首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Adolescence is a period marked by changes in motivational and cognitive brain systems. However, the development of the interactions between reward and cognitive control processing are just beginning to be understood. Using event-related functional neuroimaging and an incentive modulated antisaccade task, we compared blood-oxygen level dependent activity underlying motivated response inhibition in children, adolescents, and adults. Behaviorally, children and adolescents performed significantly worse than adults during neutral trials. However, children and adolescents showed significant performance increases during reward trials. Adults showed no performance changes across conditions. fMRI results demonstrated that all groups recruited a similar circuitry to support task performance, including regions typically associated with rewards (striatum and orbital frontal cortex), and regions known to be involved in inhibitory control (putative frontal and supplementary eye fields, and posterior parietal cortex, and prefrontal loci). During rewarded trials adolescents showed increased activity in striatal regions, while adults demonstrated heightened activation in the OFC relative to children and adolescents. Children showed greater reliance on prefrontal executive regions that may be related to increased effort in inhibiting responses. Overall, these results indicate that response inhibition is enhanced with reward contingencies over development. Adolescents’ heightened response in striatal regions may be one factor contributing to reward-biased decision making and perhaps risk taking behavior.  相似文献   

2.
Very little is known about the neurobiological correlates of reward processing during social decision-making in the developing brain and whether prior social and moral information (reputations) modulates reward responses in youth as has been demonstrated in adults. Moreover, although externalizing behavior problems in youth are associated with deficits in reward processing and social cognition, a real-life social interaction paradigm using functional neuroimaging (fMRI) has not yet been applied to probe reward processing in such youth. Functional neuroimaging was used to examine the neural correlates of reward-related decision-making during a trust task in two samples of age-matched 11 to 16-year-old boys: with (n?=?10) and without (n?=?10) externalizing behavior problems. The task required subjects to decide whether to share or keep monetary rewards from partners they themselves identified during a real-life peer sociometric procedure as interpersonally aggressive or kind (vs. neutral). Results supported the notion that prior social and moral information (reputations) modulated reward responses in the adolescent brain. Moreover, boys with externalizing problems showed differential activation in the bilateral insula during the decision phase of the game as well as the caudate and anterior insula during the outcome phase of the game. Similar activation in adolescents in response to reward related stimuli as found in adults suggests some developmental continuity in corticostriatal circuits. Group differences are interpreted with caution given the small group sizes in the current study. Notwithstanding this limitation, the study provides preliminary evidence for anomalous reward responses in boys with externalizing behavior problems, thereby providing a possible biological correlate of well-established social-cognitive and reward-related theories of externalizing behavior disorders.  相似文献   

3.
Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents’ high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.  相似文献   

4.
Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.  相似文献   

5.
Experimental work in animals has identified numerous neural structures involved in reward processing and reward-dependent learning. Until recently, this work provided the primary basis for speculations about the neural substrates of human reward processing. The widespread use of neuroimaging technology has changed this situation dramatically over the past decade through the use of PET and fMRI. Here, the authors focus on the role played by fMRI studies, where recent work has replicated the animal results in human subjects and has extended the view of putative reward-processing neural structures. In particular, fMRI work has identified a set of reward-related brain structures including the orbitofrontal cortex, amygdala, ventral striatum, and medial prefrontal cortex. Moreover, the human experiments have probed the dependence of human reward responses on learned expectations, context, timing, and the reward dimension. Current experiments aim to assess the function of human reward-processing structures to determine how they allow us to predict, assess, and act in response to rewards. The authors review current accomplishments in the study of human reward processing and focus their discussion on explanations directed particularly at the role played by the ventral striatum. They discuss how these findings may contribute to a better understanding of deficits associated with Parkinson's disease.  相似文献   

6.
Cultural objects modulate reward circuitry   总被引:7,自引:0,他引:7  
Erk S  Spitzer M  Wunderlich AP  Galley L  Walter H 《Neuroreport》2002,13(18):2499-2503
Using event-related fMRI we investigated the rewarding properties of cultural objects (cars) signaling wealth and social dominance. It has been shown recently that reward mechanisms are involved in the regulation of social relations like dominance and social rank. Based on evolutionary considerations we hypothesized that sports cars in contrast to other categories of cars, e.g. limousines and small cars, are strong social reinforcers and would modulate the dopaminergic reward circuitry. Twelve healthy male subjects were studied with fMRI while viewing photographs of different car classes followed by an attractivity rating. Behaviorally sports cars were rated significantly more attractive than limousines and small cars. Our fMRI results revealed significantly more activation in ventral striatum, orbitofrontal cortex, anterior cingulate and occipital regions for sports cars in contrast to other categories of cars. We could thus demonstrate that artificial cultural objects associated with wealth and social dominance elicit activation in reward-related brain areas.  相似文献   

7.

