首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Over-expression of drug efflux transporters at the level of the blood-brain barrier (BBB) has been proposed as a mechanism responsible for multidrug resistance. Drug transporters in epileptogenic tissue are not only expressed in endothelial cells at the BBB, but also in other brain parenchymal cells, such as astrocytes, microglia and neurons, suggesting a complex cell type-specific regulation under pathological conditions associated with epilepsy. This review focuses on the cerebral expression patterns of several classes of well-known membrane drug transporters such as P-glycoprotein (Pgp), and multidrug resistance-associated proteins (MRPs) in the epileptogenic brain. Both experimental and clinical evidence of epilepsy-associated cerebral drug transporter regulation and the possible mechanisms underlying drug transporter regulation are discussed. Knowledge of the cerebral expression patterns of drug transporters in normal and epileptogenic brain will provide relevant information to guide strategies attempting to overcome drug resistance by targeting specific transporters.  相似文献   

2.
Multidrug resistance: retrospect and prospects in anti-cancer drug treatment   总被引:20,自引:0,他引:20  
Conventional cancer chemotherapy is seriously limited by the multidrug resistance (MDR) commonly exhibited by tumour cells. One mechanism by which a living cell can achieve multiple resistances is via the active efflux of a broad range of anticancer drugs through the cellular membrane by MDR proteins. Such drugs are exported in both ATP-dependent and -independent manners, and can occur despite considerable concentration gradients. To the ATP-dependent group belongs the ATP-binding cassette (ABC) transporter family, which includes P-gp, MRP, BCRP, etc. Another protein related to MDR, though not belonging to the ABC transporter family, is lung resistance-related protein (LRP). All of these proteins are involved in diverse physiological processes, and are responsible for the uptake and efflux of a multitude of substances from cancer cells. Many inhibitors of MDR transporters have been identified over the years. Firstly, MDR drugs were not specifically developed for inhibiting MDR; in fact, they had other pharmacological properties, as well as a relatively low affinity for MDR transporters. They included compounds of diverse structure and function, such as verapamil and cyclosporine, and caused side effects. Secondly, the new drugs were more inhibitor-specific, in terms of MDR transport, and were designed to reduce such side effects (e.g., R-verapamil, dexniguldipine, etc.). Unfortunately, they displayed poor response in clinical studies. Recently, new compounds obtained from drug development programs conducted by the pharmaceutical industry are characterized by a high affinity to MDR transporters and are efficient at nanomolar concentrations. Some of these compounds (e.g., MS-209) are currently under clinical trials for specific forms of advanced cancers. We aim to provide an overview of the properties associated with those mammalian MDR transporters known to mediate significant transport of relevant drugs in cancer treatments. We also summarize recent advances concerning resistance to cancer drug therapies with respect to the function and overexpression of ABC and LRP multidrug transporters.  相似文献   

3.
The role of transporters in drug absorption, distribution and elimination processes as well as in drug–drug interactions is increasingly being recognised. Although the lungs express high levels of both efflux and uptake drug transporters, little is known of the implications for the biopharmaceutics of inhaled drugs. The current knowledge of the expression, localisation and functionality of drug transporters in the pulmonary tissue and the few studies that have looked at their impact on pulmonary drug absorption is extensively reviewed. The emphasis is on transporters most likely to affect the disposition of inhaled drugs: (1) the ATP-binding cassette (ABC) superfamily which includes the efflux pumps P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs), breast cancer resistance protein (BCRP) and (2) the solute-linked carrier (SLC and SLCO) superfamily to which belong the organic cation transporter (OCT) family, the peptide transporter (PEPT) family, the organic anion transporter (OAT) family and the organic anion transporting polypeptide (OATP) family. Whenever available, expression and localisation in the intact human tissue are compared with those in animal lungs and respiratory epithelial cell models in vitro. The influence of lung diseases or exogenous agents on transporter expression is also mentioned. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2240–2255, 2010  相似文献   

