首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Bhardwaj N  Kundu SC 《Biomaterials》2012,33(10):2848-2857
Adult bone marrow derived mesenchymal stem cells are undifferentiated, multipotential cells and have the potential to differentiate into multiple lineages like bone, cartilage or fat. In this study, polyelectrolyte complex silk fibroin/chitosan blended porous scaffolds were fabricated and examined for its ability to support in vitro chondrogenesis of mesenchymal stem cells. Silk fibroin matrices provide suitable substrate for cell attachment and proliferation while chitosan are promising biomaterial for cartilage repair due to it’s structurally resemblance with glycosaminoglycans. We compared the formation of cartilaginous tissue in the silk fibroin/chitosan blended scaffolds with rat mesenchymal stem cells and cultured in vitro for 3 weeks. Additionally, pure silk fibroin scaffolds of non-mulberry silkworm, Antheraea mylitta and mulberry silkworm, Bombyx mori were also utilized for comparative studies. The constructs were analyzed for cell attachment, proliferation, differentiation, histological and immunohistochemical evaluations. Silk fibroin/chitosan blended scaffolds supported the cell attachment and proliferation as indicated by SEM observation, Confocal microscopy and metabolic activities. Alcian Blue and Safranin O histochemistry and expression of collagen II indicated the maintenance of chondrogenic phenotype in the constructs after 3 weeks of culture. Glycosaminoglycans and collagen accumulated in all the scaffolds and was highest in silk fibroin/chitosan blended scaffolds and pure silk fibroin scaffolds of A. mylitta. Chondrogenic differentiation of MSCs in the silk fibroin/chitosan and pure silk fibroin scaffolds was evident by real-time PCR analysis for cartilage-specific ECM gene markers. The results represent silk fibroin/chitosan blended 3D scaffolds as suitable scaffold for mesenchymal stem cells-based cartilage repair.  相似文献   

2.
Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p < 0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs.  相似文献   

3.
Tendon injuries are often associated with significant dysfunction and disability due to tendinous tissue's very limited self-repair capacity and propensity for scar formation. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material present an alternative therapeutic option for tendon repair/regeneration that may be advantageous compared to other current treatment modalities. The MSC delivery vehicle is the principal determinant for successful implementation of MSC-mediated regenerative therapies. In the current study, a co-delivery system based on TGF-β3-loaded RGD-coupled alginate microspheres was developed for encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs). The capacity of encapsulated dental MSCs to differentiate into tendon tissue was investigated in vitro and in vivo. Encapsulated dental-derived MSCs were transplanted subcutaneously into immunocompromised mice. Our results revealed that after 4 weeks of differentiation in vitro, PDLSCs and GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited high levels of mRNA expression for gene markers related to tendon regeneration (Scx, DCn, Tnmd, and Bgy) via qPCR measurement. In a corresponding in vivo animal model, ectopic neo-tendon regeneration was observed in subcutaneous transplanted MSC-alginate constructs, as confirmed by histological and immunohistochemical staining for protein markers specific for tendons. Interestingly, in our quantitative PCR and in vivo histomorphometric analyses, PDLSCs showed significantly greater capacity for tendon regeneration than GMSCs or hBMMSCs (P < 0.05). Altogether, these findings indicate that periodontal ligament and gingival tissues can be considered as suitable stem cell sources for tendon engineering. PDLSCs and GMSCs encapsulated in TGF-β3-loaded RGD-modified alginate microspheres are promising candidates for tendon regeneration.  相似文献   

4.
Osteoarthritis is the most common joint disorder affecting millions of people. Most scaffolds developed for cartilage regeneration fail due to vascularization and matrix mineralization. In this study we present a chondrogenic extracellular matrix (ECM) incorporated collagen/chitosan scaffold (chondrogenic ECM scaffold) for potential use in cartilage regenerative therapy. Biochemical characterization showed that these scaffolds possess key pro-chondrogenic ECM components and growth factors. MRI characterization showed that the scaffolds possess mechanical properties and diffusion characteristics important for cartilage tissue regeneration. In vivo implantation of the chondrogenic ECM scaffolds with bone marrow derived mesenchymal stem cells (MSCs) triggered chondrogenic differentiation of the MSCs without the need for external stimulus. Finally, results from in vivo MRI experiments indicate that the chondrogenic ECM scaffolds are stable and possess MR properties on par with native cartilage. Based on our results, we envision that such ECM incorporated scaffolds have great potential in cartilage regenerative therapy. Additionally, our validation of MR parameters with histology and biochemical analysis indicates the ability of MRI techniques to track the progress of our ECM scaffolds non-invasively in vivo; highlighting the translatory potential of this technology.  相似文献   

