首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazle propionic acid (AMPA) receptors are ubiquitously expressed; however, their subtypes and abundance vary from region to region. We classified the neurons in various forebrain regions (hippocampus, striatum, amygdala, piriform cortex and somatosensory cortex) into six types: [R1+/R2+], [R1-/R2+], [R1+/R2-], [R1-/R2-], [R1++/R2+] and [R1++/R2-], and analysed the expression of Ca2+-binding proteins, such as parvalbumin and calbindin-D28k, using a triple-staining method. The neurons showing a high GluR1 : GluR2 expression ratio, [R1+/R2-], [R1++/R2+] and [R1++/R2-] neurons, comprised 13-30% of the total neuronal population. In addition, the expression of Ca2+-binding proteins was mainly observed in these three types of neurons. The results suggest that Ca2+-binding protein-positive neurons express Ca2+-permeable AMPA receptors, because the Ca2+-permeability of AMPA receptors is enhanced by the relative scarcity of the GluR2 subunit. To directly test the possibility that Ca2+-binding protein-positive neurons express Ca2+-permeable AMPA receptors, we performed Ca2+-imaging experiments in cultured cortical neurons. Ca2+ influx through AMPA receptors was measured selectively by addition of AMPA together with cyclothiazide in the presence of blockers of other Ca2+ influx routes. More than half of the calbindin-D28k-positive neurons showed a large increase in the intracellular Ca2+ concentration ([Ca2+]i), whilst most of the calbindin-D28k-undetectable neurons exhibited only a slight rise in [Ca2+]i after AMPA addition. These results suggest that the expression of calbindin-D28k is related to the expression of Ca2+-permeable AMPA receptors.  相似文献   

2.
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) -type glutamate receptors play a critical role in excitotoxicity associated with cerebral hypoxia, ischaemia and other acute brain insults. AMPA receptors are composed of GluR1-GluR4 subunits in homomeric and heteromeric assemblies, forming nonselective cation channels. In addition, each subunit has alternative splice variants, flip and flop forms. Heterologous expression studies showed that the AMPA receptor channels exhibit diverse properties depending on subunit/variant composition. For example, the absence of the GluR2 subunit makes AMPA receptor assemblies Ca2+-permeable. Excitotoxicity induced by activating AMPA receptor channels has been linked to excessive Ca2+ influx through the GluR2-lacking channels. Here we demonstrate that coexpression of the AMPA receptor GluR2flip and GluR4flip subunits exerts a lethal effect on HEK293 cells, whereas no lethal activity is observed in other homomeric or heteromeric combinations of AMPA receptor subunits. Patch clamp recordings and Ca2+ imaging analyses have revealed that this GluR2flip/GluR4flip receptor exhibits a low Ca2+ permeability. This subunit combination, however, showed prolonged Na+ influx following AMPA stimulation, even in the absence of cyclothiazide, which attenuates AMPA receptor desensitization. Furthermore, the GluR2flip/GluR4flip-mediated lethality was potentiated by the interruption of cellular Na+ extrusion mechanisms using ouabain or benzamil. These observations suggest that the GluR2flip/GluR4flip receptor-mediated excitotoxicity is attributed to Na+ overload, but not Ca2+ influx.  相似文献   

3.
AMPA receptor-mediated excitotoxicity has been implicated in the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Motor neurons in vitro are particularly vulnerable to excessive AMPA receptor stimulation and one of the factors underlying this selective vulnerability is the presence of a large proportion of Ca2+ -permeable (i.e. GluR2-lacking) AMPA receptors. However, the precise role of GluR2-lacking AMPA receptors in motor neuron degeneration remains to be defined. We therefore studied the impact of GluR2 deficiency on motor neuron death in vitro and in vivo. Cultured motor neurons from GluR2-deficient embryos displayed an increased Ca2+ influx through AMPA receptors and an increased vulnerability to AMPA receptor-mediated excitotoxicity. We deleted the GluR2 gene in mutant SOD1G93A mice by crossbreeding them with GluR2 knockout mice. GluR2 deficiency clearly accelerated the motor neuron degeneration and shortened the life span of mutant SOD1G93A mice. These findings indicate that GluR2 plays a pivotal role in the vulnerability of motor neurons in vitro and in vivo, and that therapies that limit Ca2+ entry through AMPA receptors might be beneficial in ALS patients.  相似文献   