4.
The effectiveness of many anticancer agents is dependent on their disposition to the intracellular space of cancerous tissue. Accumulation of anticancer drugs at their sites of action can be altered by both uptake and efflux transport proteins, however the majority of research on the disposition of anticancer drugs has focused on drug efflux transporters and their ability to confer multidrug resistance. Here we review the roles of uptake transporters of the SLC22A and SLCO families in the context of cancer therapy. The many first-line anticancer drugs that are substrates of organic cation transporters (OCTs) organic cation/carnitine transporters (OCTNs) and organic anion- transporting polypeptides (OATPs) are summarized. In addition, where data is available a comparison of the localization of drug uptake transporters in healthy and cancerous tissues is provided. Expression of drug uptake transporters increases the sensitivity of cancer cell lines to anticancer substrates. Furthermore, early observational studies have suggested a causal link between drug uptake transporter expression and positive outcome in some cancers. Quantification of drug transporters by mass spectrometry will provide an essential technique for generation of expression data during future observational clinical studies. Screening of drug uptake transporter expression in primary tumors may help differentiate between susceptible and resistant cancers prior to therapy.  相似文献   

5.
Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimer's and Parkinson's disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications.  相似文献   

6.
7.
Cancer cells often become resistant to chemotherapy through a phenomenon known as multidrug resistance (MDR). Several factors are responsible for the development of MDR, preeminent among them being the accelerated drug efflux mediated by overexpression of ATP binding cassette (ABC) transporters. Some small molecule tyrosine kinase inhibitors (TKIs) were recently reported to modulate the activity of ABC transporters. Therefore, the purpose of this study was to determine if motesanib, a multikinase inhibitor, could reverse ABCB1-mediated MDR. The results showed that motesanib significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to its substrate anticancer drugs. Motesanib significantly increased the accumulation of [3H]-paclitaxel in ABCB1 overexpressing cells by blocking the efflux function of ABCB1 transporter. In contrast, no significant change in the expression levels and localization pattern of ABCB1 was observed when ABCB1 overexpressing cells were exposed to 3 μM motesanib for 72 h. Moreover, motesanib stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Consistent with these findings, the docking studies indicated favorable binding of motesanib within the transmembrane region of homology modeled human ABCB1. Here, we report for the first time, motesanib, at clinically achievable plasma concentrations, antagonizes MDR by inhibiting the efflux activity of the ABCB1 transporter. These findings may be useful for cancer combination therapy with TKIs in the clinic.  相似文献   

8.
Müller F  Fromm MF 《Pharmacogenomics》2011,12(7):1017-1037
Drug-drug interactions are a serious clinical issue. An important mechanism underlying drug-drug interactions is induction or inhibition of drug transporters that mediate the cellular uptake and efflux of xenobiotics. Especially drug transporters of the small intestine, liver and kidney are major determinants of the pharmacokinetic profile of drugs. Transporter-mediated drug-drug interactions in these three organs can considerably influence the pharmacokinetics and clinical effects of drugs. In this article, we focus on probe drugs lacking significant metabolism to highlight mechanisms of interactions of selected intestinal, hepatic and renal drug transporters (e.g., organic anion transporting polypeptide [OATP] 1A2, OATP2B1, OATP1B1, OATP1B3, P-gp, organic anion transporter [OAT] 1, OAT3, breast cancer resistance protein [BCRP], organic cation transporter [OCT] 2 and multidrug and toxin extrusion protein [MATE] 1). Genotype-dependent drug-drug interactions are also discussed.  相似文献   

