首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
Palumbo JS  Talmage KE  Liu H  La Jeunesse CM  Witte DP  Degen JL 《Blood》2003,102(8):2819-2827
The growth of Lewis lung carcinoma (LLC) was sustained in plasminogen-deficient mice when transplanted into the dorsal skin but was dramatically suppressed in another anatomic location, the footpad. This unanticipated negative effect of plasminogen deficiency on footpad tumor growth was entirely relieved by superimposing a deficit in fibrinogen. This finding was not simply an unusual feature of LLC tumors--T241 fibrosarcoma growth in the footpad was also restricted by plasminogen deficiency in a fibrinogen-dependent manner. The probable mechanistic basis for suppression of tumor growth was revealed through transmission electron microscopy studies of tumor tissues. Occlusive microvascular thrombi were commonplace within footpad tumors from plasminogen-deficient mice, whereas no such lesions were observed within either dorsal skin tumors from plasminogen-deficient mice or footpad tumors from mice that also lacked fibrinogen. The data infer that tumor growth in the footpad of plasminogen-deficient mice is compromised as a function of the formation and persistence of vaso-occlusive thrombi that limit tumor blood supply. These studies indicate that plasminogen and fibrinogen can serve as critical determinants of tumor growth, but their relative importance is dependent on the tumor microenvironment. Furthermore, these studies suggest that one target of plasmin(ogen) relevant to tumor progression in vivo is intravascular fibrin.  相似文献   

2.
Extracellular proteolysis is likely to be a feature of vascular remodeling associated with atherosclerotic and restenotic arteries. To investigate the role of plasminogen-mediated proteolysis in remodeling, polyethylene cuffs were placed around the femoral arteries of mice with single and combined deficiencies in plasminogen and fibrinogen. Neointimal development occurred in all mice and was unaffected by genotype. Significant compensatory medial remodeling occurred in the cuffed arteries of control mice but not in plasminogen-deficient mice. Furthermore, focal areas of medial atrophy were frequently observed in plasminogen-deficient mice but not in control animals. A simultaneous deficit of fibrinogen restored the potential of the arteries of plasminogen-deficient mice to enlarge in association with neointimal development but did not eliminate the focal medial atrophy. An intense inflammatory infiltrate occurred in the adventitia of cuffed arteries, which was associated with enhanced matrix deposition. Adventitial collagen deposition was apparent after 28 days in control and fibrinogen-deficient arteries but not in plasminogen-deficient arteries, which contained persistent fibrin. These studies demonstrate that plasmin(ogen) contributes to favorable arterial remodeling and adventitial collagen deposition via a mechanism that is related to fibrinogen, presumably fibrinolysis. In addition, these studies reveal a fibrin-independent role of plasminogen in preventing medial atrophy in challenged vessels.  相似文献   

3.
BACKGROUND/AIMS: Plasminogen directs matrix proteolysis during liver repair. Based on the role of hepatic stellate cells (HSCs) on matrix production, we investigated whether plasminogen-driven matrix proteolysis modulates the phenotype of HSCs. METHODS: Carbon tetrachloride was injected intraperitoneally into mice deficient in plasminogen, fibrinogen, or both, and to normal littermates, followed by determination of the phenotype of HSCs, matrix deposition, and apoptosis. RESULTS: Activation of HSCs was restricted to the zone of injury and increased >ten-fold above baseline regardless of the plasminogen status 2 days after toxin. Thereafter, the number of activated HSCs decreased to baseline levels between 7 and 14 days in normal mice, but remained elevated in plasminogen-deficient livers approximately ten-fold above non-targeted littermates. Despite the zonal increase in activated HSCs, the total number of desmin-stained HSCs was similar along the lobule in both genotypes. No appreciable difference in apoptosis of perisinusoidal cells was found between genotypes; however, fibrillary material was present in the subsinusoidal space of Plg(0) livers. This fibrillary material was not fibrin, as demonstrated by similar findings in Plg(0)/Fib(0) mice, which accumulated fibronectin in injured areas. CONCLUSIONS: Proteolytic clearance of non-fibrin matrix components by plasminogen must occur for HSCs to restore the quiescent phenotype during liver repair.  相似文献   