4.
Fast excitatory transmission in the nervous system is mostly mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors whose subunit composition governs physiological characteristics such as ligand affinity and ion conductance properties. Here, we report that AMPA receptors at inner hair cell (IHC) synapses lack the GluR2 subunit and are transiently Ca2+-permeable before hearing onset as evidenced using agonist-induced Co2+ accumulation, Western blots and GluR2 confocal microscopy in the rat cochlea. AMPA (100 microM) induced Co2+ accumulation in primary auditory neurons until postnatal day (PND) 10. This accumulation was concentration-dependent, strengthened by cyclothiazide (50 microM) and blocked by GYKI 52466 (80 microM) and Joro spider toxin (1 microM). It was unaffected by D-AP5 (50 microM), and it could not be elicited by 56 mM K+ or 1 mM NMDA + 10 microM glycine. Western blots showed that GluR1 immunoreactivity, present in homogenates of immature cochleas, had disappeared by PND12. GluR2 immunoreactivity was not detected until PND10 and GluR3 and GluR4 immunoreactivities were detected at all the ages examined. Confocal microscopy confirmed that the GluR2 immunofluorescence was not located postsynaptically to IHCs before PND10. In conclusion, AMPA receptors on maturing primary auditory neurons differ from those on adult neurons. They are probably composed of GluR1, GluR3 and GluR4 subunits and have a high Ca2+ permeability. The postsynaptic expression of GluR2 subunits may be continuously regulated by the presynaptic activity allowing for variations in the Ca2+ permeability and physiological properties of the receptor.  相似文献   

5.
6.
Kainic acid induces seizures with consecutive degeneration of highly vulnerable hippocampal CA3 neurons in adult rats. An abnormal influx of calcium through newly synthesized alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors lacking the GluR2 subunit, which normally renders AMPA receptors calcium impermeable, is thought to play a pivotal role for postictal neuronal death (GluR2 hypothesis). Using a specific GluR2 antiserum, postictal hippocampal GluR2 protein expression was investigated and compared to GluR1 between 6 and 96 h after seizure induction. In addition, postictal protein expression of a recently cloned AMPA receptor binding protein (ABP), which anchors AMPA receptors in the plasma membrane was also analyzed, to address the question of whether its protein expression is associated with neuronal death or survival. At 6 h after seizure induction, GluR2 immunoreactivity (IR) in CA3 was more markedly reduced compared to GluR1, but at 24 h GluR2 IR reattained control levels. More importantly, GluR2 IR was also markedly, but transiently decreased between 6 and 48 h in hippocampal CA1 neurons, but no significant cell loss was observed. These findings modify the GluR2 hypothesis in so far as only a subset of, but not all, hippocampal CA1 and CA3 pyramidal neurons may die due to reduced GluR2 levels with consecutive calcium overload through calcium-permeable AMPA receptors. ABP was induced postictally in presumed CA2 and a subpopulation of CA3 neurons and seems not to be involved in mechanisms of delayed neuronal death.  相似文献   

