首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several lines of evidence indicate that augmented neuronal activity is associated with increased mitochondrial function, however, the mechanisms of coupling are still unclear. In this study we used a low extracellular Mg2+ concentration and short stimulus trains to evoke neuronal hyperactivity in the form of seizure-like events (SLE) in hippocampal slice cultures. Simultaneous microfluorimetric and electrophysiological techniques were applied to gain insight into changes of Ca2+ concentration in different compartments and into mitochondrial function. SLEs were associated with a large decrease of the extracellular Ca2+ concentration ([Ca2+]e), a spiking increase of the cytoplasmic and a smoothed elevation of the mitochondrial Ca2+ concentration (cytoplasmic concentration [Ca2+]i; intramitrochondrial concentration [Ca2+]m). Following an initial apparent decline in the mitochondrial membrane potential (DeltaPsi) and NAD(P)H autofluorescence, mitochondria depolarized and NADH production was augmented. Furthermore, SLEs were associated with increased oxidation of dihydroethidine (HEt). Our data suggest that intramitochondrial Ca2+ accumulation stimulates NADH production and production of radical oxygen species (ROS). Interestingly, mitochondrial depolarization followed [Ca2+]i and [Ca2+]m changes with a delay implying that electrogenic extrusion of Ca2+ from the mitochondrial matrix might be responsible for the depolarization of the mitochondrial membrane.  相似文献   

2.
We considered the evolution of Ca2+ oscillation dynamics in recurrent seizure-like events. Dynamic system behaviour was characterized in the state space reconstructed from intra- and extracellular [Ca2+] fluctuations simultaneously measured in cultured rat hippocampal slices under low-[Mg2+] conditions. When associated in the seizure-like event, these fluctuations occurred on a restricted set, the attractor, embedded in the full state space with less than five degrees of freedom. Instantaneous relative phase differences indicated field potential-driven phase jumps locked onto seizure-like events. To account for recurrent dynamics, calculations were performed on different extensions of a model for Ca2+ oscillation. These identified bidirectional, asymmetrical coupling of extracellular with intracellular (cytosolic, Ca2+ store, mitochondrial) Ca2+ dynamics as critical in its development.  相似文献   

3.
Maruyama K  Ohta T  Ito S 《Brain research》2004,1013(1):40-50
The involvement of mitochondrial Na+-Ca2+ exchange in Ca2+ responses to ATP was examined in rat pheochromocytoma (PC) 12 cells. Intracellular Ca2+ ([Ca2+]i) and Na+ concentrations ([Na+]i) were measured using fura-2 and SBFI, respectively. ATP caused concentration-dependent increases in [Ca2+]i and [Na+]i. High concentrations of ATP elicited a Ca2+ transient followed by a slow recovery of [Ca2+]i (a sustained phase) in 77% of PC12 cells. The sustained phase of Ca2+ response appeared only when the peak Ca2+ transient exceeded 500 nM. FCCP, a protonophore, greatly enhanced Ca2+ responses to ATP only in cells with the sustained phase but not without this phase. The sustained phase was decreased by clonazepam and CGP37157, mitochondrial Na+-Ca2+ exchange inhibitors, and extracellular Na+ removal but not by cyclosporin A, an inhibitor of permeability transition pores. The reintroduction of Na+ 3.5 min after ATP stimulation in the absence of Na+ caused Na+ concentration-dependent increases in [Ca2+]i and [Na+]i. The increase in [Na+]i was correlated with that in [Ca2+]i. FCCP caused a great increase in [Ca2+]i 4.5 min after ATP stimulation in the absence of extracellular Na+ but not in its presence, indicating that mitochondria retain Ca2+ in the absence of Na+. These results suggest that ATP causes a large increase in [Ca2+]i which was sequestered in mitochondria and that the sustained phase of Ca2+ response to ATP are mainly due to the release of mitochondrial Ca2+ through Na+-Ca2+ exchangers in PC12 cells.  相似文献   

