首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.  相似文献   

2.
3.
During embryonic development, the oligodendrocyte precursors (OPCs) are generated in specific oligodendrogliogenic sites within the neural tube and migrate to colonize the entire CNS. Different factors have been shown to influence the OPC migration and differentiation, including morphogens, growth factors, chemotropic molecules, and extracellular matrix proteins. Neuregulins have been shown to influence the migration of neuronal precursors as well as the movement and differentiation of Schwann cells for peripheral myelination, but their role in the motility of OPCs has not been explored. In the present study, we have used the optic nerve as an experimental model to examine the function of Nrg1 and its ErbB4 receptor in the migration of OPCs in the developing embryo. In vitro experiments revealed that Nrg1 is a potent chemoattractant for the first wave of OPCs, and that this effect is mediated via ErbB4 receptor. In contrast, OPCs colonizing the optic nerve at postnatal stages (PDGFRα(+)-OPCs) does not respond to Nrg1-chemoattraction. We also found that mouse embryos lacking ErbB4 display deficits in early OPC migration away from different oligodendrogliogenic regions in vivo. The present findings reveal a new role for Nrg1/ErbB4 signaling in regulating OPC migration selectively during early stages of CNS development.  相似文献   

4.
5.
Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS, therefore it is critical to understand how the factors associated with the various regulatory layers of this complex pathway contribute to these processes. Recently, Apcdd1 was identified as a negative regulator of proximal Wnt signaling, however its role in oligodendrocyte (OL) differentiation and reymelination in the CNS remain undefined. Analysis of Apcdd1 expression revealed dynamic expression during OL development, where its expression is upregulated during differentiation. Functional studies using ex vivo and in vitro OL systems revealed that Apcdd1 promotes OL differentiation, suppresses Wnt signaling, and associates with β‐catenin. Application of these findings to white matter injury (WMI) models revealed that Apcdd1 similarly promotes OL differentiation after gliotoxic injury in vivo and acute hypoxia ex vivo. Examination of Apcdd1 expression in white matter lesions from neonatal WMI and adult multiple sclerosis revealed its expression in subsets of oligodendrocyte (OL) precursors. These studies describe, for the first time, the role of Apcdd1 in OLs after WMI and reveal that negative regulators of the proximal Wnt pathway can influence regenerative myelination, suggesting a new therapeutic strategy for modulating Wnt signaling and stimulating repair after WMI. GLIA 2015;63:1840–1849  相似文献   

6.
The massive loss of oligodendrocytes caused by various pathological factors is a basic feature of many demyelinating diseases of the central nervous system(CNS). Based on a variety of studies, it is now well established that impairment of oligodendrocyte precursor cells(OPCs) to differentiate and remyelinate axons is a vital event in the failed treatment of demyelinating diseases. Recent evidence suggests that Foxg1 is essential for the proliferation of certain precursors and inhibits premature neurogenesis during brain development. To date, very little attention has been paid to the role of Foxg1 in the proliferation and differentiation of OPCs in demyelinating diseases of the CNS. Here, for the first time, we examined the effects of Foxg1 on demyelination and remyelination in the brain using a cuprizone(CPZ)-induced mouse model. In this work, 7-week-old Foxg1 conditional knockout and wild-type(WT) mice were fed a diet containing 0.2% CPZ w/w for 5 weeks, after which CPZ was withdrawn to enable remyelination. Our results demonstrated that, compared with WT mice, Foxg1-knockout mice exhibited not only alleviated demyelination but also accelerated remyelination of the demyelinated corpus callosum. Furthermore, we found that Foxg1 knockout decreased the proliferation of OPCs and accelerated their differentiation into mature oligodendrocytes both in vivo and in vitro. Wnt signaling plays a critical role in development and in a variety of diseases. GSK-3 b, a key regulatory kinase in the Wnt pathway, regulates the ability of b-catenin to enter nuclei, where it activates the expression of Wnt target genes. We then used SB216763,a selective inhibitor of GSK-3 b activity, to further demonstrate the regulatory mechanism by which Foxg1 affects OPCs in vitro. The results showed that SB216763 clearly inhibited the expression of GSK-3 b, which abolished the effect of the proliferation and differentiation of OPCs caused by the knockdown of Foxg1. These results suggest that Foxg1 is involved in the proliferation and differentiation of OPCs through the Wnt signaling pathway. The present experimental results are some of the first to suggest that Foxg1 is a new therapeutic target for the treatment of demyelinating diseases of the CNS.  相似文献   

7.
8.
9.
Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS.  相似文献   

10.
LINGO-1 is a transmembrane receptor expressed primarily in the central nervous system (CNS) and plays an important role in myelination. Recent studies have indicated that it is also involved in oligodendrocyte precursor cell (OPC) survival and differentiation; however, the downstream signaling pathway underlying OPC development is unknown. In our previous study, we found that LINGO-1 is associated with WNK1 in mediating Nogo-induced neurite extension inhibition by RhoA activation. In an effort to identify the role of LINGO-1-WNK1 in OPCs, we first confirmed that WNK1 is also expressed in OPCs and co-localized with LINGO-1, which suppresses WNK1 expression by RNA interference-attenuated Nogo66-induced inhibition of OPC differentiation. Furthermore, we mapped the WNK1 kinase domain using several fragmented peptides to identify the key region of interaction with LINGO-1. We found that a sequence corresponding to the D6 peptide is necessary for the interaction. Finally, we found that using the TAT-D6 peptide to introduce D6 peptide into primary cultured OPC inhibits the association between LINGO-1 and WNK1 and significantly attenuates Nogo66-induced inhibition of OPC differentiation. Taken together, our results show that WNK1, via a specific region on WNK1 kinase domain, interacts with LINGO-1, thus mediating Nogo66-inhibited OPC differentiation.  相似文献   