5.
The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells, chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG, SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture, greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9, type II collagen, and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen, type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state, suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects, and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs.  相似文献   

6.
Injectable, biodegradable hydrogel composites of crosslinked oligo(poly(ethylene glycol) fumarate) (OPF) and gelatin microparticles (MPs) were utilized to fabricate a bilayered osteochondral construct consisting of a chondrogenic layer and an osteogenic layer, and to investigate the differentiation of rabbit marrow mesenchymal stem cells (MSCs) encapsulated in both layers in vitro. The results showed that MSCs in the chondrogenic layer were able to undergo chondrogenic differentiation, especially in the presence of TGF-β1-loaded MPs. In the osteogenic layer, cells maintained their osteoblastic phenotype. Although calcium deposition in the osteogenic layer was limited, cells in the osteogenic layer significantly enhanced chondrogenic differentiation of MSCs in the chondrogenic layer. The greatest effect was observed when MSCs were encapsulated with TGF-β1-loaded MPs and cultured with osteogenic cells in the bilayered constructs. Overall, this study demonstrates the fabrication of bilayered hydrogel composites that mimic the structure and function of osteochondral tissue, along with the application of these composites as cell and growth factor carriers.  相似文献   

7.
An ideal bone tissue engineering graft should have both excellent pro-osteogenesis and pro-angiogenesis to rapidly realize the bone regeneration in vivo. To meet this goal, 2-N,6-O-sulfated chitosan (26SCS) based nanoparticle (S-NP) was successfully developed and showed a dose-dependent enhancement on angiogenesis in vitro. For the repair of a critical sized defect in rabbit radius, we developed BMP-2 loaded S-NP (BMP-2/S-NP) with protein loading efficiency of 1.4 ± 0.2% and fabricated a gelatin sponge (G) based implant loaded with BMP-2/S-NP (BMP-2/S-NP/G). This implant exerted a delivery of BMP-2 with an initial burst release of 15.3 ± 4.1% in first 24 h and a gradual release for 21 days to 77.8 ± 3.6%. The in vitro ALP assay revealed that the activity of released BMP-2 from BMP-2/S-NP/G was maintained after 3-d and 7-d delivery and further enhanced after 14-d delivery compared with the original BMP-2. Furthermore, the in vivo effects of BMP-2/S-NP/G on the bone regeneration and vessel formation in the critical sized defect (18 mm) of rabbit radius were investigated by synchrotron radiation-based micro-computed tomography (SRμCT) imaging, three dimensional micro-computed tomographic (μCT) imaging, histological analysis, immunohistochemistry and biomechanical measurement. Based on the results, both peripheral vessel and new vessel formation were significantly increased by the BMP-2/S-NP/G treatment, along with the bridged defects at as early as 2 weeks, the healed defects at 8 weeks and the reunion of bone marrow cavity at 12 weeks. The results indicated that both controlled release of active BMP-2 and favorable vascularization at the defect site contributed by BMP-2/S-NP/G played a crucial role in accelerating and promoting bone augmentation. This study suggests that BMP-2/S-NP/G demonstrates promise for vascularization and bone regeneration in clinical case of large defect.  相似文献   

8.
Non-invasive assay for the early stage diagnosis of methicillin resistant Staphylococcus aureus (MRSA) related pneumonia is of great clinical importance and still a great challenge. In this paper, we reported a novel kind of Au@Ag core–shell theranostic nanoparticles (NPs) conjugated with MRSA specific antibody on their surface. Compared with the raw Au@Ag NPs, these antibody modified NPs (AAMA NPs) showed 10.66 fold enhancement targeting to the MRSA in vitro. In vivo target efficacy was measured with rats bearing pneumonia induced by different pathogens. Computed tomography (CT) results revealed that these AAMA NPs had higher CT contrast enhancement (498 HU), than those of raw Au@Ag and Omnipaque (oth <100 HU). In addition, lesions labeled by AAMA NPs could be distinguished from lung parenchyma by taking advantage of spectra CT. Bio-distribution analysis confirmed that these AAMA NPs accumulated in the MRSA rich site. Both BAL and Elisa assays indicated that these AAMA NPs greatly alleviated the inflammation reaction by reducing bacterial proliferation and cytokine production. Pathological study showed that these NPs exerted negligible long term cytotoxicity in vivo.  相似文献   