4.
The enteric nervous system controls most of the gastrointestinal functions. We applied confocal microscopy and the Ca2+ indicator Fluo-3 as an optical approach to study synaptic activation in cultures of myenteric neurones. The optical recording of [Ca2+]i (the intracellular Ca2+ concentration) was used to monitor activation, since [Ca2+]i is crucial in the coupling between neuronal excitation and the activation of several intracellular events. Extracellular fibre tract stimulation (2 s, 30 Hz) caused a transient [Ca2+]i rise in a subset of neurones (50%). These transients lasted for 5.2 s (n=36), with an average amplitude of 3.4 +/- 1.3 times the basal concentration. The removal of extracellular Ca2+ (n=15) or the application of 10-6 M tetrodotoxin (n=16) blocked this response. The N-type Ca2+-channel blocker omega-conotoxin (5 x 10 -7M) abolished the [Ca2+]i increase, while blockade of L-type and P/Q type Ca2+ channels had no effect. Single stimuli evoked a [Ca2+]i rise in the processes. omega-conotoxin-sensitive postsynaptic events required repetitive stimulation. Cholinergic blockade did not inhibit the [Ca2+]i rise in all neurones, suggesting that, besides acetylcholine, other neurotransmitters are involved. Optical imaging of [Ca2+]i can be used to study synaptic spread of activation in enteric neuronal circuits expressed in culture.  相似文献   

5.
The neuroprotectant fructose-1,6-bisphosphate (FBP) preserves cellular [ATP] and prevents catastrophic increases in [Ca2+]i during hypoxia. Because FBP does not enter neurons or glia, the mechanism of protection is not clear. In this study, we show that FBP's capacity to protect neurons and stabilize [Ca2+]i during hypoxia derives from signaling by a phospholipase-C-intracellular Ca2+-protein kinases pathway, rather than Ca2+ chelation or glutamate receptor inhibition. FBP reduced [Ca2+]i changes in hypoxic hippocampal neurons, regardless of [Ca2+]e, and preserved cellular integrity as measured by trypan blue or propidium iodide exclusion and [ATP]. FBP also prevented hypoxia-induced increases in [Ca2+]i when glucose was absent and when [Ca2+]e was increased to negate Ca2+ chelation by FBP. These protective effects were observed equally in postnatal day 2 (P2) and P16 neurons. Inhibiting glycolysis with iodoacetate eliminated the protective effects of FBP in P16 neurons. FBP did not alter Ca2+ influx stimulated by brief applications of NMDA or glutamate during normoxia or hypoxia, but did reduce the increase in [Ca2+]i produced by 10 min of glutamate exposure during hypoxia. Because FBP increases basal [Ca2+]i and stimulates membrane lipid hydrolysis, we tested whether FBP's protective action was dependent on phospholipase C signaling. The phospholipase C inhibitor U73122 prevented FBP-induced increases in [Ca2+]i and eliminated FBP's ability to stabilize [Ca2+]i and increase survival during anoxia. Similarly, FBP's protection was eliminated in the presence of the mitogen/extracellular signal protein kinase (MEK) inhibitor U0126. We conclude that FBP may produce neuroprotection via activation of neuroprotective signaling pathways that modulate Ca2+ homeostasis.  相似文献   

6.
M Sato 《Brain research》1999,828(1-2):193-196
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean+/-S.E.M.; 38+/-5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 microM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57+/-7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62+/-8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 microM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83+/-10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

7.
A S Yoo  C Krieger  S U Kim 《Brain research》1999,827(1-2):19-27
Previous investigations have shown that phorbol esters stimulate process extension in oligodendrocytes (OL), likely by the activation of protein kinase C (PKC). In this report, we demonstrate that treatment of OL with 4beta-phorbol-12, 13-dibutyrate (PDB; 0.1-1 microM) resulted in an increase in intracellular Ca2+ concentration ([Ca2+]i) from 94+/-2 nM (mean+/-S.E.M.) to 244+/-10 nM. This increase was produced by Ca2+ influx through a La3+-insensitive pathway. Changes in [Ca2+]i were also produced by modifying the extracellular Ca2+ concentration ([Ca2+]o) where [Ca2+]i was increased by elevations in [Ca2+]o. In parallel experiments we found that increased [Ca2+]o alone, without concurrent phorbol ester application, resulted in increased OL process extension as determined by the percent of OL with long processes (greater than 3 times the cell body diameter). These results demonstrate that increasing [Ca2+]o stimulates OL process outgrowth. Furthermore, both elevations in [Ca2+]o and PDB exposure increase [Ca2+]i, suggesting that some of the effects of phorbol esters on OL process extension are likely mediated by changes in [Ca2+]i.  相似文献   

