites in isolated hIAPP islets cultured with glucose at 11.1 and 28 mM for only 7 days. At 28 mM glucose, fibrils were present in deep invaginations of beta cells as observed in non-insulin-dependent diabetic patients. No fibrils were present at low glucose concentrations in hIAPP islets or at any glucose concentration in rIAPP or control islets. Thus, glucose-induced expression and secretion of hIAPP in transgenic mouse islets can lead to formation of amyloid fibrils similar to that found in non-insulin-dependent diabetes mellitus.  相似文献   

10.

Aims/hypothesis  

In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity.  相似文献   

11.
Islet amyloid polypeptide (IAPP) is a 37-amino-acid putative hormone which is expressed by islet B-cells and most probably is co-released with insulin. IAPP is synthesized as an 89-amino-acid prepropeptide in which IAPP is flanked by two short peptides. The two short peptides are ultimately cleaved off at basic residues. In the present study, we used antisera to three different synthetic peptides corresponding to positions 18-30, 40-50 and 53-62 of prepro-IAPP. The two latter peptides fall within the mature IAPP molecule while the first peptide corresponds to the N-terminal flanking peptide. We demonstrate that normal B-cells and islet amyloid both react immunohistochemically with all of these antisera. Using the immunogold labelling technique, we also demonstrate electron microscopically that both the IAPP immunoreactivity and the pro1-IAPP immunoreactivity in amyloid deposits are confined to the amyloid fibrils per se. These data indicate that not only mature IAPP but also the N-terminal flanking peptide is present in islet amyloid deposits. It remains to be shown if the propeptide segments are involved in the pathogenesis of these amyloid depositions.  相似文献   

12.
Wang F  Permert J  Ostenson CG 《Pancreas》2000,20(3):264-269
Islet amyloid polypeptide (IAPP) is produced in pancreatic beta cells. Intraislet function of IAPP is still uncertain. In the present study, we investigated effects of IAPP and somatostatin on stimulus-secretion coupling of beta cells in isolated rat pancreatic islets. Insulin secretion induced by 22.2 mM glucose was increased by an IAPP antiserum (0.1%) or an IAPP antagonist (IAPP8-37, 10 microM). Pretreatment of islets with pertussis toxin (PTX) abolished the stimulating effect of IAPP8-37 on glucose-induced insulin secretion. In contrast, IAPP antiserum and IAPP8-37 did not change insulin secretion induced by 30 mM KCl. Somatostatin (1 nM) inhibited insulin secretion induced by 22.2 mM glucose, 10 mM L-arginine, 25 microM forskolin, and 200 microM carbachol. IAPP (10 microM) enhanced the inhibitory effect of somatostatin on insulin secretion induced by L-arginine or forskolin. PTX pretreatment abolished the effects of somatostatin and IAPP on arginine-induced insulin secretion. In conclusion, IAPP regulates multiple steps in signal transductions of beta cells. The effects of IAPP on beta cells are mediated by PTX-sensitive regulatory G proteins.  相似文献   

13.
Ma Z  Westermark P  Westermark GT 《Pancreas》2000,21(2):212-218
Amyloid derived from the beta-cell product islet amyloid polypeptide (IAPP) has been implicated for a beta-cell lesion in Type II diabetes mellitus. The pathogenesis of islet amyloid is poorly understood, and in addition to an amyloidogenic IAPP molecule and possibly increased concentration of IAPP, other unknown factors seem to be included. It was shown previously that polyclonal rabbit IAPP antisera label beta cells close to amyloid only weakly. Whether this lack of immunoreactivity depends on lack of IAPP or on hidden epitopes is in question. In the present study, we show that the IAPP immunoreactivity of these beta cells is possible to retrieve. On the other hand, the monoclonal IAPP antibody 4A5, which labels IAPP in beta cells, does not label IAPP in its native amyloid form. We show evidence that this lack of immunoreactivity is not dependent on conformational change of the IAPP molecules in the amyloidogenesis but is likely owing to glycation of IAPP in human islet amyloid deposits.  相似文献   