9.
Ursodeoxycholic acid (UDCA) is a first‐line drug to treat intrahepatic cholestasis of pregnancy (ICP). However, its effects on the fetus are not clearly known. To better guide its clinical use, we aimed to study the mechanism underlying the placental transport of UDCA. The uptake and efflux of UDCA across placental apical membranes were studied using BeWo cells; effects of different exposure durations, UDCA concentrations, temperatures, and inhibitors of transporters were studied. A transwell assay was performed, and UDCA concentration in both fetal and maternal sides was measured using LC–MS/MS. Higher unidirectional transport of UDCA was observed in the basolateral‐to‐apical direction than in the apical‐to‐basolateral direction. Ko143 and verapamil, which are typical inhibitors of efflux transporters, significantly increased UDCA transport from different directions. UDCA uptake from the apical membrane of BeWo cells was time‐dependent, but sodium‐independent. It was inhibited by inhibitors of energy metabolism and of organic anion transporters, indicating an active transport mechanism. UDCA uptake from the apical membranes of BeWo cells could be mediated by organic anion‐transporting polypeptides, whereas its efflux could be mediated by breast cancer resistance protein and multidrug resistant protein 3. The results of the present study may provide a basis for UDCA use in pregnancy.  相似文献   

10.
Tyrosine kinase inhibitors (TKIs) are promising new agents for specific inhibition of malignant cell growth and metastasis formation. Because most of the TKIs have to reach an intracellular target, specific membrane transporters may significantly modulate their effectiveness. In addition, the hydrophobic TKIs may interact with so-called multidrug transporters and thus alter the cellular distribution of unrelated pharmacological agents. In the present work, we show that certain TKIs, already in the clinical phase of drug development, directly interact with the ABCG2 multidrug transporter protein with a high affinity. We found that in several in vitro assay systems, STI-571 (Gleevec; imatinib mesylate), ZD1839 (Iressa; gefitinib), and N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (EKI-785) interacted with ABCG2 at submicromolar concentrations, whereas other multidrug transporters, human multidrug resistance protein (P-glycoprotein, ABCB1) and human multidrug resistance protein 1 (ABCC1), showed much lower reactivity toward these agents. Low concentrations of the TKIs examined selectively modulated ABCG2-ATPase activity, inhibited ABCG2-dependent active drug extrusion, and significantly affected drug resistance patterns in cells expressing ABCG2. Our results indicate that multidrug resistance protein modulation by TKIs may be an important factor in the clinical treatment of cancer patients. These data also raise the possibility that an extrusion of TKIs by multidrug transporters, e.g., ABCG2, may be involved in tumor cell TKI resistance.  相似文献   

11.
Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H? antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.  相似文献   

12.
多药耐药(MDR)是阻碍肿瘤化疗成功的一大障碍,其机制之一就是耐药的肿瘤细胞高表达三磷酸腺苷(ATP)结合盒(ABC)转运体。依据此机制提出克服肿瘤细胞耐药的策略即开发外排转运体抑制剂,以期逆转MDR。最近的研究发现肿瘤干细胞也可能是通过表达外排转运体天然耐药,这就提供了一个新的抗癌药物作用靶点。对介导肿瘤细胞多药耐药的ABC转运体及其抑制剂的开发作一综述。  相似文献   

13.
Nabekura T 《Toxins》2010,2(6):1207-1224
Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.  相似文献   

14.
The HepaRG cell line is a well-differentiated human hepatoma cell line proposed as a surrogate for human hepatocytes, especially for hepatic detoxification studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, which represents a key hallmark of hepato-biliary drug transport, remains however incompletely documented in HepaRG cells. The present study was therefore designed to analyze transporter location in HepaRG cells, which exhibit mRNA expressions of most of hepatic transporters. HepaRG cells were demonstrated, through immunofluorescence staining, to express several drug transporters at their sinusoidal pole, especially the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of HepaRG cells. Moreover, saturable uptake of reference substrates for the sinusoidal transporters sodium-taurocholate cotransporting polypeptide, OATPs and OCT1 and canalicular secretion of reference substrates for the efflux transporters bile salt export pump and MRP2 were observed. This polarized and functional expression of various sinusoidal and canalicular transporters in HepaRG cells highlights the interest of using these hepatoma cells in xenobiotic transport studies.  相似文献   