11.
Oligodendrocytes(OLs) are glial cells that form myelin sheaths around axons in the central nervous system(CNS).Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairment of movement.Understanding the extracellular signals and intracellular factors that regulate OL differentiation and myelination during development can help to develop novel strategies for enhancing myelin repair in neurological disorders.Here,we report that TAPP1 was selectively expressed in differentiating OL precursor cells(OPCs).TAPP1 knockdown promoted OL differentiation and myelin gene expression in culture.Conversely,over-expression of TAPP1 in immature OPCs suppressed their differentiation.Moreover,TAPP1 inhibition in OPCs altered the expression of Erk1/2 but not AKT.Taken together,our results identify TAPP1 as an important negative regulator of OPC differentiation through the Mek/Erk signaling pathway.  相似文献   

12.
Remyelination in the adult CNS depends on activation, differentiation, and functional integration of resident oligodendroglial precursor cells (OPCs) and constitutes the only spontaneous neuroregenerative process able to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis. The proteins encoded by p57kip2- and by human endogenous retrovirus type W (pHERV-W) envelope genes were previously identified as negative regulators of OPC maturation. We here focused on the activity of the ENV protein and investigated how it can be neutralized for an improved myelin repair. We could demonstrate that myelination in vitro is severely affected by this protein but that application of an anti-ENV neutralizing antibody, currently investigated in clinical trials, can rescue the generation of internodes. We then compared p57kip2 and ENV dependent inhibitory mechanisms and found that a dominant negative version of the p57kip2 protein can equally save OPCs from myelination failure in response to ENV-mediated TLR4 activation. Additional experiments addressing p57kip2's underlying mode of action revealed a direct interaction with ATP6v1d, a central component of a vascular ATPase. Its pharmacological blocking was then shown to exert an analogous myelination rescue effect in presence of the ENV protein. Therefore, our study provides mechanistic insights into oligodendroglial inhibition processes and presents three different means to counteract the anti-myelination effect of the ENV protein. These observations are therefore of interest in light of understanding the complexity of the numerous oligodendroglial inhibitors and might promote the establishment of novel regenerative therapies.  相似文献   

13.
Oligodendrocyte precursor cells (OPCs) originate from restricted regions of the brain and migrate into the developing white matter, where they differentiate into oligodendrocytes and myelinate axons in the central nervous system (CNS). The molecular mechanisms that orchestrate these long distance trips of OPCs to populate throughout the CNS are poorly understood. Emerging evidence has argued the expression of N‐methyl‐d ‐aspartic acid (NMDA) receptors (NMDARs) in oligodendrocyte lineage cells in vivo, but their physiological function remains elusive. We have previously demonstrated the expression and function of NMDARs in OPC differentiation and myelination/remyelination. Here, we show that NMDARs stimulation promotes OPC migration both by chemotaxis and chemokinesis as demonstrated by various cell migration systems including Boyden transwell, single cell, matrix‐gel cell mass, and SVZ tissue explants assays. The pro‐migration effect of NMDAR can be abolished by either pharmacological inhibition or shRNA knock down of the T lymphoma invasion and metastasis 1 (Tiam1), a Rac1 guanine nucleotide exchange factor (Rac1‐GEF) which is coexpressed and interacts with NMDAR in OPCs. Moreover, NMDAR stimulation evokes cascade activation of the Tiam1/Rac1/ERK signaling pathway which mediates its effect on OPC migration. We also show that glutamate released from cultured cortical neuron promotes OPCs migration via NMDAR, and that antagonism of NMDAR or inhibition of Tiam1 blocks the endogenous glutamate‐induced OPCs migration from SVZ to cortical plate in the embryonic brain slice culture. Thus, our result suggests a critical role of NMDAR in regulation of OPCs migration during CNS development by coupling to and activating the Tiam1/Rac1 pathway. GLIA 2013;61:2078–2099  相似文献   

14.
15.
16.
Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage‐specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro‐differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR‐dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG‐OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB‐PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2+ OPCs but less GST‐π+ mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.  相似文献   

17.
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.  相似文献   

18.
Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.  相似文献   

19.
SCIRR39 is an identified upregulated gene in rat primary neuron injury and/or regeneration process. However, roles of SCIRR39 in the regeneration of central nervous system (CNS) injury are still largely unexplored. Using real-time quantitative PCR and Western blotting, SCIRR39 expression was detected in oligodendrocyte precursor cells (OPCs) and oligodendrocytes. Moreover, the results from cell proliferation and cell cycle indicated that SCIRR39 inhibited OPCs proliferation and induced cell cycle arrest in G0/G1 and G2/M phases. Importantly, SCIRR39 positively regulated OPC differentiation and the expression of myelin basic protein. We also examined the effect of SCIRR39 on expression of myelin-associated inhibitory factors, including myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), and Nogo A. Nogo A level was markedly regulated by SCIRR39 overexpression or knockdown in oligodendrocytes and cortical neurons co-cultures, while the expression of MAG and OMgp was not obviously changed by SCIRR39 overexpression or knockdown. Taken together, our results indicate the important role of SCIRR39 either in OPC differentiation or in axon myelination, and may provide a new therapeutic target for the treatment of CNS injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号