8.
Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by [Arg8]-vasopressin (AVP) were studied in cultured rat hippocampal neurons by fura-2 fluorometry. AVP (10-1,000 nM) caused a dose-dependent increase in [Ca2+]i. The selective V1 vasopressin receptor agonist [Phe2, Ile3, Orn8]-vasopressin also induced a significant increase in [Ca2+]i, whereas the selective V2 vasopressin receptor agonist [deamino Cys1, D-Arg8]-vasopressin showed no effect. The AVP-induced increase in [Ca2+]i was inhibited by the selective V1 vasopressin receptor antagonist d(CH2)5[Tyr2(Me), Arg8]-vasopressin and nonpeptide V1 antagonist OPC-21268. On the other hand, no antagonistic effects were observed with the V2 vasopressin antagonist desglycinamide-[d(CH2)5, D-Ile2, Ile4, Arg8]-vasopressin and nonpeptide V2 antagonist OPC-31260. The increase in [Ca2+]i induced by AVP was abolished after removal of extracellular Ca2+. In addition, AVP-induced [Ca2+]i elevation was not affected by treatment with verapamil, which blocked the [Ca2+]i increase induced by an isotonic high K(+)-medium (50 mM). However, omega-conotoxin GVIA completely inhibited the effect of AVP. These results suggested that the AVP-induced [Ca2+]i increase in cultured rat hippocampal neurons is due to influx of Ca2+ through V1 VP receptors coupled with N-type calcium channels.  相似文献   

9.
The effect of bradykinin on the intracellular Ca2+ concentration ([Ca2+]i) in NG108-15 cells was studied using a Ca2+ indicator quin 2. Bradykinin induced two phases of change in [Ca2+]i. Bradykinin induced a spike phase of [Ca2+]i increase which was detectable within 15 s and decayed to near-basal concentration in 3 min and then a prolonged plateau phase of [Ca2+]i increase which continued for 15 min. The bradykinin-induced spike phase was not diminished by decreasing extracellular Ca2+ concentration ([Ca2+]o) to 1 microM. On the contrary, the plateau phase was dependent on [Ca2+]o and inhibited by Ca2+ blockers, verapamil (50 microM), nifedipine (1 microM). The iontophoretic injection of inositol-trisphosphate (IP3) into the single cell induced the increase of [Ca2+]i, which was independent of [Ca2+]o. These results indicate that the bradykinin-induced spike phase is mediated by the release of intracellular Ca2+ stores induced by IP3, while the plateau phase is mediated by influx of extracellular Ca2+ probably through voltage-sensitive Ca2+ channels.  相似文献   

10.
Cytosolic Ca2+ concentration ([Ca2+]i) was measured in isolated rat dorsal root ganglion (DRG) neurons using the fluorescent Ca2+ indicator fura-2. Exposure to high (50 mM) extracellular K+ evoked a robust increase in [Ca2+]i, which was almost totally abolished by concomitant presence of nisoldipine (10 microM) and omega-conotoxin GVIA (10 microM). Whereas either high (30 mM) D-glucose alone or ouabain (100 microM) alone did not appreciably affect the high K+-induced [Ca2+]i elevation, neurons pretreated with high D-glucose together with ouabain exhibited a significantly larger [Ca2+]i response to high K+ stimulation, which was almost completely inhibited by nisoldipine and omega-conotoxin GVIA. These results suggest that a combination of high glucose and suppressed Na+/K+ pump activity potentiates the [Ca2+]i elevation stimulated by activation of the voltage-gated Ca2+ channels in rat DRG neurons.  相似文献   

11.
J A Holzwarth  S R Glaum  R J Miller 《Glia》1992,5(4):239-250
We carried out experiments designed to investigate the effects of sarafotoxin-6B (SFTx) on [Ca2+]i in cerebellar astrocytes using the Ca2+ indicator fura-2. Both endothelin-1 and sarafotoxin-6B increased [Ca2+]i in individual cerebellar astrocytes in cell culture. The shape of the response was variable but usually consisted of an initial peak of [Ca2+]i followed by an extended plateau increase in [Ca2+]i. In Ca(2+)-free medium only the initial peak was observed. If Ca2+ was subsequently readmitted to the external medium a plateau was now formed. When external Ca2+ was removed during a plateau, [Ca2+]i rapidly declined; replacing the external Ca2+ reversed this decline. The plateau was also reversibly reduced by addition of Ni2+ (5 mM) to the external medium. Addition of 50 mM K+ produced a small increase in [Ca2+]i in most cells. This response was blocked by nimodipine. However, nimodipine only slightly blocked the plateau increase in [Ca2+]i that was formed following activation of endothelin receptors. Furthermore, perfusion of cells with 50 mM K+ during the plateau portion of a response to SFTx reduced [Ca2+]i. In some cells addition of a phorbol ester produced a sustained increase in [Ca2+]i that was blocked by nimodipine. In conclusion, activation of endothelin receptors by SFTx in cerebellar astrocytes produces both Ca2+ mobilization and Ca2+ influx. The pathway for Ca2+ influx is predominantly a non-voltage-dependent one, although some entry through a dihydropyridine-sensitive pathway also appears to occur. Furthermore, activation of protein kinase C in cerebellar astrocytes activates voltage-sensitive Ca2+ channels.  相似文献   