4.
Detailed studies of tumor cell-associated procoagulants and fibrinolytic factors have implied that local thrombin generation and fibrin deposition and dissolution may be important in tumor growth and dissemination. To directly determine whether fibrin(ogen) or plasmin(ogen) are determinants of the metastatic potential of circulating tumor cells, this study examined the impact of genetic deficits in each of these key hemostatic factors on the hematogenous pulmonary metastasis of 2 established murine tumors, Lewis lung carcinoma and the B16-BL6 melanoma. In both tumor models, fibrinogen deficiency strongly diminished, but did not prevent, the development of lung metastasis. The quantitative reduction in metastasis in fibrinogen-deficient mice was not due to any appreciable difference in tumor stroma formation or tumor growth. Rather, tumor cell fate studies indicated an important role for fibrin(ogen) in sustained adhesion and survival of tumor cells within the lung. The specific thrombin inhibitor, hirudin, further diminished the metastatic potential of circulating tumor cells in fibrinogen-deficient mice, although the inhibitor had no apparent effect on tumor cell proliferation in vitro. The absence of plasminogen and plasmin-mediated fibrinolysis had no significant impact on hematogenous metastasis. The authors concluded that fibrin(ogen) is a critical determinant of the metastatic potential of circulating tumor cells. Furthermore, thrombin appears to facilitate tumor dissemination through at least one fibrin(ogen)-independent mechanism. These findings suggest that therapeutic strategies focusing on multiple distinct hemostatic factors might be beneficial in the containment of tumor metastasis.  相似文献   

5.
Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA-/- mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA-/- mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.  相似文献   

6.
The rate of activation of plasminogen by tissue-type plasminogen activator (t-PA) is greatly increased by fibrin, but much less by fibrinogen. Fibrin(ogen) fragments such as the fibrin(ogen) cyanogen bromide fragment FCB-2 and FCB-5, and a synthetic peptide with the sequence of fibrinogen A alpha-(148-160), a constituent of FCB-2, also have rate-enhancing properties. In order to find a possibly smaller, still stimulating site within A alpha-(148-160) we synthesized successive linear amino-terminally acylated hexapeptides [i.e. A alpha-(148-153), A alpha-(149-154)'d, .... A alpha-(155-160)] from the sequence A alpha-(148-160). The only hexapeptide within the sequence A alpha-(148-160) capable of enhancing the rate of plasminogen-to-plasmin conversion by t-PA appears to be the amino-terminally acylated peptide comprising the sequence A alpha-(154-159). This peptide enhances the plasminogen activation rate six-fold; half-maximal activation rate is reached at a peptide concentration of 56 microM.  相似文献   

7.
Cellular proliferation and tissue remodeling are central to the regenerative response after a toxic injury to the liver. To explore the role of plasminogen in hepatic tissue remodeling and regeneration, we used carbon tetrachloride to induce an acute liver injury in plasminogen-deficient (Plg(o)) mice and nontransgenic littermates (Plg(+)). On day 2 after CCl(4), livers of Plg(+) and Plg(o) mice had a similar diseased pale/lacy appearance, followed by restoration of normal appearance in Plg(+) livers by day 7. In contrast, Plg(o) livers remained diseased for as long as 2.5 months, with a diffuse pale/lacy appearance and persistent damage to centrilobular hepatocytes. The persistent centrilobular lesions were not a consequence of impaired proliferative response in Plg(o) mice. Notably, fibrin deposition was a prominent feature in diseased centrilobular areas in Plg(o) livers for at least 30 days after injury. Nonetheless, the genetically superimposed loss of the Aalpha fibrinogen chain (Plg(o)/Fib(o) mice) did not correct the abnormal phenotype. These data show that plasminogen deficiency impedes the clearance of necrotic tissue from a diseased hepatic microenvironment and the subsequent reconstitution of normal liver architecture in a fashion that is unrelated to circulating fibrinogen.  相似文献   