7.
Magnocellular cholinergic neurons in the basal forebrain have long been recognized as vulnerable to the pathology of Alzheimer's disease. Despite numerous anatomical, pharmacological, behavioral, and physiological investigations of these neurons the cellular mechanism that underlines their selective vulnerability remains unclear. As part of an ongoing investigation into the molecular mechanism(s) underlying neuronal vulnerability in Alzheimer's disease and normal aging, we employed immunocytochemical techniques and examined the cellular localization of the alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA) glutamate receptor subunits GluR1 and GluR2/3 in the basal forebrain of eight nondemented elderly human subjects (66-102 years). For each case we observed GluR1-positive magnocellular cells darkly labeled within all main divisions of the basal forebrain (Ch1-Ch4). Double-labeling immunohistochemical techniques confirmed that the overwhelming majority (94%) of these neurons were also positive for the p75NGFr antibody, thus substantiating the cholinergic nature of these neurons. In contrast, GluR2/3 immunolabeling upon magnocellular neurons was relatively faint or nonexistent. The latter observations were most apparent in cases of advanced age and in the posterior part of the nucleus basalis of Meynert (NBM) (i.e., Ch4). In contrast, in adjacent structures (e.g., globus pallidus), a number of robustly labeled GluR2/3-positive cells were observed. In addition to the eight elderly subjects, we examined GluR1 and GluR2/3 immunostaining in the NBM of five younger cases, 5, 33, 36, 47, and 48 years of age. Although practical considerations limited our observations to the Ch4 region, we observed both GluR1 and GluR2/3 labeling upon NBM neurons in this latter region. On average, the distribution of labeled cells and intensity of immunoreaction were comparable between GluR1 and GluR2/3. The presence of GluR2/3- and GluR1-labeled neurons in the Ch4 region of younger cases but primarily GluR1 in cases of advanced age suggests an age-related decrease in GluR2/3. Functionally, the loss of GluR2 from the AMPA receptor complex results in ion channels highly permeable to Ca(2+). These alterations in cation permeability of the AMPA receptor together with the occurrence of a number of other intrinsic and extrinsic events (i.e., decrease Ca(2+)-binding protein) likely contribute to the vulnerability of these neurons in aging and in AD.  相似文献   

8.
Kainic acid (KA) induces status epilepticus and delayed neurodegeneration of CA3 hippocampal neurons. Downregulation of glutamate receptor 2 (GluR2) subunit mRNA [the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) subunit that limits Ca2+ permeability] is thought to a play role in this neurodegeneration, possibly by increased formation of Ca2+ permeable AMPA receptors. The present study examined early hippocampal decreases in GluR2 mRNA and protein following kainate-induced status epilepticus and correlated expression changes with the appearance of dead or dying cells by several histological procedures. At 12 h, in situ hybridization followed by emulsion dipping showed nonuniform decreases in GluR2 mRNA hybridization grains overlying morphologically healthy-appearing CA3 neurons. GluR1 and N-methyl-D-aspartate receptor mRNAs were unchanged. At 12–16 h, when little argyrophilia or cells with some features of apoptosis were detected by silver impregnation or electron microscopy, single immunohistochemistry with GluR2 and GluR2/3 subunit-specific antibodies demonstrated a pattern of decreased GluR2 receptor protein within CA3 neurons that appeared to predict a pattern of damage, similar to the mRNA observations. Double immunolabeling showed that GluR2 immunofluorescence was depleted and that GluR1 immunofluorescence was sustained in clusters of the same CA3 neurons. Quantitation of Western blots showed increased GluR1:GluR2 ratios in CA3 but not in CA1 or dentate gyrus subfields. Findings indicate that the GluR1:GluR2 protein ratio is increased in a population of CA3 neurons prior to significant cell loss. Data are consistent with the “GluR2 hypothesis” that reduced expression of GluR2 subunits will increase formation of AMPA receptors permeable to Ca2+ and predict vulnerability to a particular subset of pyramidal neurons following status epilepticus. Hippocampus 1998;8:511–525. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The histaminergic tuberomamillary (TM) nucleus, a center for the regulation of wakefulness, is excited by glutamatergic, aminergic and peptidergic inputs. AMPA receptor properties in relation to their expression were investigated in acutely isolated TM neurons with the help of whole-cell patch-clamp recordings combined with single-cell RT-PCR. The mRNAs encoding for the AMPA receptor GluR2 (100% of the neurons) and GluR1 (75%) were the most frequently detected, followed by the mRNA for GluR4 (56%), whereas GluR3 cDNA amplification did not yield a PCR product in any neuron. Flip splice variants prevailed over flop, in keeping with a strong glutamate-response potentiation by cyclothiazide. The expression pattern of AMPA subunits in their two splice variants was correlated with the different subtypes of Na+/Ca2+ (NCX) and Na+/Ca2+/K+ (NCKX) exchangers: glutamate receptor subunits GluR1-4 displayed no coordinated pattern with NCX. However, NCKX2 mRNA occurred only in TM cells with a fast desensitizing glutamate response, where it was coexpressed with the GluR4 subunit in the flop splice variant. NCKX3 mRNA was detected in neurons with fast or slow desensitization of glutamate responses. AMPA receptors in TM neurons were Ca2+-impermeable. As reverse Na+/Ca2+ exchange contributes to the immediate rise in intracellular calcium resulting from glutamate receptor activation, we suggest that the coordinated expression of NCKX2 with the fast desensitizing AMPA receptor-type reflects either a receptor-exchanger coupling or separate mechanisms for maintaining calcium homeostasis in neurons with fast or slow glutamate responses.  相似文献   