9.
《Acta histochemica》2022,124(6):151911
BackgroundThe prevalence of osteoarthritis (OA) is constantly increasing with age. Adipose-derived (AD-) and umbilical cord-derived (UC-) mesenchymal stem cells (MSCs) are attractive alternatives in OA therapy and regenerative medicine. However, whether there are differences in the efficacy of MSCs derived from different tissues in the cartilage regeneration, and the frequency of administration of MSCs needs to be further studied.ExperimentUC-MSCs and AD-MSC were isolated from the umbilical cord and subcutaneous fatty tissue of humans respectively and identified by flow cytometry. In vitro, the proliferation ability and chondrogenic potential of AD-MSCs and UC-MSCs were analyzed. In vivo, forty-three Sprague-Dawley rats were used for the OA model induced by ACLT surgery. OA rats were divided into a sham group, an ACLT model group, and two therapy groups (treated with AD-MSCs or UC-MSCs). Therapy groups were treated using a single or repeated twice injection of AD-MSCs and UC-MSCs at a concentration of 1.0 × 106 cells and were followed up for 12 weeks. Serial sections of knees were examined for histological, immunohistochemical and TUNEL analysis.ResultsWe demonstrated that the proliferation of UC-MSCs was higher than that of AD-MSCs, consistent with the bigger pellets from UC-MSCs in a chondrogenic induction medium. Degeneration of articular cartilage was observed in histological appearance of Safranine O and Toluidine blue staining, and quantitative results of modified Mankin’s Score. Importantly, both AD-MSCs and UC-MSCs transplantation significantly attenuated ACLT surgical-induced OA development. In addition, ACLT-induced reduction in cartilage extracellular matrix synthesis (aggrecan) was significantly suppressed by AD-MSCs or UC-MSCs transplantation. TUNEL assay showed that AD-MSCs and UC-MSCs treatments significantly protected chondrocytes against apoptosis compared with the ACLT group. No significant differences were observed between single injections and repeated twice injections.ConclusionsThe current study suggested that, in vitro, AD-MSCs and UC-MSCs showed a comparable chondrogenic potential, although UC-MSCs displayed a superior proliferation capacity. Furthermore, our results confirmed that the injection of AD-MSCs and UC-MSCs, either single or repeated twice, could significantly inhibit the progression of ACLT-induced osteoarthritis with a similar effect, and MSCs transplantation can decrease the apoptosis of articular chondrocytes caused by ACLT.  相似文献   

10.
Our previous study had reported that cholesterol-grafted poly(amidoamine) (rPAA-Chol polymer) was able to self-assemble into cationic nanoparticles and act as a potential carrier for siRNA transfection. In this study, the core–shell type lipid/rPAA-Chol hybrid nanoparticles (PEG-LP/siRNA NPs and T7-LP/siRNA NPs) were developed for improving in vivo siRNA delivery by modifying the surface of rPAA-Chol/siRNA nanoplex core with a lipid shell, followed by post-insertion of polyethylene glycol phospholipid (DSPE-PEG) and/or peptide (HAIYPRH, named as T7) modified DSPE-PEG-T7. The integrative hybrid nanostructures of LP/siRNA NPs were evidenced by dynamic light scattering (DLS), confocal laser scanning microscope (CLSM), cryo-transmission electron microscope (Cryo-TEM) and surface plasmon resonance (SPR) assay. It was demonstrated that the T7 peptide modified LP/siRNA NPs (T7-LP/siRNA NPs) exhibited uniform and spherical structures with particle size of 99.39 ± 0.65 nm and surface potential of 42.53 ± 1.03 mV, and showed high cellular uptake efficiency and rapid endosomal/lysosomal escape ability in MCF-7 cells. Importantly, in vitro gene silencing experiment demonstrated that both of pegylated and targeted LP/siEGFR NPs exhibited significantly stronger downregulation of EGFR protein expression level in MCF-7 cells, compared to that of the physical mixture of siRNA lipoplexes and rPAA-Chol/siRNA nanoplexes. In vivo tumor therapy on nude mice bearing MCF-7 tumors further confirmed that the targeted T7-LP/siEGFR NPs exhibited the greatest inhibition on tumor growth via transferrin receptor-mediated targeting delivery, without any activation of immune responses and significant body weight loss following systemic administration. These findings indicated that the core-shell type T7-LP/siRNA nanoparticles would be promising siRNA delivery systems for in vivo tumor-targeted therapy.  相似文献   

