首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Changes in the numbers of human cardiac adrenoceptors (ARs) are associated with various diseases, such as myocardial ischemia, congestive heart failure, cardiomyopathy and hypertension. There is a clear need for capability to assess human cardiac ARs directly in vivo. Positron emission tomography (PET) is an imaging technique that provides this possibility, if effective radioligands can be developed for the targeted ARs. Here, the status of myocardial AR radioligand development for PET is described. Currently, there exist effective radioligands for imaging beta-ARs in human myocardium. One of these, [11C](S)-CGP 12177, is applied extensively to clinical research with PET, sometimes with other tracers of other aspects of the noradrenalin system. Alternative radioligands are in development for beta-ARs, including beta 1-selective radioligands. A promising radioligand for imaging myocardial alpha 1-ARs, [11C]GB67, is now being evaluated in human PET experiments.  相似文献   

2.
3.
A series of four 2-(phenylthio)araalkylamines have been radiolabeled with (11)C and evaluated as potential radiotracers for imaging the serotonin transporter (SERT) by positron emission tomography (PET). All four candidates display high affinity for SERT and low affinity for the dopamine or norepinephrine transporters using in vitro binding assays. Biodistribution studies in rats demonstrated that tail-vein injection of the (11)C-labeled radiotracers resulted in high brain uptake of radioactivity with a preferential distribution in brain regions known to be rich in SERT such as hypothalamus and thalamus. The most promising candidate, 16, had hypothalamus-to-cerebellum ratios of 9:1, 1 h postinjection, an indication of high specific to nonspecific binding. Ex vivo pharmacological studies demonstrated that uptake in SERT-rich brain regions was both saturable and selective for SERT. Two of the tested radiotracers, 15 and 16, have highly favorable properties for imaging SERT and will be used in pilot human PET imaging studies.  相似文献   

4.
Neuronal nicotinic acetylcholine receptors (nAChRs), ubiquitously distributed in the human brain, are implicated in various neurophysiological processes and in the pathophysiology and/or treatment strategies of Alzheimer's and Parkinson's diseases, Tourette's syndrome, epilepsy, schizophrenia, depression, and anxiety, as well as being particularly affected in tobacco dependence/withdrawal. In the past two decades, researchers have developed an extensive series of radioligands for the assessment of nAChRs in vivo through emission tomography, PET and SPECT. Several radioligands, derivatives of A-85380: 2-[(18)F]FA, 6-[(18)F]FA and 5-[(123)I]IA, are now being employed for the evaluation of nAChR in humans with PET and SPECT. Displaying better imaging properties than (11)C-nicotine and a better toxicity profile than epibatidine analogs, they have allowed quantification of thalamic nAChR in the human brain. Nevertheless, A-85380 derivatives still exhibit slow brain kinetics and a moderate signal-to-noise ratio. Current research efforts on the part of PET/SPECT radiochemists, therefore, have focused on development of new, highly specific and highly selective nAChR radioligands with improved brain kinetics that are able to localize high-affinity nAChRs in vivo. Key examples of new PET/SPECT ligands that are derived from several different structural classes are discussed along with a review of their chemical as well as their in vitro and/or in vivo properties. In particular, new PET nAChR radioligands will be examined that either present faster brain kinetics allowing simple and reliable quantification approaches or higher binding potentials suitable for the evaluation of extrathalamic nAChR.  相似文献   

5.
Two of the main pathological hallmarks of Alzheimer's disease (AD) are neuritic plaques and neurofibrillary tangles. Significant evidence supports a critical and probable causative role of beta amyloid (Abeta) plaque formation. Since neuroprotective treatments are typically most effective at early stages of injury, the detection and measurement of Abeta load in living brain should be performed at early and perhaps even presymptomatic stages of AD. Two primary targets of molecular imaging research with positron emission tomography (PET) are to develop surrogate markers (radioligands) for assessing disease progression and for monitoring the efficacy of developmental therapeutics. Here, we review the current status of radioligand development for PET imaging of Abeta aggregates. General structure-activity relationships have emerged, including the identification of at least three different ligand binding sites in various Abeta aggregates and recognition of the general structural requirements for ligand binding at each site. Also a few radioligands applicable to imaging Abeta plaques in living human brain with positron emission tomography (PET) have emerged, including [(11)C]PIB, [(11)C]SB-13 and [(18)F]FDDNP.  相似文献   