12.
The effects of glutamate on intracellular free Ca2+, [Ca2+]i, and neurotoxicity were compared in cerebellar granule neurons in vitro. [Ca2+]i was measured with fura-2 and digital fluorescence imaging microscopy; neurotoxicity was monitored using a vital dye and colorimetric analysis. Glutamate produced dose-dependent increases in [Ca2+]i, which tended to be transient for glutamate concentrations in a range of 0.01-0.5 microM and sustained for higher levels of glutamate. The ED50 for the [Ca2+]i response to glutamate was 6 microM. The LD50 for glutamate-induced neurotoxicity was similar, i.e., 10 microM. The effect of glutamate on [Ca2+]i was greatly diminished when external Ca2+ was removed and blocked by Mg2+ or N-methyl-D-aspartate (NMDA)-type receptor antagonists. The latter conditions as well as preloading granule neurons with the intracellular Ca2+ chelator quin2 largely prevented glutamate cytotoxicity. The neurotoxic effect of glutamate required incubations with the stimulus for 10-20 min at 25 degrees C. Withdrawal of glutamate after this period was accompanied by a prolonged alteration in [Ca2+]i. Pretreatment of the cells with the ganglioside GM1 reduced this late increase in [Ca2+]i as well as the neurotoxic effects of glutamate. This indicates that glutamate-induced neurotoxicity results from a composite of diverse temporal alterations in Ca2+ homeostasis and that blunting any of these components reduces excitotoxicity.  相似文献   

13.
Osmolarity reduction (20%) elicited 3H-norepinephrine (NE) efflux from rat cortical synaptosomes. The hyposmotic NE release resulted from the following events: (i) a Na+-dependent and La3+-, Gd3+- and ruthenium red-sensitive depolarization; (ii) a cytosolic Ca2+ ([Ca2+]i) rise with contributions from external Ca2+ influx and internal Ca2+ release, probably through the mitochondrial Na+-Ca2+ exchanger; and (iii) activation of a [Ca2+]i-evoked, tetanus toxin (TeTX)-sensitive, PKC-modulated NE efflux mechanism. This sequence was established from results showing a drop in the hyposmotic [Ca2+]i rise by preventing depolarization with La3+, and by the inhibitory effects of Ca2+-free medium (EGTA; 50%), CGP37157 (the mitochondrial Na+-Ca2+ exchanger blocker; 48%), EGTA + CGP37157 or by EGTA-AM (> 95% in both cases). In close correspondence with these effects, NE efflux was 92% decreased by Na+ omission, 75% by La3+, 47% by EGTA, 50% by CGP37157, 90% by EGTA + CGP37157 and 88% by EGTA-AM. PKC influenced the intracellular Ca2+ release and, mainly through this action, modulated NE efflux. TeTX suppressed NE efflux. The K+-stimulated NE release, studied in parallel, was unaffected by Na+ omission, or by La3+, Gd3+ or ruthenium red. It was fully dependent on external Ca2+, insensitive to CGP37157 and abolished by TeTX. These results suggest that the hyposmotic events, although different from the K+-evoked depolarization and [Ca2+]i rise mechanisms, are able to trigger a depolarization-dependent, Ca2+-dependent and TeTX-sensitive mechanism for neurotransmitter release.  相似文献   