11.
Substrate-derived mesenchymal stem cell (MSC) spheroids show greater differentiation capacities than dispersed single cells in vitro. During spheroid formation, nanoparticles (NPs)/genes may be delivered into the cells. In this study, MSCs were conveniently labeled with superparamagnetic Fe3O4 NPs, or transfected with brain-derived neurotrophic factor (BDNF) gene, by the substrate-mediated NP/gene uptake. With the promising in vitro data showing the beneficial effect on neural development and neurotrophic factor expression, MSCs were combined with a polymeric nerve conduit to bridge a 10 mm transection gap of rat sciatic nerve. High-resolution (7-T) magnetic resonance imaging (MRI) was used to track the transplanted cells. Nerve regeneration was assessed by functional recovery and histology. Results revealed that Fe3O4 NP-labeled MSCs were successfully visualized by MRI in vivo. Animals receiving BDNF-transfected MSC spheroids demonstrated the shortest gap bridging time (<21 days), the largest regenerated nerve, and the thickest myelin sheath at 31 days. Compared to MSC single cells, the pristine or BDNF-transfected MSC spheroids significantly promoted the functional recovery of animals, especially for the BDNF-transfected MSC spheroids. The transplanted MSCs were incorporated in the regenerated nerve and differentiated into non-myelinating Schwann cells after 31 days. This study suggests that the substrate-mediated gene delivery and NP labeling may provide extra values for MSC spheroids to carry therapeutic/diagnostic agents in cell-based therapy.  相似文献   

12.
The application of carmustine (BCNU) for glioma treatment is limited due to its poor selectivity for tumor and tumor resistance caused by O6-methylguanine-DNA-methyl transferase (MGMT). To improve the efficacy of BCNU, we constructed chitosan surface-modified poly (lactide-co-glycolides) nanoparticles (PLGA/CS NPs) for targeting glioma, loading BCNU along with O6-benzylguanine (BG), which could directly deplete MGMT. With core–shell structure, PLGA/CS NPs in the diameter around 177 nm showed positive zeta potential. In vitro plasma stability of BCNU in NPs was improved compared with free BCNU. The cellular uptake of NPs increased with surface modification of CS and decreasing particle size. The cytotoxicity of BCNU against glioblastoma cells was enhanced after being encapsulated into NPs; furthermore, with the co-encapsulation of BCNU and BG into NPs, BCNU + BG PLGA/CS NPs showed the strongest inhibiting ability. Compared to free drugs, PLGA/CS NPs could prolong circulation time and enhance accumulation in tumor and brain. Among all treatment groups, F98 glioma-bearing rats treated with BCNU + BG PLGA/CS NPs showed the longest survival time and the smallest tumor size. The studies suggested that the co-encapsulation of BCNU and BG into PLGA/CS NPs could remarkably enhance the efficacy of BCNU, accompanied with greater convenience for therapy.  相似文献   

13.
The objective of this study is to evaluate the effect of polymeric nanoparticles (NPs) on the allergic response of mast cells that release inflammatory mediators such as histamine through exocytosis. Submicron-sized biodegradable poly(dl-lactide-co-glycolide) (PLGA) NPs were prepared by the emulsion solvent diffusion method. Here, we examined the interactions of the mast cells with two types of PLGA NPs, unmodified NPs and NPs modified with chitosan (CS), a biodegradable cationic polymer. The cellular uptake of NPs increased by CS modification due to electrostatic interactions with the plasma membrane. NPs were taken up by mast cells through an endocytic pathway (endocytic phase) and then the cellular uptake was saturated and maintained plateau level by the exclusion of NPs through exocytosis (exocytic phase). Antigen-induced histamine release from mast cells was inhibited during the exocytic phase. The extent of histamine release inhibition was related to the amount of excluded NPs. Exocytic exclusion of NPs competitively antagonize the antigen-induced exocytotic release of histamine by highjacking exocytosis machinery such as SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, since histamine release was recovered in mast cells that overexpress SNAP-23. The inhibitory effect of the allergic response by PLGA NPs was also evaluated in vivo using the mouse model for systemic anaphylaxis. The administration of NPs suppressed the antigen-induced systemic allergic response in vivo. In conclusion, PLGA NP itself has actions to inhibit the allergic responses mediated by mast cells.  相似文献   