6.
In the central nervous system (CNS) and in the periphery, specific proteins (transporters) are responsible for the regulation of the synaptic concentrations of the major monoamine neurotransmitters, noradrenaline (NE), serotonin (5-HT) and dopamine (DA). Several reports have shown that the expression of these transporters within the CNS may be altered in patients with certain neurodegenerative or neuropsychiatric disorders. Therefore, in the CNS the monoamine transporters are major targets for existing and developmental drugs. The best known drugs targeting these transporters are the selective 5-HT reuptake inhibitors (SSRIs) (e.g. citalopram, Celexa) that are most frequently used in the treatment of clinical depression. Selective NE reuptake inhibitors (NRIs) have also found use for the treatment of depression and other conditions such as attention deficit hyperactivity (ADHD) disorder. Given that the NE transporter (NET) is also a binding site for cocaine and drugs of abuse, there is a great need for a probe to assess the densities of NET in vivo by brain imaging with either positron emission tomography (PET) or single photon emission tomography (SPET). PET in particular has the potential to measure NET densities quantitatively and with high resolution in the human brain in vivo. The quality of a PET image depends crucially on the radioligand used in the emission measurement. Commonly used radionuclides in PET radioligands are carbon 11 (t(1/2) = 20.4 min) and fluorine-18 (t(1/2) = 109.8 min). This review specifically summarizes the present status of the development of (11)C- or (18)F-labeled ligands as tools for imaging NET in brain with PET in support of neuropsychiatric clinical research and drug development.  相似文献   

7.
Disturbances in the serotonin (5-HT) system are associated with various neuropsychiatric disorders. The 5-HT system can be studied in vivo by measuring 5-HT transporter (SERT) densities using (123)iodine-labeled 2beta-carbomethoxy-3beta(4-iodophenyl)tropane ([(123)I]beta-CIT) and single photon emission computed tomography (SPECT). Validation of this technique is important because [(123)I]beta-CIT does not bind selectively to SERTs. Some studies have validated this technique in vivo in the human brain in SERT-rich areas, but the technique has not been validated yet in SERT-low cortical areas. The aim of this study was to further validate [(123)I]beta-CIT SPECT in assessing SERTs in vivo in humans in both SERT-rich and SERT-low areas. A double-blind, placebo-controlled, crossover design was used with the selective 5-HT reuptake inhibitor (SSRI) citalopram. Six male subjects underwent two [(123)I]beta-CIT SPECT sessions: one after pretreatment with citalopram and one after placebo. Scans were acquired 4 h and 22-27 h p.i., and both region-of-interest and voxel-by-voxel analyses were performed. Citalopram reduced [(123)I]beta-CIT binding ratios in SERT-rich midbrain and (hypo)thalamus. Binding ratios were also lower after citalopram in SERT-low cortical areas, but statistical significance was only reached in several cortical areas using voxel-by-voxel analysis. In addition, citalopram increased binding ratios in the DAT-rich striatum and increased absolute uptake in the cerebellum. The results show that [(123)I]beta-CIT SPECT is a valid technique to study SERT binding in vivo in human brain in SERT-rich areas. Although we provide some evidence that [(123)I]beta-CIT SPECT may be used to measure SERTs in SERT-low cortical areas, these measurements must be interpreted with caution.  相似文献   

8.
The radiolabeled serotonin transporter (SERT) ligand [(11)C](+)-McN5652 has recently been used in clinical positron emission tomography (PET) studies for SERT imaging. However, this radioligand offers disadvantages in routine clinical settings because of its short radioisotope half-life (eg PET facilities within hospitals without a cyclotron need to acquire such radioligands from distant cyclotron units for clinical use). S-([(18)F]fluoromethyl)-(+)-McN5652 ([(18)F](+)-FMe-McN5652) is an analogue which has been synthesized newly, and has a significantly longer radioisotope half-life. In the porcine brain, it demonstrates the same characteristic distribution pattern of serotonin-uptake sites like the (11)C-labeled congener with the highest binding in the midbrain and thalamus and the lowest in the cerebellum and occipital cortex. It shows a 30% higher blood-brain transfer and a slower peripheral metabolism than [(11)C](+)-McN5652. Rather uniform brain binding was observed after injection of the pharmacologically inactive radiolabeled enantiomer, or after pretreatment with the highly selective SERT inhibitor citalopram. The norepinephrine uptake inhibitor maprotiline did not show any inhibitory effect. Using a one-tissue compartment model (K(1), k"(2)) or a two-tissue compartment model (K(1) to k(4)) with or without constraints for calculation, the regional binding parameters of [(11)C](+)-McN5652 and [(18)F](+)-FMe-McN5652 are highly correlated among each other and with the SERT density, as determined by in vitro binding of [(3)H]citalopram. Using constraints to correct for the free fraction and nonspecific binding of the radiotracers, a considerable increase of the midbrain-occipital cortex ratios with higher values for [(18)F](+)-FMe-McN5652 compared to [(11)C](+)McN5652 was revealed. It is concluded that [(18)F](+)-FMe-McN5652 has better features than [(11)C](+)McN5652 for SERT imaging with PET.  相似文献   