14.
Summary Islet amyloid polypeptide (IAPP), a novel islet hormone candidate, has been reported to be over-expressed relative to insulin in rats following dexamethasone treatment. In order to investigate the expression of IAPP and insulin following dexamethasone treatment of rats for 12 days, we applied in situ hybridization and immunocytochemistry, allowing us to evaluate islet changes in gene expression and morphology. Tissue concentrations of IAPP and insulin were measured by radioimmunoassay. A low dose of dexamethasone (0.2 mg/kg daily) increased the islet levels of IAPP and insulin mRNA to 249±13% and 150±24% of controls, respectively (p<0.001 and p<0.01). A high dose of dexamethasone (2.0 mg/kg daily) increased the islet levels of IAPP and insulin mRNA to 490±13% and 203±9% of controls, respectively (p<0.001 and p<0.001). The pancreatic concentration of IAPP increased more than that of insulin (p<0.05). Morphometric analysis revealed that dexamethasone treatment induced both hyperplasia and hypertrophy of insulin cells. Changes in the cellular localization of IAPP and insulin mRNA were not observed. Thus, we conclude that the increased level of IAPP mRNA is due to both an increase at the cellular level as well as hyperplasia/hypertrophy of insulin cells. In contrast, the increased level of insulin mRNA appears to be due to hyperplasia/hypertrophy of insulin cells, since insulin gene expression decreased at the cellular level (p<0.001 vs controls). These observations provide further evidence that IAPP and insulin gene expression are regulated in a non-parallel fashion, which may be relevant to the pathogenesis of non-insulin-dependent diabetes mellitusAbbreviations IAPP islet amyloid polypeptide - NIDDM non-insulin-dependent diabetes mellitus - ISH in situ hybridization - SSC saline sodium citrate - CGRP calcitonin gene related peptide  相似文献   

15.
Summary Islet amyloid polypeptide is a novel 37 amino-acid-residues polypeptide which has been isolated from amyloid deposits in an insulinoma, and in human and cat islets of Langerhans. The molecule has 46% homology with the calcitonin gene-related peptide. Light microscopy examination of the pancreas shows that islet amyloid polypeptide immunoreactivity is restricted to the islet B cells. The present study utilized a rabbit antiserum against a synthetic peptide corresponding to positions 20–29 of islet amyloid polypeptide, a sequence without any amino-acid identity with calcitonin gene-related peptide. By applying the immunogold technique at the ultrastructural level, it was shown that both insulin and islet amyloid polypeptide immunoreactivity occurs in the central granular core of the human B cell secretory granules, while the A cells remain unlabelled. The demonstration that islet amyloid polypeptide is a granular protein of the B cells may indicate that it is released together with insulin. Further studies are necessary to evaluate the functional role of islet amyloid polypeptide.  相似文献   

16.
Summary Islet amyloid polypeptide is a normal constituent of islet Beta cells and is derived from a larger precursor by removal of flanking peptides at the carboxy (C) and amino (N) terminals. The role of these flanking peptides in the formation of amyloid in Type 2 (non-insulin-dependent) diabetes mellitus and in insulinomas is unknown. The C-terminal flanking peptide of islet amyloid polypeptide was localised by immunocytochemistry in human and monkey pancreatic islets from Type 2 diabetic and non-diabetic individuals by use of specific polyclonal antisera. Immunoreactivity for the C-terminal peptide was found in insulincontaining cells in both diabetic and non-diabetic tissue: no antibody binding was detected in islet amyloid of Type 2 diabetic man or of monkeys although a positive reaction occurred with antisera for islet amyloid polypeptide. The C-terminal peptide was localised by immunogold electron microscopy in the insulin granules in both diabetic and nondiabetic individuals but, unlike islet amyloid polypeptide, was not detected in lysosomes. The absence of immunoreactivity for the C-terminal peptide in amyloid suggests that incomplete cleavage of this flanking peptide from islet amyloid polypeptide is not a factor in the formation of islet amyloid.  相似文献   