10.
The regional distribution of neurons containing a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR1-4) subunit immunoreactivity, relative to the distribution of cholinergic neurons within the basal forebrain of rats, was assessed using single- and dual-antigen immunocytochemistry. Analysis of serial sections stained with antibodies to nerve growth factor receptor (NGFr) and antibodies against each of the AMPA receptor subunits, GluR1-4, revealed a regional codistribution between NGFr- and GluR1- and GluR4-immunoreactive neurons in the medial septum, diagonal band nuclei and nucleus basalis magnocellularis. Quantitative dual-labelling immunocytochemistry using NGFr in combination with each of the GluR antibodies revealed >65% colocalization between NGFr and GluR4 in each of the major cholinergic nuclei in the basal forebrain and 10–15% colocalization between NGFr, GluR1 and GluR2-3. The reticular nucleus of the thalamus, a structure known to be highly susceptible to AMPA-induced neurotoxicity, expressed GluR4 immunoreactivity exclusively. The observation that cholinergic neurons of the basal forebrain are also highly sensitive to AMPA and express the GluR4 subunit suggests that GluR4 may be important in AMPA receptor-mediated excitotoxicity.  相似文献   

11.
The ischemic tolerance is known to show protective effects on the neurons and the restricted Ca2+ influx through Ca2+ channels might be involved. In alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, ribonucleic acid (RNA) editing of the GluR2 subunit determines receptor desensitization and Ca2+ permeability. The authors investigated the effect of ischemic tolerance on the messenger RNA editing of Q/R and R/G sites of GluR2 subunit in hippocampus. It was found that the rate of RNA editing in Q/R site showed no change (100% edited), whereas that in R/G site decreased significantly (83.3% normal editing level to 60.4%) at day 3 (preconditioning period) and returned to normal level at day 14 (after preconditioning period). Further investigation revealed that the decrease of editing rate in ischemic tolerance resulted mainly from the decrease of editing in CA1 area.  相似文献   

12.
We examined the biology of AMPA/kainate-induced motor neuron degeneration using dissociated spinal cord cultures and motor neuron-specific antibodies which enable characterization of individual motor neurons in culture. Cobalt, which is thought to pass through Ca2+-permeable AMPA/kainate receptors following kainate exposure, labeled motor neurons in spinal cord cultures. The analysis of AMPA subunit distribution in dissociated motor neurons revealed a unique pattern of glutamate receptor (GluR) subunits in those cells; the GluR1 subunit was found in all spinal cord neurons, but the GluR2 subunit was not found in identified dissociated motor neurons. These data suggest that selective sensitivity of motor neurons to non-NMDA receptor activation is due, at least in part, to the presence of Ca2+-permeable AMPA/kainate receptors.  相似文献   