Background

Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives.

Methods

This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC).

Results

We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding.

Limitations

The results we obtained using monetary stimuli might not generalize to other forms of reward.

Conclusion

Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral–frontal brain circuitry in recovered patients suggests an elevated degree of self-regulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom–up and top–down processes may be a trait marker of the disorder.  相似文献   

8.
Adolescence is marked by an increased sensitivity to the social environment as youth navigate evolving relationships with family, friends, and communities. Prosocial behavior becomes more differentiated such that older adolescents increasingly give more to known others (e.g., family, friends) than to strangers. This differentiation may be linked with changes in neural processing among brain regions implicated in social decision-making. A total of 269 adolescents from 9–15 and 19–20 years of age completed a decision-making task in which they could give money to caregivers, friends, and strangers while undergoing functional magnetic resonance imaging (fMRI). Giving to caregivers and friends (at a cost to oneself) increased with age, but giving to strangers remained lower and stable across age. Brain regions implicated in cognitive control (dorsolateral and ventrolateral prefrontal cortex) showed increased blood-oxygen-level-dependent (BOLD) activation with increasing age across giving decisions to all recipients; regions associated with reward processing (ventral striatum and ventral tegmental area) showed increased activation across all ages when giving to all recipients. Brain regions associated with social cognition were either not active (dorsomedial prefrontal cortex) or showed reduced activation (temporal parietal junction and posterior superior temporal sulcus) when giving to others across all ages. Findings have implications for understanding the role of brain development in the increased complexity of social decision-making during adolescence.  相似文献   

9.
BACKGROUND: Although abnormalities in reward processing have been proposed to underlie attention-deficit/hyperactivity disorder (ADHD), this link has not been tested explicitly with neural probes. METHODS: This hypothesis was tested by using fMRI to compare neural activity within the striatum in individuals with ADHD and healthy controls during a reward-anticipation task that has been shown previously to produce reliable increases in ventral striatum activity in healthy adults and healthy adolescents. Eleven adolescents with ADHD (5 off medication and 6 medication-na?ve) and 11 healthy controls (ages 12-17 y) were included. Groups were matched for age, gender, and intelligence quotient. RESULTS: We found reduced ventral striatal activation in adolescents with ADHD during reward anticipation, relative to healthy controls. Moreover, ventral striatal activation was negatively correlated with parent-rated hyperactive/impulsive symptoms across the entire sample. CONCLUSIONS: These findings provide neural evidence that symptoms of ADHD, and impulsivity or hyperactivity in particular, may involve diminished reward anticipation, in addition to commonly observed executive dysfunction.  相似文献   

10.
Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression.  相似文献   

11.
BACKGROUND: Choosing between actions associated with uncertain rewards and punishments is mediated by neural circuitry encompassing the orbitofrontal cortex, anterior cingulate cortex (ACC), and striatum; however, the precise conditions under which these different components are activated during decision-making cognition remain uncertain. METHODS: Fourteen healthy volunteers completed an event-based functional magnetic resonance imaging protocol to investigate blood-oxygenation-level-dependent (BOLD) responses during independently modeled phases of choice cognition. In the "decision phase," participants decided which of two simultaneous visually presented gambles they wished to play for monetary reward. The gambles differed in their magnitude of gains, magnitude of losses, and the probabilities with which these outcomes were delivered. In the "outcome phase," the result of each choice was indicated on the visual display. RESULTS: In the decision phase, choices involving large gains were associated with increased BOLD responses in the pregenual ACC, paracingulate, and right posterior orbitolateral cortex compared with choices involving small gains. In the outcome phase, good outcomes were associated with increased BOLD responses in the posterior orbitomedial cortex, subcallosal ACC, and ventral striatum compared with negative outcomes. There was only limited overlap between reward-related activity in ACC and orbitofrontal cortex during the decision and outcome phases. CONCLUSIONS: Neural activity within the medial and lateral orbitofrontal cortex, pregenual ACC, and striatum mediate distinct representations of reward-related information that are deployed at different stages during a decision-making episode.  相似文献   

12.
The reinforcement sensitivity theory (RST) relates individual differences in reward sensitivity to the activation of the behavioral approach system (BAS). Dopamine-related brain structures have been repeatedly associated with reward processing, but also with cognitive processes such as task switching. In the present study, we examined the association between reward sensitivity and the event-related fMRI BOLD response with set switching in 31 males. As expected, the right inferior frontal cortex (rIFG) and the striatum (i.e. the left putamen) were involved in set-switching activity for the overall sample. Interindividual differences in Gray's reward sensitivity were related to stronger activity in the rIFG and the ventral striatum. Thus, trait reward sensitivity contributed to the modulation of brain responsiveness in set-switching tasks. Having considered previous research, we propose that higher BAS activity is associated with a stronger reward to process a better implementation of goal-directed tasks and the diminished processing of secondary cues.  相似文献   