8.
To test directly whether fibrin(ogen) is a key binding site for apolipoprotein(a) [apo(a)] in vessel walls, apo(a) transgenic mice and fibrinogen knockout mice were crossed to generate fibrin(ogen)-deficient apo(a) transgenic mice and control mice. In the vessel wall of apo(a) transgenic mice, fibrin(ogen) deposition was found to be essentially colocalized with focal apo(a) deposition and fatty-streak type atherosclerotic lesions. Fibrinogen deficiency in apo(a) transgenic mice decreased the average accumulation of apo(a) in vessel walls by 78% and the average lesion (fatty streak type) development by 81%. Fibrinogen deficiency in wild-type mice did not significantly reduce lesion development. Our results suggest that fibrin(ogen) provides one of the major sites to which apo(a) binds to the vessel wall and participates in the generation of atherosclerosis.  相似文献   

9.
The fibrinogen Aalpha R16C mutation is a common cause of dysfibrinogenaemia and has been previously associated with both bleeding and thrombosis. However, the mechanism underlying the thrombotic phenotype has not yet been elucidated. This report characterises the defect in fibrinolysis seen as a result of the Aalpha R16C mutation. A young patient with dysfibrinogenaemia (fibrinogen Hershey III) was found to be heterozygous for the Aalpha R16C mutation. Functional assays were performed on the purified fibrinogen to characterise clot formation and lysis with plasmin and trypsin. Consistent with previous results, clot formation was diminished. Unexpectedly, fibrinolysis was also delayed. Plasminogen activation was normal, ruling out decreased plasmin generation as the mechanism behind the fibrinolytic resistance. Western blot analysis showed no difference in the amount of bound alpha2-antiplasmin or albumin. When clot lysis was assayed with trypsin substituted for plasminogen, a significant delay was also observed, indicating that defective binding to plasminogen could not explain the fibrinolytic resistance. These results suggest that the defective fibrinolysis is due to increased proteolytic resistance, most likely reflecting changes in clot structure.  相似文献   

10.
Staphylokinase obtains plasminogen activating activity by forming a complex with plasminogen. Although the enzymatic activity of staphylokinase is enhanced by fibrin, how fibrin enhances enzymatic activity has not been determined yet. The effects of fibrin, or fibrinogen fragments, on the activation of plasminogen by staphylokinase was investigated using CNBr-digested fibrinogen fragments (FCB-2 and FCB-5) and plasmin-degraded cross-linked fibrin fragments ((DD)E complex, DD fragments and E fragments). Kinetic analysis of the activity of staphylokinase revealed that its plasminogen activating activity, which was expressed as kcat/Km, was enhanced by FCB-2 (10-fold) and FCB-5 (5-fold). These fibrin fragments caused 38-, 30-, and 8.5-fold increases in activity for the DD fragment, (DD)E complex and E fragment, respectively. Although α2-antiplasmin inhibited the activation of plasminogen by staphylokinase, FCB-2 abolished its inhibitory effects, and the plasminogen activating activity of staphylokinase was restored. The inhibitory effects of a2-antiplasmin on the activation of mini-plasminogen by staphylokinase were less than for Glu-or Lys-plasminogen, and the inhibitory effect of α2-antiplasmin was not altered by fibrin or EACA. These findings indicate that the staphylokinase/plasmin-(ogen) complex reacts with fibrin even in the presence of α2-antiplasmin, and efficient plasminogen activation takes place on the surface of fibrin. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Lishko VK  Burke T  Ugarova T 《Blood》2007,109(4):1541-1549
The recruitment of phagocytic leukocytes to sites of vessel wall injury plays an important role in thrombus dissolution by proteases elaborated on their adhesion. However, leukocyte adhesion to the fibrin clot can be detrimental at the early stages of wound healing when hemostatic plug integrity is critical for preventing blood loss. Adhesion of circulating leukocytes to the insoluble fibrin(ogen) matrix is mediated by integrins and occurs in the presence of a high concentration of plasma fibrinogen. In this study, the possibility that soluble fibrinogen could protect fibrin from excessive adhesion of leukocytes was examined. Fibrinogen was a potent inhibitor of adhesion of U937 monocytoid cells and neutrophils to fibrin gel and immobilized fibrin(ogen). An investigation of the mechanism by which soluble fibrinogen exerts its influence on leukocyte adhesion indicated that it did not block integrins but rather associated with the fibrin(ogen) substrate. Consequently, leukocytes that engage fibrinogen molecules loosely bound to the surface of fibrin(ogen) matrix are not able to consolidate their grip on the substrate; subsequently, cells detach. This conclusion is based on the evidence obtained in adhesion studies using various cells and performed under static and flow conditions. These findings reveal a new role of fibrinogen in integrin-mediated leukocyte adhesion and suggest that this mechanism may protect the thrombus from premature dissolution.  相似文献   