17.
The mechanisms underlying insufficient insulin secretion and loss of β-cell mass in feline and human type 2 diabetes mellitus are incompletely understood. However, islet amyloid polypeptide (IAPP)-derived islet amyloidosis (IA) has been linked to increased rates of β-cell apoptosis and, therefore, our goal was to develop an in vitro model of IAPP fibrillogenesis using isolated pancreatic islets from mice transgenic for human IAPP (hIAPP Tg mice). Islets from hIAPP Tg mice, from mice transgenic for non-amyloidogenic murine IAPP (mIAPP Tg mice), and from the FVB background strain were exposed to normal (5.5 mM) or high (28 mM) glucose conditions in cell culture for 8 days. On days 0 and 8, islets were collected for electron microscopy (EM). EM showed no abnormalities in the mIAPP Tg or FVB islets at either time point. On day 8, hIAPP Tg islets cultured at high glucose concentration formed extracellular IAPP-derived flocculent deposits. No significant differences in rates of apoptosis were found between groups. Our findings, therefore, show that in vitro culture of hIAPP Tg mouse islets under high glucose conditions produces a readily available and rapidly inducible model of IAPP-derived fibrillogenesis and enables the study of early phases of the molecular pathogenesis of IA.  相似文献   

18.
To investigate the possible role of islet amyloid polypeptide (IAPP) in the development of type 2 diabetes mellitus, we examined the IAPP content and secretion in pancreatic islets isolated from ventromedial hypothalamic (VMH)-lesioned rats and genetically obese Zucker rats, using a specific RIA for IAPP. Obesity and hyperinsulinemia were observed in rats 21 days after VMH lesioning. IAPP content was increased in the islets of VMH-lesioned rats compared with findings in the sham-operated controls (100.9 +/- 6.6 vs. 72.8 +/- 3.85 fmol/islet; P less than 0.01). Isolated islets of VMH-lesioned rats secreted larger amounts of IAPP in the presence of 2.8 mM and 16.7 mM glucose (2.99 +/- 0.98 and 11.2 +/- 1.29 fmol.islet(-1).3 h-1) than was noted in sham-operated rats (ND and 6.65 +/- 0.78 fmol.islet(-1).3 h-1). In the obese Zucker rats, aged 14 weeks, IAPP concentrations in the islets were elevated compared with lean rats (133.3 +/- 10.6 vs. 84.4 +/- 8.5 fmol/islet; P less than 0.01). The isolated islets secreted larger amounts of IAPP in response to 2.8 mM and 16.7 mM glucose (2.83 +/- 0.88 and 15.81 +/- 1.35 fmol.islet(-1).3 h-1) than did those from lean control rats (0.36 +/- 0.19 and 12.49 +/- 1.20 fmol.islet(-1).3 h-1). These results strongly suggest that overproduction and hypersecretion of IAPP occur in animals with obesity and hyperinsulinemia.  相似文献   

19.
The mechanisms underlying insufficient insulin secretion and loss of beta-cell mass in feline and human type 2 diabetes mellitus are incompletely understood. However, islet amyloid polypeptide (IAPP)-derived islet amyloidosis (IA) has been linked to increased rates of beta-cell apoptosis and, therefore, our goal was to develop an in vitro model of IAPP fibrillogenesis using isolated pancreatic islets from mice transgenic for human IAPP (hIAPP Tg mice). Islets from hIAPP Tg mice, from mice transgenic for non-amyloidogenic murine IAPP (mIAPP Tg mice), and from the FVB background strain were exposed to normal (5.5 mM) or high (28 mM) glucose conditions in cell culture for 8 days. On days 0 and 8, islets were collected for electron microscopy (EM). EM showed no abnormalities in the mIAPP Tg or FVB islets at either time point. On day 8, hIAPP Tg islets cultured at high glucose concentration formed extracellular IAPP-derived flocculent deposits. No significant differences in rates of apoptosis were found between groups. Our findings, therefore, show that in vitro culture of hIAPP Tg mouse islets under high glucose conditions produces a readily available and rapidly inducible model of IAPP-derived fibrillogenesis and enables the study of early phases of the molecular pathogenesis of IA.  相似文献   

20.

Aims/hypothesis  

Type 2 diabetes is characterised by decreased beta cell mass and islet amyloid formation. Islet amyloid formed by aggregation of human islet amyloid polypeptide (hIAPP) is associated with beta cell apoptosis. We used human and transgenic mouse islets in culture to examine whether deletion of caspase-3 protects islets from apoptosis induced by endogenously produced and exogenously applied hIAPP and compared hIAPP toxicity in islet alpha and beta cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号