13.
Functional magnetic resonance imaging (fMRI) has been used to investigate the responsiveness of the maternal rat brain to pup-suckling under various experimental paradigms. Our research employing the lactating rat model has explored the cortical sensory processing of pup stimuli and the effect of suckling on the brain's reward system. Suckling was observed to increase blood-oxygen-level-dependent (BOLD) signal intensity in the midbrain, striatum and prefrontal cortex, which are areas that receive prominent dopaminergic inputs. The BOLD activation of the reward system occurs in parallel with the activation of extensive cortical sensory areas. The observed regions include the olfactory cortex, auditory cortex and gustatory cortex, and could correspond to cortical representations of pup odours, vocalisations and taste that are active during lactation. Activation patterns within reward regions are consistent with past research on maternal motivation and we explore the possibility that exposure to drugs of abuse might be disruptive of maternal neural responses to pups, particularly in the prefrontal cortex. Our ongoing fMRI studies support and extend past research on the maternal rat brain and its functional neurocircuitry.  相似文献   

14.
The representation of reward anticipation and reward prediction errors is the basis for reward-associated learning. The representation of whether or not a reward occurred (reward receipt) is important for decision making. Recent studies suggest that, while reward anticipation and reward prediction errors are encoded in the midbrain and the ventral striatum, reward receipts are encoded in the medial orbitofrontal cortex. In order to substantiate this functional specialization we analyzed data from an fMRI study in which 59 subjects completed two simple monetary reward paradigms. Because reward receipts and reward prediction errors were correlated, a statistical model comparison was applied separating the effects of the two. Reward prediction error fitted BOLD responses significantly better than reward receipt in the midbrain and the ventral striatum. Conversely, reward receipt fitted BOLD responses better in the orbitofrontal cortex. Activation related to reward anticipation was found in the orbitofrontal cortex. The results confirm a functional specialization of behaviorally important aspects of reward processing within the mesolimbic dopaminergic system.  相似文献   

15.
BACKGROUND: The prediction error (PE) hypothesized by the temporal difference model has been shown to correlate with the phasic activity of dopamine neurons during reward learning and the blood-oxygen level dependent (BOLD) response during reward and aversive conditioning tasks. We hypothesized that dopamine would modulate the PE related signal in aversive conditioning and that haloperidol would reduce PE related activity, while an acute dose of amphetamine would increase PE related activity in the ventral striatum. METHODS: Healthy participants took an acute dose of amphetamine, haloperidol, or placebo. We used functional magnetic resonance imaging (fMRI) to measure the BOLD signal while they carried out an aversive conditioning task, using cutaneous electrical stimulation as the unconditioned stimulus (US) and yellow and blue circles as conditioned stimulus (CS+ and CS-, respectively). RESULTS: Prediction error related BOLD activity was seen only in the ventral striatum in the placebo subjects. The subjects given amphetamine showed a wider network of PE related BOLD activity, including the ventral striatum, globus pallidus, putamen, insula, anterior cingulate, and substantia nigra/ventral tegmental area. Haloperidol subjects did not show PE related activity in any of these regions. CONCLUSIONS: Our results provide the first demonstration that the modulation of dopamine transmission affects both the physiological correlates and PE related BOLD activity during aversive learning.  相似文献   

16.
《Social neuroscience》2013,8(5-6):461-482
Social acceptance is of key importance for healthy functioning. We used functional magnetic resonance imaging (fMRI) to examine age-related changes in the neural correlates of social acceptance and rejection processing. Participants from four age groups participated in the study: pre-pubertal children (8–10 years), early adolescents (12–14 years), older adolescents (16–17 years) and young adults (19–25 years). During the experiment, participants were presented with unfamiliar faces of peers and were asked to predict whether they expected to be liked or disliked by the other person, followed by feedback indicating acceptance or rejection. Results showed that activation in the ventral mPFC and striatum to social feedback was context-dependent; there was increased activation when participants had positive expectations about social evaluation, and increased activation following social acceptance feedback. Age-related comparisons revealed a linear increase in activity with age in these brain regions for positive expectations of social evaluation. Similarly, a linear increase with age was found for activation in the striatum, ventral mPFC, OFC, and lateral PFC for rejection feedback. No age-related differences in neural activation were shown for social acceptance feedback. Together, these results provide important insights in the developmental trajectories of brain regions implicated in social and affective behavior.  相似文献   