9.
Both positron emission tomography and single photon emission computed tomography (SPECT) studies suggest that saturation of serotonin transporters (SERT) is present during treatment with therapeutic doses of selective serotonin reuptake inhibitors (SSRIs). Selective serotonin reuptake inhibitors also appear to increase the availability of dopamine transporters (DAT). The current study measured SERT occupancy and modulation of DAT by the serotonin/norepinephrine reuptake inhibitor (SNRI) venlafaxine using [123I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane SPECT. Eight healthy subjects were administered open-label venlafaxine extended release capsules (75 mg/d for 4 days followed by 150 mg/d for 5 days). Venlafaxine significantly inhibited [123I]beta-CIT binding to SERT in the brainstem (55.4%) and the diencephalon (54.1%). In contrast, venlafaxine increased [123I]beta-CIT binding to DAT in the striatum (10.1%) after 5 days of administration of 150 mg/d. The displacement of [123I]beta-CIT from brain SERT and the increase in striatal [123I]beta-CIT binding to DAT appear similar to previous work with the SSRI citalopram (40 mg/d). A literature review of SERT occupancy by marketed SSRIs and the SNRI venlafaxine using SPECT ([123I]beta-CIT) or positron emission tomography ([11C](N, N-Dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine) imaging suggests that therapeutic doses of SNRI are associated with virtual saturation of the serotonin transporter.  相似文献   

10.
Serotonin (5-hydroxytryptamine, 5-HT) and its various receptors are involved in numerous CNS functions and psychiatric disorders. 5-HT(1A), the best-characterized subtype of currently known 5-HT receptors, is tightly implicated in the pathogenesis of depression, anxiety, epilepsy and eating disorders. It thus represents an important target for drug therapy. Specific radioligands and positron emission tomography (PET) allow for a quantitative imaging of brain 5-HT(1A) receptor distribution in living animals and humans. Recently, the selective 5-HT(1A) receptor antagonist, MPPF, has been successfully labeled with [(18)F]fluorine ([(18)F]MPPF), and an increasing number of academic and industry centres have used this radiotracer in preclinical and clinical studies. After a brief account of some of the structural, distributional and electrophysiological characteristics of brain 5-HT(1A) receptors, this review focuses on studies conducted with [(18)F]MPPF, with emphasis on preclinical results illustrating the actual and potential value of this PET radioligand for clinical research and drug development.  相似文献   

11.
The role of the serotonin (5-HT) system in the neurobiology and treatment of panic disorder (PD) remains unproven. Previously we detected lower brain 5-HT transporter (SERT) availability in PD, but the findings were preliminary and mainly limited to female patients. The aim of this study was to assess non-displaceable brain SERT binding potential (BP (ND)) in male and female patients with PD. The SERT BP (ND) was measured in groups of patients with PD (five males and six females) and matched healthy control subjects (12 males and 12 females) using positron emission tomography (PET) and [11C]MADAM tracer. SERT BP (ND) were significantly higher in 13 of 20 studied brain regions, including several cortical and raphe areas, but lower in the hippocampus in males with PD as compared with healthy males. No significant differences in SERT BP (ND) were observed between female patients and controls. The results suggest gender-dependent regional differences in brain SERT availability and converge with previous PET findings of reduced 5-HT(1A) receptor binding in similar brain areas in PD. Distinctive functioning of the 5-HT system in males and females may underlie certain gender-dependent differences in expressions of PD.  相似文献   

12.
PET tracers for 5-HT(1A) receptors and uses thereof   总被引:1,自引:0,他引:1  
Kumar JS  Mann JJ 《Drug discovery today》2007,12(17-18):748-756
The serotonin 5-HT(1A) receptor is implicated in the pathophysiology of major neuropsychiatric disorders, including depression, suicidal behavior, panic disorder, epilepsy, bulimia, schizophrenia, Parkinson's disease, and Alzheimer's disease and is, therefore, an important target for drug therapy. 5-HT(1A) receptors are expressed as somatodendritic autoreceptors in serotonin neurons of the raphé nuclei (presynaptic) and as postsynaptic receptors in cortical and subcortical serotonin terminal fields in the brain. Due to the higher concentration and heterogeneous distribution of this receptor, it is an attractive target for quantification in vivo using positron emission tomography (PET) and single photon emission tomography (SPECT). Here, we review the PET radioligands employed for imaging 5-HT(1A) receptors in living brain.  相似文献   