14.
Cartilage regeneration after trauma is still a great challenge for clinicians and researchers due to many reasons, such as joint load-bearing, synovial movement and the paucity of endogenous repair cells. To overcome these limitations, we constructed a functional biomaterial using a biphasic scaffold platform and a bone-derived mesenchymal stem cells (BMSCs)-specific affinity peptide. The biphasic scaffold platform retains more cells homogeneously within the sol–gel transition of chitosan and provides sufficient solid matrix strength. This biphasic scaffold platform is functionalized with an affinity peptide targeting a cell source of interest, BMSCs. The presence of conjugated peptide gives this system a biological functionality towards BMSC-specific homing both in vitro and in vivo. The functional biomaterial can stimulate stem cell proliferation and chondrogenic differentiation during in vitro culture. Six months after in vivo implantation, compared with routine surgery or control scaffolds, the functional biomaterials induced superior cartilage repair without complications, as indicated by histological observations, magnetic resonance imaging and biomechanical properties. Beyond cartilage repair, this functional biphasic scaffold may provide a biomaterial framework for one-step tissue engineering strategy by homing endogenous cells to stimulate tissue regeneration.  相似文献   

15.
Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44 + cells (P < 0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P < 0.05), indicating that MGF and TGF-β3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair.  相似文献   

16.
In this work, injectable, biodegradable hydrogel composites of crosslinked oligo(poly(ethylene glycol) fumarate) and gelatin microparticles (MPs) were used to fabricate a bilayered osteochondral construct. Rabbit marrow mesenchymal stem cells (MSCs) were encapsulated with transforming growth factor-β3 (TGF-β3)-loaded MPs in the chondrogenic layer and cocultured with cells of different periods of osteogenic preculture (0, 3, 6 and 12 days) in the osteogenic layer to investigate the effects of TGF-β3 delivery and coculture on the proliferation and differentiation of cells in both layers. The results showed that, in the chondrogenic layer, TGF-β3 significantly stimulated chondrogenic differentiation of MSCs. In addition, cells of various osteogenic preculture periods in the osteogenic layer, along with TGF-β3, enhanced gene expression for MSC chondrogenic markers to different extents. In the osteogenic layer, cells maintained their alkaline phosphatase activity during the coculture; however, mineralization was delayed by the presence of TGF-β3. Overall, this study demonstrated the fabrication of bilayered hydrogel composites which mimic the structure and function of osteochondral tissue, along with the application of these composites as cell and growth factor carriers, while illustrating that encapsulated cells of different degrees of osteogenic differentiation can significantly influence the chondrogenic differentiation of cocultured progenitor cells in both the presence and absence of chondrogenic growth factors.  相似文献   

17.
In this study, we demonstrate that a unique growth factor-biomaterial system can offer spatial control of growth factors with sustained signaling to guide the specific lineage commitment of neural stem/progenitor cells (NSPCs) in vivo. First, recombinant fusion proteins incorporating an N-terminal biotin tag and interferon-γ (IFN-γ), platelet derived growth factor-AA (PDGF-AA), or bone morphogenic protein-2 (BMP-2) were immobilized to a methacrylamide chitosan (MAC) based biopolymer via a streptavidin linker to specify NSPC differentiation into neurons, oligodendrocytes, or astrocytes, respectively. MAC was mixed with growth factors (immobilized or adsorbed), acrylated laminin, NSPCs, and crosslinked within chitosan conduits. This system mimics regenerative aspects of the central nervous system ECM, which is largely composed of a crosslinked polysaccharide matrix with cell-adhesive regions, and adds the new functionality of protein sequestration. We demonstrated that these growth factors are maintained at functionally significant levels for 28 d in vitro. In the main study, immobilized treatments were compared to absorbed and control treatments after 28 d in vivo (rat subcutaneous). Masson's Trichrome staining revealed that small collagen capsules formed around the chitosan conduits with an average acceptable thickness of 153.07 ± 6.02 μm for all groups. ED-1 staining showed mild macrophage clustering around the outside of chitosan conduits in all treatments with no macrophage invasion into hydrogel portions. Importantly, NSPC differentiation staining demonstrated that immobilized growth factors induced the majority of cells to differentiate into the desired cell types as compared with adsorbed growth factor treatments and controls by day 28. Interestingly, immobilized IFN-γ resulted in neural rosette-like arrangements and even structures resembling neural tubes, suggesting this treatment can lead to guided dedifferentiation and subsequent neurulation.  相似文献   