14.
Because increasing evidence indicates that glial cells are a target of endothelin, we have characterized endothelin-induced phosphoinositide (PI) turnover and Ca2+ homeostasis in C6 glioma cells. Endothelin-1 (ET) increased formation of 3H-inositol phosphate (IP) from PI and elicited an increase in cytosolic free Ca2+ ([Ca2+]i) in rat C6 glioma. In the presence of Li+, the increase in 3H-inositol trisphosphate formation was rapid, reaching its peak at 5 min after stimulation. ET also elicited a rapid and sustained increase in [Ca2+]i in a dose-dependent manner (1-100 nM). The rank orders of efficacy for ET-related peptides in increasing [Ca2+]i were ET = ET-2 greater than sarafotoxin greater than ET-3. Both ET-mediated stimulation of IP formation and [Ca2+]i increase were largely inhibited in the absence of external Ca2+ but unaffected by the depletion of external Na+ and the presence of dihydropyridine derivatives or verapamil. Inorganic Ca2+ channel blockers Cd2+, La3+, and Mn2+ at 1 mM inhibited both responses induced by ET. Cross-desensitization and nonadditivity were observed for both events among ET-related peptides tested, but not between ET and ATP. Pretreatment of cells with pertussis toxin (PTX) attenuated the PI response to ET, but had no effect on ET-elicited [Ca2+]i increase. ET-induced Ca2+ mobilization (measured in Ca(2+)-free medium) was only transient and was inhibited by 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate. Moreover, the intracellular Ca2+ pools mobilized by ET and ATP appeared to overlap, as indicated by their partial heterologous desensitization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In leech Retzius neurones the inhibition of the Na+/K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+/K+ pump in bathing solutions of different ionic composition. The results show that Na+/K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+/K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+/K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

16.
[Ca2+]i was measured using fura-2-loaded isolated catfish horizontal cells in the presence of L-glutamate and the glutamate analogs kainate (KA), quisqualate (QA), and NMDA. Caffeine was used to release Ca2+ from intracellular stores. Cell membrane potential was controlled with a voltage clamp to prevent activation of voltage-dependent Ca2+ channels in the presence of agonist. All excitatory amino acid agonists produced a rapid and sustained rise in [Ca2+]i with the order of potency being QA greater than Glu greater than KA greater than NMDA. The agonist-induced [Ca2+]i increase was blocked in reduced [Ca2+]o and by 6-cyano-7-nitroquinoxaline-2,3-dione and 2-amino-5-phosphonopentanoate, which are specific blockers for QA/KA and NMDA receptors, respectively. The metabotropic receptor agonist trans-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD; 10-200 microM) had no effect on [Ca2+]i. Hill coefficients from curves fitted to concentration-response data suggested an amplification of the Ca2+ signal that was interpreted as calcium-induced calcium release (CICR) from intracellular Ca2+ stores. Caffeine (10 mM) produced a rapid transient rise in [Ca2+]i, confirming the existence of a Ca(2+)-sensitive store. Following caffeine-induced depletion of Ca2+ from intracellular stores, agonists were still able to produce increases in [Ca2+]i, confirming Ca2+ influx through the agonist-gated channel. The agonist-induced increase in [Ca2+]i was decreased following caffeine-induced depletion, confirming a process of CICR. These results are consistent with the hypothesis that excitatory amino acids can produce direct modulation of [Ca2+]i by influx through the agonist-gated channel and by CICR from intracellular stores.  相似文献   

17.
NMDA receptor-mediated Ca2+ flux was studied in cultured rat retinal ganglion cells and neocortical neurons. Intracellular free calcium ([Ca2+]i was measured with fura-2 fluorescence imaging. Baseline [Ca2+]i was 59 +/- 5 nM. In low [Mg2+]o, 200 microM NMDA reversibly increased [Ca2+]i to 421 +/- 70 nM. This rise in [Ca2+]i was blocked by the NMDA antagonists APV (200 microM) or [Mg2+]o (1 mM), but only slightly inhibited by the non-NMDA antagonist CNQX (10 microM). Chemical reduction with dithiothreitol (DTT) had no effect on resting [Ca2+]i. However, DTT increased the NMDA-induced rise in [Ca2+]i approximately 1.6-fold; the oxidizing agent dithiobisnitrobenzoic acid (DTNB) reversed this effect. In patch-clamp experiments, DTT increased NMDA-activated whole-cell conductance approximately 1.7-fold in low and high [Ca2+]o. The Ca2+/Na+ permeability ratio of approximately 7 for NMDA channels remained unaltered by chemical reduction. Thus, redox modulation of the NMDA receptor/channel complex results in a dramatic alteration in current magnitude but no change in ionic permeabilities.  相似文献   