17.
Individual variation in reward sensitivity may have an important role in early substance use and subsequent development of substance abuse. This may be especially important during adolescence, a transition period marked by approach behavior and a propensity toward risk taking, novelty seeking and alteration of the social landscape. However, little is known about the relative contribution of personality, behavior, and brain responses for prediction of alcohol use in adolescents. In this study, we applied factor analyses and structural equation modeling to reward-related brain responses assessed by functional magnetic resonance imaging during a monetary incentive delay task. In addition, novelty seeking, sensation seeking, impulsivity, extraversion, and behavioral measures of risk taking were entered as predictors of early onset of drinking in a sample of 14-year-old healthy adolescents (N=324). Reward-associated behavior, personality, and brain responses all contributed to alcohol intake with personality explaining a higher proportion of the variance than behavior and brain responses. When only the ventral striatum was used, a small non-significant contribution to the prediction of early alcohol use was found. These data suggest that the role of reward-related brain activation may be more important in addiction than initiation of early drinking, where personality traits and reward-related behaviors were more significant. With up to 26% of explained variance, the interrelation of reward-related personality traits, behavior, and neural response patterns may convey risk for later alcohol abuse in adolescence, and thus may be identified as a vulnerability factor for the development of substance use disorders.  相似文献   

18.
Physical exercise modulates food reward and helps control body weight. The endogenous µ‐opioid receptor (MOR) system is involved in rewarding aspects of both food and physical exercise, yet interaction between endogenous opioid release following exercise and anticipatory food reward remains unresolved. Here we tested whether exercise‐induced opioid release correlates with increased anticipatory reward processing in humans. We scanned 24 healthy lean men after rest and after a 1 h session of aerobic exercise with positron emission tomography (PET) using MOR‐selective radioligand [11C]carfentanil. After both PET scans, the subjects underwent a functional magnetic resonance imaging (fMRI) experiment where they viewed pictures of palatable versus nonpalatable foods to trigger anticipatory food reward responses. Exercise‐induced changes in MOR binding in key regions of reward circuit (amygdala, thalamus, ventral and dorsal striatum, and orbitofrontal and cingulate cortices) were used to predict the changes in anticipatory reward responses in fMRI. Exercise‐induced changes in MOR binding correlated negatively with the exercise‐induced changes in neural anticipatory food reward responses in orbitofrontal and cingulate cortices, insula, ventral striatum, amygdala, and thalamus: higher exercise‐induced opioid release predicted higher brain responses to palatable versus nonpalatable foods. We conclude that MOR activation following exercise may contribute to the considerable interindividual variation in food craving and consumption after exercise, which might promote compensatory eating and compromise weight control.  相似文献   

19.
Adolescence is a time of engagement in risky, reward-driven behaviors, with concurrent developmental changes within reward-related neural systems. As previous research has recruited mostly higher socioeconomic, European and European American participants, therefore limiting generalizability to the US population, especially for populations of color or low-income populations. The current study provided one of the first opportunities to examine the neural correlates of reward and loss functioning in a population-based sample of adolescents at increased risk for poverty-related adversities. The study investigated neural reward and loss processing and whether age, pubertal status and the social constructs of gender and race predicted individual differences in reward- and loss-related brain function. One hundred and twenty-eight primarily low-income adolescents (mean age: 15.9 years, 75% African American) from urban environments completed a modified monetary incentive delay task during functional magnetic resonance imaging (fMRI). Consistent with the previous research, reward and loss anticipation recruited similar motivational circuitry including striatal, insular, thalamic and supplementary motor areas. Race and gender were not associated with reward- or loss-related neural reactivity. Age and pubertal development were associated with differences in neural reactivity to reward and loss, suggesting that older and more mature adolescents had increased activity in sensory and motivational circuits, but decreased activity in regions responsible for error detection and behavior modification.  相似文献   

20.
Prior studies have suggested that positive social interactions are experienced as rewarding. Yet, it is not well understood how social relationships influence neural responses to other persons’ gains. In this study, we investigated neural responses during a gambling task in which healthy participants (N = 31; 18 females) could win or lose money for themselves, their best friend or a disliked other (antagonist). At the moment of receiving outcome, person-related activity was observed in the dorsal medial prefrontal cortex (dmPFC), precuneus and temporal parietal junction (TPJ), showing higher activity for friends and antagonists than for self, and this activity was independent of outcome. The only region showing an interaction between the person-participants played for and outcome was the ventral striatum. Specifically, the striatum was more active following gains than losses for self and friends, whereas for the antagonist this pattern was reversed. Together, these results show that, in a context with social and reward information, social aspects are processed in brain regions associated with social cognition (mPFC, TPJ), and reward aspects are processed in primary reward areas (striatum). Furthermore, there is an interaction of social and reward information in the striatum, such that reward-related activity was dependent on social relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号