12.
Zamolodchikov D  Strickland S 《Blood》2012,119(14):3342-3351
Alzheimer disease is characterized by the presence of increased levels of the β-amyloid peptide (Aβ) in the brain parenchyma and cerebral blood vessels. This accumulated Aβ can bind to fibrin(ogen) and render fibrin clots more resistant to degradation. Here, we demonstrate that Aβ(42) specifically binds to fibrin and induces a tighter fibrin network characterized by thinner fibers and increased resistance to lysis. However, Aβ(42)-induced structural changes cannot be the sole mechanism of delayed lysis because Aβ overlaid on normal preformed clots also binds to fibrin and delays lysis without altering clot structure. In this regard, we show that Aβ interferes with the binding of plasminogen to fibrin, which could impair plasmin generation and fibrin degradation. Indeed, plasmin generation by tissue plasminogen activator (tPA), but not streptokinase, is slowed in fibrin clots containing Aβ(42), and clot lysis by plasmin, but not trypsin, is delayed. Notably, plasmin and tPA activities, as well as tPA-dependent generation of plasmin in solution, are not decreased in the presence of Aβ(42). Our results indicate the existence of 2 mechanisms of Aβ(42) involvement in delayed fibrinolysis: (1) through the induction of a tighter fibrin network composed of thinner fibers, and (2) through inhibition of plasmin(ogen)-fibrin binding.  相似文献   

13.
Sakata  Y; Mimuro  J; Aoki  N 《Blood》1984,63(6):1393-1401
In spontaneous fibrinolysis of an alpha 2-plasmin inhibitor-deficient plasma clot or tissue-type plasminogen activator-induced fibrinolysis in a purified system without alpha 2-plasmin inhibitor, the lysis was faster when factor XIII-mediated crosslinking of fibrin to fibrin did not occur. During the initial period, the binding of plasminogen to fibrin steadily increased with incubation time. The initial level and subsequent increase of the binding, which may be critical for the subsequent development of fibrinolysis, were more remarkable when fibrin was not crosslinked. The amount of glu- or lys-plasminogen bound to noncrosslinked fibrin was around 4 or 1.5 times larger than the amount of the respective plasminogen bound to crosslinked fibrin. Plasmin was also found to be bound to noncrosslinked fibrin twice as much as the amount bound to crosslinked fibrin. Structural changes induced by crosslinking of fibrin alpha-chain may reduce either the affinity or the number of available complementary sites to lysine binding sites of plasmin(ogen), thereby decreasing the binding of plasmin(ogen) to fibrin. These results suggest that an increased affinity of noncrosslinked fibrin for plasmin(ogen) is contributory to the accelerated fibrinolysis observed in factor XIII deficiency, in addition to an absence of crosslinking of alpha 2-plasmin inhibitor to fibrin.  相似文献   

14.
Effects of subcutaneous calcium-heparin and vitamin K administration were studied in 30 cirrhotic patients showing low values of prothrombin time, antithrombin III, fibrinogen, platelet count, plasminogen, a2-antiplasmin, raised levels of fibrin(ogen) degradation products and prolonged activated partial thromboplastin time. A group of 10 patients was first treated with K vitamin for 15 d; after vitamin K therapy interruption, a treatment with 5000 IU (8000 IU in 1 patient) every 12 h of subcutaneous calcium-heparin was started. In another group of 20 patients a treatment with 5000 IU (8000 IU in 2 patients) every 12 h of subcutaneous calcium-heparin was started immediately. The heparin administration in both groups had been performed for at least 2 weeks. No significant changes of blood coagulation picture were observed after vitamin K administration, while calcium-heparin treatment showed an increase in prothrombin time, fibrinogen, platelet count, plasminogen, a2-antiplasmin, a decrease in fibrin(ogen) degradation products and a shortened activated partial thromboplastin time. There was no significant change in antithrombin III values.  相似文献   