18.
It has been shown recently that astroglial cells of the mammalian CNS possess receptors for neurotransmitters. In order to analyze what sequences of cellular events occur upon activation of these glial receptors, we utilized a 5-HT receptor in a rat clonal cell of glial origin as a model system. When the C6BU-1 glioma cells were exposed to 5-HT, the cytosolic Ca2+ concentration ([Ca2+]i) was elevated and the cellular content of cGMP was increased in a dose-dependent manner. 5-HT receptor antagonists and a Ca2+ entry blocker suppressed the increases in both [Ca2+]i and cGMP. The magnitude of the cGMP increment depended on the environmental Ca2+ concentration and was totally blocked by Ca2+ depletion. Application of a Ca2+ ionophore increased [Ca2+]i and cGMP. There was a tendency for extremely high [Ca2+]i to suppress the cGMP increment. On the contrary, membrane-permeable cyclic nucleotide analogs failed to increase [Ca2+]i. These results suggest that the following sequence of events occurs in 5-HT-induced C6BU-1 cells: activation of 5-HT receptors, Ca2+ influx, a rise in [Ca2+]i, activation of guanylate cyclase, and, finally, activation of cyclic nucleotide phosphodiesterase.  相似文献   

19.
Effects of hypoxia and putative transmitters on [Ca2+]i of rat glomus cells   总被引:2,自引:0,他引:2  
Dissociated rat glomus cells were loaded with Fura-2 AM to study the effects of hypoxia, and carotid body transmitters on intracellular calcium, [Ca2+]i. The mean control [Ca2+]i was 55 nM in isolated cells and 67 nM in clusters. The following procedures changed [Ca2+]i:0[Ca2+]o+EGTA reduced [Ca2+]i by about 50%, suggesting that the remaining calcium originated from intracellular organelles. [Ca2+]i increased when [Ca2+]o was doubled.Hypoxia by sodium dithionite (Na2S2O4) induced large [Ca2+]i increases in clustered and isolated cells. Smaller rises occurred with 100% N2 hypoxia. The augmented [Ca2+]i, induced by Na2S2O4, was reduced (not eliminated) in 0[Ca2+]o+EGTA, suggesting that some calcium was intracellularly released. Nifedipine depressed (did not block) the Na2S2O4-induced calcium increase, implying some inflow via other (N, T or P/Q) voltage-dependent or voltage-independent calcium channels.Cholinergic agents (ACh, nicotine, muscarine, bethanechol and pilocarpine) increased [Ca2+]i. The ACh effect was produced exclusively by calcium inflow since it was eliminated in 0[Ca2+]o+EGTA. Cholinergic effects were depressed (not obliterated) by D-tubocurarine (D-TC), hexamethonium (C6) and atropine.ACh, nicotine and pilocarpine potentiated the excitatory effect of Na2S2O4 on [Ca2+]i. Bethanechol depressed this excitation whereas muscarine had inconsistent effects.Atropine and C6 depressed [Ca2+]i increases elicited by Na2S2O4 but the effects of D-TC were variable.Dopamine (DA) had variable effects. It increased [Ca2+]i in 75% of cases, and reduced the Na2S2O4 -induced calcium increase.Thus, calcium increases during Na2S2O4 occur by direct effects on the glomus cells and feedback action through released ACh and DA.  相似文献   

20.
Reduction of extracellular Mg2+ concentration induced spontaneous and evoked epileptiform activity in the entorhinal cortex (EC) and dentate gyrus (DG) of combined hippocampus (HC)-EC slices. Extracellular field potentials, as well as changes in extracellular Ca2+ and K+ concentrations, were measured in EC and DG with ion-selective/reference electrodes during both repetitive and single stimuli. In the EC, lowering extracellular [Mg2+] induces both spontaneous and single stimulus evoked ictal events consisting of extracellular negative potential shifts (up to 5 mV, 30 sec), decreases in [Ca2+]0 and increases in [K+]0. In the DG, spontaneous events were much shorter, but similar changes in [Ca2+]0, [K+]0 and field potentials (FPs) could be evoked by brief high-frequency stimulation. In both areas, the N-methyl-D-aspartate (NMDA) receptor antagonist 2-aminophosphonovalerate (2-APV) completely blocked spontaneous as well as stimulus evoked epileptiform events. The neurotransmitter norepinephrine (NE), which has previously been shown to modulate long-term potentiation in the DG, was found to exhibit differential modulation of epileptiform activity in the EC and DG. In the EC, NE, acting via alpha 1-receptors, completely blocked low Mg2+-induced epileptiform activity. In contrast, in the DG, NE exhibited a beta-receptor mediated prolongation of the low Mg2+-induced ictal events, and enhanced the stimulus-induced ionic and field potential changes. From these results, we conclude that lowering extracellular [Mg2+], acting in large part through the removal of the Mg2+ voltage-dependent blockade of NMDA receptors, leads to induction of epileptiform activity in both the EC and DG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号