18.
Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG-FMOC) to monodisperse carboxylated 19.7 nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (∼98 nm vs. ∼43 nm) of the tracers, due to inter-particle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications.  相似文献   

19.
The effective treatment of malignant brain glioma is hindered by the poor transport across the blood–brain barrier (BBB) and the low penetration across the blood-tumor barrier (BTB). In this study, transferrin-conjugated magnetic silica PLGA nanoparticles (MNP-MSN-PLGA-Tf NPs) were formulated to overcome these barriers. These NPs were loaded with doxorubicin (DOX) and paclitaxel (PTX), and their anti-proliferative effect was evaluated in vitro and in vivo. The in vitro cytotoxicity of drug-loaded NPs was evaluated in U-87 cells. The delivery and the subsequent cellular uptake of drug-loaded NPs could be enhanced by the presence of magnetic field and the usage of Tf as targeting ligand, respectively. In particular, cells treated with DOX-PTX-NPs-Tf with magnetic field showed the highest cytotoxicity as compared to those treated with DOX-PTX-NPs-Tf, DOX-PTX-NPs, DOX-PTX-NPs-Tf with free Tf. The in vivo therapeutic efficacy of drug-loaded NPs was evaluated in intracranial U-87 MG-luc2 xenograft of BALB/c nude mice. In particular, the DOX-PTX-NPs-Tf treatment exhibited the strongest anti-glioma activity as compared to the PTX-NPs-Tf, DOX-NPs-Tf or DOX-PTX-NPs treatment. Mice did not show acute toxicity after administrating with blank MNP-MSN-PLGA-Tf NPs. Overall, MNP-MSN-PLGA-Tf NPs are promising carriers for the delivery of dual drugs for effective treatment of brain glioma.  相似文献   

20.
Although rhBMP-2 has excellent ability to accelerate the repair of normal bone defects, limitations of its application exist in the high cost and potential side effects. This study aimed to develop a composite photopolymerisable hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (PH/rhBMP-2/NPs) as the bone substitute to realize segmental bone defect repair at a low growth factor dose. Firstly rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (rhBMP-2/NPs) were prepared and characterized by DLS and TEM. Composite materials, PH/rhBMP-2/NPs were developed and investigated by SEM-EDS as well as a series of physical characterizations. Using hMSCs as an in vitro cell model, composite photopolymerisable hydrogels incorporating NPs (PH/NPs) showed good cell viability, cell adhesion and time dependent cell ingrowth. In vitro release kinetics of rhBMP-2 showed a significantly lower initial burst release from the composite system compared with the growth factor-loaded particles alone or encapsulated directly within the hydrogel, followed by a slow release over time. The bioactivity of released rhBMP-2 was validated by alkaline phosphatase (ALP) activity as well as a mineralization assay. In in vivo studies, the PH/rhBMP-2/NPs induced ectopic bone formation in the mouse thigh. In addition, we further investigated the in vivo effects of rhBMP-2-loaded scaffolds in a rabbit radius critical defect by three dimensional micro-computed tomographic (μCT) imaging, histological analysis, and biomechanical measurements. Animals implanted with the composite hydrogel containing rhBMP-2-loaded nanoparticles underwent gradual resorption with more pronounced replacement by new bone and induced reunion of the bone marrow cavity at 12 weeks, compared with animals implanted with hydrogel encapsulated growth factors alone. These data provided strong evidence that the composite PH/rhBMP-2/NPs are a promising substitute for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号