13.
AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr activity. Using whole cell patch-clamp recording from neonatal rat hypoglossal motoneurons, we tested the AMPAr properties conferred by GluR2 subunits, namely Ca2+ permeability, current rectification and sensitivity to pentobarbital or to the subunit-specific channel blockers, IEM-1460 and IEM-1925. We recorded membrane currents generated by the agonist, kainate, and compared them with those obtained from hippocampal pyramidal neurons (expressing GluR2-containing AMPAr) and from striatal giant aspiny or hippocampal interneurons (with GluR2-lacking AMPAr). Ca2+ vs. Na+ permeability of motoneuron AMPAr was relatively low (0.25 +/- 0.05), although higher than that of pyramidal neurons. With intracellularly applied spermine, significant inward rectification was absent from motoneurons. These data indicated the prevalence of functional GluR2 subunits. However, the sensitivity of motoneuron AMPAr to pentobarbital did not differ from that of GluR2-lacking AMPAr on interneurons. Motoneurons possessed sensitivity to IEM-1460 (IC50 = 90 +/- 10 microm) approximately 10-fold lower than striatal interneurons, although 10-fold higher than hippocampal pyramidal cells. IEM-1925 also reduced the amplitude of excitatory synaptic currents in brainstem slice motoneurons. We hypothesize that hypoglossal motoneuron AMPAr (moderately Ca2+ permeable because they contain few GluR2 subunits) may contribute to intracellular Ca2+ rises especially if persistent AMPAr activation (or the pathological GluR2 down-regulation) occurs.  相似文献   

14.
Chen LW  Yung KK  Chan YS 《Brain research》2000,884(1--2):87-97
We are interested in studying the co-localization of NMDA glutamate receptor subunits (NR1, NR2A/B) and AMPA glutamate receptor subunits (GluR1, GluR2, GluR2/3 and GluR4) in individual neurons of the rat vestibular nuclei. Immunoreactivity for NR1, NR2A/B, GluR1, GluR2, GluR2/3 and GluR4 was found in the somata and dendrites of neurons in the four major subdivisions (superior, medial, lateral, and spinal vestibular nuclei) and in two minor groups (groups x and y) of the vestibular nuclei. Double immunofluorescence showed that all the NR1-containing neurons exhibited NR2A/B immunoreactivity, indicating that native NMDA receptors are composed of NR1 and NR2A/B in a hetero-oligomeric configuration. Co-expression of NMDA receptor subunits and AMPA receptor subunits was demonstrated by double labeling of NR1/GluR1, NR1/GluR2/3, NR1/GluR4 and NR2A/B/GluR2 in individual vestibular nuclear neurons. All NR1-containing neurons expressed GluR2/3 immunoreactivity, and all NR2A/B-containing neurons expressed GluR2 immunoreactivity. However, only about 52% of NR1-immunoreactive neurons exhibited GluR1 immunoreactivity and 46% of NR1-containing neurons showed GluR4 immunoreactivity. The present data reveal that NMDA receptors are co-localized with variants of AMPA receptors in a large proportion of vestibular nuclear neurons. These results suggest that cross-modulation between NMDA receptors and AMPA receptors may occur in individual neurons of the vestibular nuclei during glutamate-mediated excitatory neurotransmission and may in turn contribute to synaptic plasticity within the vestibular nuclei.  相似文献   

15.
A specific interaction between the AMPA receptor subunits GluR2 and GluR3 and the fusion protein NSF has recently been identified. Disruption of this interaction by adenoviral-mediated expression of a peptide (pep2m) corresponding to the NSF-binding region of GluR2 results in a dramatic reduction in surface expression of AMPA receptors in primary hippocampal neurons. Here we report that expression of pep2m from a recently developed neuronal-specific adenoviral system gave significant neuroprotection to primary CA1-CA3 hippocampal neurons following stimulation with kainate (KA) and this was accompanied by a reduction in Ca(2+) influx. Protection was also observed following glucose deprivation and exposure to ischemic buffer in the absence of any NMDA receptor antagonists. These results provide strong evidence that AMPA receptors play a direct role in mediating postischemic neurotoxicity.  相似文献   