15.
Ovulation in plasminogen-deficient mice.   总被引:3,自引:0,他引:3  
Many different studies suggest that plasmin generated from plasminogen plays a crucial role in the degradation of the follicular wall at the time of ovulation. We have assessed the physiological relevance of plasmin on ovulation by studying plasminogen-deficient mice. Ovulation efficiency (mean number of ova released per mouse) was determined both in a standardized ovulation model in which 25-day-old immature mice were injected with finite amounts of gonadotropins to induce ovulation and during physiological ovulation using adult normally cycling mice. Our results revealed that the temporal onset of follicular wall rupture (first ova observed in bursa or oviduct) was not delayed in plasminogen-deficient mice during gonadotropin-induced ovulation. However, there was a trend toward slightly reduced ovulation efficiency in the plasminogen-deficient mice. This reduction was only 13% and not statistically significant (P = 0.084) and may be connected to a delayed maturation of these mice manifested in reduced body and ovary weights. During physiological ovulation adult plasminogen-deficient mice had normal ovulation efficiency compared with plasminogen wild-type mice. Taken together our results indicate that under the conditions used in this study plasmin is not required for efficient follicular rupture or for activation of other proteases involved in this process. Alternatively, the role of plasmin may be effectively compensated for by other mechanisms in the absence of plasmin.  相似文献   

16.
Group A streptococci are capable of acquiring a surface-associated, unregulatable plasmin-like enzymatic activity when incubated in human plasma. The effect of this enzymatic activity on virulence of group A isolate CS101 was examined in a mouse skin infection model. Initial studies demonstrated enhanced virulence for bacteria preincubated in human plasma but not in plasminogen-depleted plasma. A direct correlation between surface-associated enzymatic activity and virulence was not observed; however, an association between virulence and the assembly of a surface-associated plasminogen activator that could activate mouse plasminogen was noted. This activity enhanced virulence in wild type but not in plg-/- plasminogen-deficient mice. These results support the hypothesis that acquisition of a surface-associated plasmin(ogen)-dependent enzymatic activity can contribute to the virulence of group A streptococcal invasive infections.  相似文献   

17.
Ancrod is a purified coagulant venom which renders blood incoagulable by cleaving fibrinopeptide A (FPA) from fibrinogen, but the mechanism involved in the clearance of fibrin from the circulation is unknown. To investigate the fibrinolytic response to ancrod, and to increase understanding of clearance mechanisms, six patients with peripheral vascular disease causing claudication were infused with ancrod at 2 u/kg over 6 h followed by 2 u/kg at 12 h intervals for 38 h. Venous blood samples were taken at time 0, 3, 6, 25 and 49 h for assay of fibrinogen (Fbg), fibrinopeptide A (FPA), total fibrin(ogen) degradation products (TDP), fibrin degradation products (FbDP), fibrinogen degradation products (FgDP), cross-linked fibrin degradation products (XL-FDP), tissue plasminogen activator (tPA), urinary type plasminogen activator (u-PA), plasminogen, α2 antiplasmin (α2AP) and plasminogen activator inhibitor-1 (PAI-1). Fibrinogen (median and range) was 2.3 (1.4–3.90) g/l at time 0 and thereafter was undetectable. FPA rose from 2.5 (1.8–3.6) to 600 and 188 pmol/l at 3 h and 6 h and remained elevated. TDP, FbDP and FgDP increased greatly following ancrod while there was no evidence of XL-FDP. The surprising increase in FgDP during defibrination suggests either that fibrinogen is digested following its incorporation into circulating fibrin protofibrils or that some of the fibrin subunits in the photofibril retain one of the two fibrinopeptide A's. tPA and uPA remained unchanged. Plasminogen fell from 125 (100–155)% to 79 (40–118)% at 49 h and α2AP fell from 91 (75–107)% to 24 (10–35)% at 49 h. The level of PAI-1 was depressed during defibrination, with the exception of the 6 h data. The results demonstrate that ancrod removes FPA from fibrinogen to produce non-cross-linked (soluble) fibrin. This is cleared from the circulation without evidence of an increase in the circulating activities of the plasminogen activators, tPA or UK, but with evidence of plasminogen activation and consumption.  相似文献   