15.
In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development.  相似文献   

16.
It has been shown that the human acute lymphoblastic leukemia (ALL) T cell line (RPMI 8402) selected with irinotecan (CPT-11) is transformed to a multidrug resistant (MDR) phenotype (CPT-K5) with cross-resistance to mitoxantrone (MX). Since MX is a well-documented substrate for the efflux transporter breast cancer resistant protein (BCRP/ABCG2), we assessed the contribution of drug efflux to MX resistance in CPT-K5 cells. Our results demonstrate that CPT-K5 cells had markedly higher expression levels of BCRP, negligible expression of MRP2 and P-gp, and lower intracellular retention of MX as compared to RPMI 8402 cells. Surprisingly, MX resistance in CPT-K5 cells was not reversed by the BCRP chemical inhibitor, novobiocin (NOV), or gene-specific siRNA, although intracellular MX concentrations were significantly increased when BCRP was functionally knocked down. These results suggest that up-regulation of BCRP plays a minimal role in conferring MX resistance to CPT-K5 cells, highlighting the existence of multiple, redundant mechanisms of drug resistance. The current results support the concept of "multifactorial multidrug resistance", a recently-described phenomenon that ascribes multidrug resistance to many possible cellular mechanisms, not only by efflux drug transporters.  相似文献   

17.
Transporters play important roles in tissue distribution and urinary- and biliary-excretion of drugs and transporter molecules involved in those processes have been elucidated well. Furthermore, an involvement of efflux transporters such as P-glycoproteins, multidrug resistance associated protein 2, and breast cancer resistance protein as the intestinal absorption barrier and/or intestinal luminal secretion mechanisms has been demonstrated. However, although there are many suggestions for the contribution of uptake/influx transporters in intestinal absorption of drugs, information on the transporter molecules responsible for the intestinal absorptive process is limited. Among them, most studied absorptive drug transporter is peptide transporter PEPT1. However, utilization of PEPT1 for oral delivery of drugs may not be high due to the chemical structural requirement of PEPT1 limited to peptide-mimetics. Recently, organic anion transporting polypeptide (OATP) family such as OATP1A2 and OATP2B1 has been suggested to mediate intestinal absorption of several drugs. Since OATPs exhibit species difference in expressed tissues and functional properties between human and animals, human studies are essential to clarify the intestinal absorption mechanisms of drugs via OATPs. Recent pharmacogenomic studies demonstrated that OATP2B1 is involved in the drug absorption in human. In addition, information of drug-juice interaction in the intestine also uncovered the contribution of OATP1A2 and OATP2B1 in drug absorption. Since OATP1A2 and OATP2B1 exhibit broader substrate selectivity compared with PEPT1, their potential to be applied for oral delivery should be high. In this review, current understanding of characteristics and contribution as the absorptive transporters of OATPs in small intestine in human is described. Now, it is getting clearer that OATPs have significant roles in intestinal absorption of drugs, therefore, there are higher possibility to utilize OATPs as the tools for oral delivery.  相似文献   

18.
A symposium entitled 'Drug efflux pumps: challenges and opportunities' addressed the detection and functional characterization of drug efflux pumps, their influence on the cytochrome P450 (CYP450) system and their role in blood-brain barrier (BBB) permeability. Drug efflux pumps utilize ATP as the energy source in exporting solutes, and belong to the family of ATP-binding cassette transporters (ABC transporters). P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP) are members of this family of transporters. These transporters are overexpressed in cancer cells leading to decreased drug accumulation and hence drug resistance. Another causative factor for drug resistance is increased elimination mechanisms, metabolism by CYP450 enzymes being the most important. The multidrug resistance gene (mdr) is a key determinant in the expression of CYP3A enzymes, the most predominant subclass of CYP450. New techniques are being developed to identify and characterize drug efflux pumps, the latest being gamma-scintigraphy and hypertonic saline (HTS). Efflux pumps play a major role in restricting the drug transport across the BBB. Currently, structural domains that are responsible for the functional activity of the efflux proteins are being investigated to design better inhibitors for drug efflux pumps.  相似文献   

19.
A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号