13.
Nicotinic acetylcholine receptors and imaging   总被引:1,自引:0,他引:1  
In vivo imaging techniques like positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer the possibility to monitor human central nicotinic acetylcholine receptors (nAChRs) in a variety of central nervous system disorders. In the past, the only available PET radiotracer for imaging nAChRs in the human brain, [11C]-(-)-nicotine, suffered from a spectrum of not suitable properties for in vivo imaging. Current efforts are focused on the development of new, highly specific and highly selective radioligands based on different structural classes (e.g. nicotine, epibatidine, 3-pyridyl ether analogues) for central nAChRs. The most promising compounds are halogenated 3-pyridyl ether compounds for imaging alpha 4 beta 2 nAChRs. But there is still a lack for radiotracers for other subtypes of nicotinic acetylcholine receptors being a promising area of interest.  相似文献   

14.
BACKGROUND: (+/-)3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a recreational drug and brain serotonin (5-HT) neurotoxin. Under certain conditions, MDMA can also damage brain dopamine (DA) neurons, at least in rodents. Human MDMA users have been found to have reduced brain 5-HT transporter (SERT) density and cognitive deficits, although it is not known whether these are related. This study sought to determine whether MDMA users who take closely spaced sequential doses, which engender high plasma MDMA concentrations, develop DA transporter (DAT) deficits, in addition to SERT deficits, and whether there is a relationship between transporter binding and cognitive performance. MATERIALS AND METHODS: Sixteen abstinent MDMA users with a history of using sequential MDMA doses (two or more doses over a 3- to 12-h period) and 16 age-, gender-, and education-matched controls participated. Subjects underwent positron emission tomography with the DAT and SERT radioligands, [(11)C]WIN 35,428 and [(11)C]DASB, respectively. Subjects also underwent formal neuropsychiatric testing. RESULTS: MDMA users had reductions in SERT binding in multiple brain regions but no reductions in striatal DAT binding. Memory performance in the aggregate subject population was correlated with SERT binding in the dorsolateral prefrontal cortex, orbitofrontal cortex, and parietal cortex, brain regions implicated in memory function. Prior exposure to MDMA significantly diminished the strength of this relationship. CONCLUSIONS: Use of sequential MDMA doses is associated with lasting decreases in brain SERT, but not DAT. Memory performance is associated with SERT binding in brain regions involved in memory function. Prior MDMA exposure appears to disrupt this relationship. These data are the first to directly relate memory performance to brain SERT density.  相似文献   

15.
Although serotonin (5-HT) can interact with dopamine (DA) systems to modulate the subjective and reinforcing effects of psychostimulants such as cocaine and 3,4-methyldioxymethamphetamine (MDMA, ecstasy), the long-term effects of exposure to psychostimulants on brain 5-HT systems are not well characterized. The present study assessed 5-HT transporter (SERT) availability using positron emission tomography (PET) in rhesus monkeys with the SERT-specific radioligand [(11)C]3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB). SERT availability was assessed in regions of interest including the caudate nucleus, putamen, anterior cingulate cortex, and cerebellum. [(11)C]DASB distribution volume ratios (DVRs) were calculated using the cerebellum as the reference region. DVRs were calculated in control monkeys and in cocaine or MDMA self-administering monkeys approximately 24 h after the last self-administration (SA) session. SERT availability did not differ between monkeys with a history of MDMA SA and control monkeys in any region examined. In contrast, monkeys with a history of cocaine SA showed significantly higher levels of SERT availability in the caudate nucleus and putamen compared to control subjects. These results suggest that chronic SA of cocaine, but not MDMA, leads to alterations in serotonergic function in brain areas relevant to drug abuse. The higher level of SERT availability in cocaine-experienced monkeys may lead to a reduced inhibitory tone of 5-HT on the DA system, which may explain, in part, differences in the abuse liability between cocaine and MDMA.  相似文献   