18.
Fibrin II monomer has a dramatic inhibitory effect on the rate of heparin-catalyzed inactivation of human alpha-thrombin by antithrombin III. At 6 microM fibrin II monomer, equivalent to the concentration of fibrinogen in plasma, the second-order rate constant was reduced by a factor of 308--from 2.05 x 10(8) M-1.s-1 to 6.65 x 10(5) M-1.s-1. Fibrin II monomer minimally affected the uncatalyzed rate of thrombin inactivation showing a reduction in the second-order rate constant by a factor of only 1.6. Fibrinogen and the product of plasmin degradation of fibrinogen, fragment E, at 6 microM concentrations also decreased the second-order rate constant for heparin-catalyzed thrombin inactivation, but by factors of only 2.7 and 1.9, respectively. On the basis of these observations it is proposed that protection of thrombin from inactivation by heparin-antithrombin III by fibrin II monomer can explain the limited efficacy of heparin in preventing coronary reocclusion in patients treated with tissue plasminogen activator and other fibrinolytic agents.  相似文献   

19.
Ten consecutive patients aged 25 to 75 with postoperative empyema or hemothorax conventionally treated with drainage without sufficient effect were given intrapleural instillations of streptokinase (Kabikinase, 250,000 IE) for 4 hours). The effects on systemic fibrinolysis were studied. Venous blood samples for determination of fibrinolytic activity on fibrin plates, plasminogen, alpha 2-antiplasmin, alpha 2-macroglobulin, fibrinogen, fibrin(ogen) degradation products (FDP) and thrombin time were taken before instillation, after instillation and then after 24 hours. Preinstillation values were compared to the values 4 and 24 hours after instillation with Student's paired t-test. There were no differences in fibrinolytic activity, alpha 2-macroglobulin and thrombin time. There was a slight increase in plasminogen, alpha 2-antiplasmin and fibrinogen, probably due to an acute phase reaction. Fibrin degradation products showed an increase with border line significance. These changes are not consistent with generalized fibrinolysis, and it is concluded that intrapleural instillations of streptokinase can be given safely in the early posttraumatic or postoperative period.  相似文献   

20.
OBJECTIVE: To investigate the contrasting roles of plasminogen deficiency between models of collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA). METHODS: We developed a new animal model of arthritis, which we have called local injection-induced arthritis (LIA). In this model, we replaced methylated bovine serum albumin, which is normally used as an immunogen and is injected intraarticularly into the knee joint, with type II collagen (CII) to induce AIA. The severity of CIA, LIA, and AIA in wild-type and plasminogen-deficient mice was evaluated by clinical scoring or histologic grading. Necrosis was determined by histology and immunohistochemistry. RESULTS: After CII immunization alone, wild-type mice developed arthritis in most of the paws as well as in the knee joints, whereas plasminogen-deficient mice were totally resistant to the disease. Local knee injections of CII or saline slightly enhanced the severity of the knee arthritis in wild-type mice during a 60-day experimental period. Unexpectedly, the plasminogen-deficient mice also developed arthritis in joints that were injected with CII or saline. However, the arthritis was milder than that in their wild-type littermates. Sustained tissue necrosis was found only in the plasminogen-deficient mice after the local injection. CONCLUSION: Our data show that both the antigen and the joint trauma caused by the local injection are critical to explaining the contrasting roles of plasminogen deficiency in CIA and AIA. This further indicates that CIA and AIA have distinct pathogenic mechanisms. The data also suggest that plasmin may be required for the induction of these arthritis models that are critically dependent on complement activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号