16.
Dicationic adamantane derivative, IEM-1460, which selectively blocks GluR2-lacking, Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, was used to characterize the distribution of AMPA receptors among populations of rat brain cells. IEM-1460 inhibited kainate-induced inward currents (at -80 mV) in a dose-dependent manner. IEM-1460 concentrations producing 50% inhibition of kainate-induced current amplitude (IC50) varied greatly depending on the cell type studied. Striatal giant cholinergic interneurons and putative Bergmann glial cells isolated from the cerebellum were found to be highly sensitive to IEM-1460 block (IC50=2.6 microM), indicating the expression of GluR2-lacking AMPA receptor subtype. Among hippocampal and cortical non-pyramidal neurons, there were cell-to-cell differences in the pattern of AMPA receptor subtype expression. Some cells which are known to express AMPA receptors lacking GluR2 subunit exhibited high sensitivity of IEM-1460 block (IC50 about 1 microM) but in the others, the part of AMPA receptor population seemed to be represented by GluR2-having receptor subtype. The latter subtype was mainly expressed by pyramidal neurons isolated from hippocampus (IC50=1102 microM) and sensorimotor cortex (IC50=357 microM) which showed low affinity for IEM-1460 block. In conclusion, IEM-1460 can be utilized as an indicator of the distribution of AMPA receptor subtypes among populations of rat brain cells, and pharmacological detection of the absence of GluR2 subunit in AMPA receptor assembly can provide useful information for the interpretation of physiological events.  相似文献   

17.
Ca2+ currents are thought to enhance glutamate excitotoxicity. To investigate whether reduced expression of the Ca2+ limiting GluR2(B) subunit enhances seizure-induced vulnerability to either CA1 or CA3 neurons, we delivered GluR2(B) oligodeoxynucleotides (AS-ODNs) to the dorsal hippocampus of adult rats before inducing kainate (KA) seizures. After knockdown, no changes in behavior, electrographic activity, or histology were observed. In contrast, GluR2(B) knockdown and KA-induced status epilepticus produced accelerated histological injury to the ipsilateral CA3a-b and hilar subregions. At 8 to 12 h, the CA3a was preferentially labeled by both silver and TUNEL methods. TUNEL staining revealed 2 types of nuclei. They were round with uniform label, features of necrosis, or had DNA clumping or speckled chromatin deposits within surrounding cytosol, features of apoptosis. At 16 to 24 h, many CA3a-c neurons were shrunken, eosinophilic, argyrophilic, or completely absent. Immunohistochemistry revealed marked decreases in GluR2(B) subunits throughout the hippocampus, NR1 immunoreactivity was also reduced but to a lesser extent. In contrast, GluR1 and NR2A/B immunohistochemistry was relatively uniform except in regions of cell loss or within close proximity to the CA1 infusion site. At 144 h, the CA3 was still preferentially injured although bilateral CA1 injury was also observed in some AS-ODN-, S-ODN-, and KA-only-treated animals. Glutamate receptor antibodies revealed generalized decreases in the CA3 with all probes tested at this delayed time. In contrast, GluR2(B) expression was increased within CA1 irregularly shaped, injured neurons. Therefore, hippocampal deprivation of GluR2(B) subunits is insufficient to induce cell death in mature animals but may accelerate the already known CA3/hilar lesion, possibly by triggering apoptosis within CA3 neurons. CA1 and DG survive the first week despite their loss of GluR2(B) subunits, suggesting that other intrinsic properties such as increased Na+ conductance and reduced ability of the GluR2(B) subunit to interact with certain cytoplasmic proteins may be responsible for the augmented cell death rather than changes in AMPA receptor-mediated Ca2+ permeability. Alternatively, changes in allosteric interactions that affect other receptor classes of high density at the mossy fiber synapse (e.g. KA receptors) may augment KA neurotoxicity. Latent GluR2(B) increases in CA1 injured neurons support a role for AMPA receptor subunit alterations in seizure-induced tolerance.  相似文献   

18.
19.
Wang WW  Cao R  Rao ZR  Chen LW 《Brain research》2004,998(2):174-183
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.  相似文献   

20.
A number of studies have demonstrated that willardiine [(S)-1-(2-amino-2-carboxyethyl) pyrimidine-2,4-dione] is a useful agonist for the activation of AMPA/kainate receptors. Here we examine the effect of extracellular calcium on currents evoked by willardiine in HEK 293 cells expressing the GluR6(Q)/KA-2 kainate receptor subunits. At a concentration of 1.8 mM, Ca2+ inhibited the currents induced by 100 microM willardiine by approximately 50%. When extracellular Na+ ions were replaced with Ca2+ ions there were no measurable inward currents. We conclude that Ca2+ inhibition of the willardiine-induced response is concentration dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号