16.
Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.  相似文献   

17.
2Beta-carbo(2-fluoroethoxy)-3beta-(4'-((Z)-2-iodoethenyl)phenyl)nortropane (betaFEpZIENT, 1) was synthesized as a serotonin transporter (SERT) imaging agent for both positron emission tomography (PET) and single photon emission computerized tomography (SPECT). The binding affinity of 1 to human monoamine transporters showed a high affinity for the SERT (Ki = 0.08 nM) with respect to the dopamine transporter (DAT) (Ki = 13 nM) and the norepinephrine transporter (NET) (Ki = 28 nM). In vivo biodistribution and blocking studies performed in male rats demonstrated that [123I]1 was selective and specific for SERT. In vivo microPET brain imaging studies in an anesthetized monkey with [18F]1 showed high uptake in the diencephalon and brainstem with peak uptake achieved at 120 min. A chase study with (R,S)-citalopram.HBr displaced [18F]1 radioactivity from all SERT-rich brain regions. A chase study with the DAT ligand 2beta-carbophenoxy-3beta-(4-chlorophenyl)tropane (9, RTI-113) failed to displace [18F]1, indicating that [18F]1 is specific to the SERT. The in vivo evaluation of [18F]1 indicates that this radiotracer is a good candidate for mapping and quantifying CNS SERT.  相似文献   

18.
(+/-)3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') is a widely used illicit drug that produces toxic effects on brain serotonin axons and axon terminals in animals. The results of clinical studies addressing MDMA's serotonin neurotoxic potential in humans have been inconclusive. In the present study, 23 abstinent MDMA users and 19 non-MDMA controls underwent quantitative positron emission tomography (PET) studies using [11C]McN5652 and [11C]DASB, first- and second-generation serotonin transporter (SERT) ligands previously validated in baboons for detecting MDMA-induced brain serotonin neurotoxicity. Global and regional distribution volumes (DVs) and two additional SERT-binding parameters (DV(spec) and DVR) were compared in the two subject populations using parametric statistical analyses. Data from PET studies revealed excellent correlations between the various binding parameters of [11C]McN5652 and [11C]DASB, both in individual brain regions and individual subjects. Global SERT reductions were found in MDMA users with both PET ligands, using all three of the above-mentioned SERT-binding parameters. Preplanned comparisons in 15 regions of interest demonstrated reductions in selected cortical and subcortical structures. Exploratory correlational analyses suggested that SERT measures recover with time, and that loss of the SERT is directly associated with MDMA use intensity. These quantitative PET data, obtained using validated first- and second-generation SERT PET ligands, provide strong evidence of reduced SERT density in some recreational MDMA users.  相似文献   

19.
The nortropane cocaine analogue, 2beta-carbomethoxy-3beta-[4'-((Z)-2-iodoethenyl)phenyl]nortropane (ZIENT), is a high affinity, selective serotonin transporter (SERT) ligand that has shown promise as a SERT imaging agent for single photon computed tomography (SPECT) when labeled with I-123. Synthesis of the labeling precursor, radiosynthesis of [(11)C]ZIENT, and in vivo evaluation in anesthetized and awake monkeys have been performed to determine the suitability of [(11)C]ZIENT as a PET agent for SERT imaging.  相似文献   

20.
3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a popular recreational drug that has been shown to induce loss of brain serotonin (5-HT) neurons. The purpose of this study was to determine the usefulness of pharmacological magnetic resonance imaging (phMRI) in assessing 5-HT dysfunction by examining the hemodynamic response evoked by infusion with the selective 5-HT reuptake inhibitor citalopram. We studied the effects of MDMA on brain hemodynamics using arterial spin labeling (ASL) based phMRI following a citalopram challenge (7.5mg/kg, i.v.), combined with [(123)I]β-CIT SPECT imaging in ten male MDMA users and seven healthy non-users. Single photon emission computed tomography (SPECT) imaging was used to assess the availability of 5-HT transporters (SERT). Imaging results were compared with the results of behavioral measures and mood changes following drug administration, in both groups (using the Beck Depression Inventory, Barratt Impulsiveness Scale and a visual analog scale). Reductions in SERT binding were observed in the occipital cortex of MDMA users. In line with this, citalopram induced decreases in cerebral blood flow (CBF) in the occipital cortex of MDMA users. ASL based phMRI also detected a CBF decrease in the thalamus of MDMA users. In concordance with imaging findings, behavioral measures differed significantly between MDMA users and controls. MDMA users had higher impulsivity scores and felt more uncomfortable after citalopram infusion, compared with control subjects. Our findings indicate that phMRI is very well suited for in-vivo assessment of 5-HT dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号