首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
MK-801 does not protect against hypoxic-ischemic brain injury in piglets   总被引:3,自引:0,他引:3  
BACKGROUND AND PURPOSE: The excitatory amino acid inhibitor MK-801 has been shown in many animals species to protect against hypoxic-ischemic brain injury. We sought to determine whether hypoxic-ischemic injury to the newborn pig's brain could be prevented by the use of MK-801. METHODS: Hypoxic-ischemic injury to the brain was induced in forty 0-3-day-old piglets. They were randomized to receive either 3 mg/kg MK-801 (MK-801 group, n = 20) or vehicle (control group, n = 19) prior to insult. At time 0, the carotid arteries were ligated and the blood pressure was reduced by one third by hemorrhage. At 15 minutes, inspired oxygen was reduced from 50% to 6%. At 30 minutes, inspired oxygen was changed to 100%, carotid ligatures were released, and the withdrawn blood was reinfused. An additional 14 piglets received 3 mg/kg MK-801 but not hypoxic-ischemic injury (drug-only group), and a final group of 11 piglets were subjected to only a sham operation (sham group). RESULTS: Neurological examination scores at 24, 48, and 72 hours showed that MK-801 and drug-only piglets were significantly worse than the controls. Pathological examination of the brains at 72 hours showed significantly greater damage in the brains of the MK-801 and control pigs relative to the sham and drug-only groups. No differences were found between the control and the MK-801 groups. No differences were found between the sham and drug-only groups. CONCLUSIONS: MK-801, at a dose of 3 mg/kg, causes neurological dysfunction in piglets lasting at least 72 hours, but neither causes brain damage nor ameliorates the effects of hypoxic-ischemic injury to the brain of the newborn pig.  相似文献   

2.
The non-competitive NMDA receptor antagonists, PCP (phencyclidine), MK801, and ketamine produce psychosis in humans and abnormal vacuoles in posterior cingulate and retrosplenial rat cortical neurons. We show that PCP (> or = 5 mg/kg), MK801 (> or = 0.1 mg/kg), and ketamine (> 20 mg/kg) induce hsp70 mRNA and HSP70 heat shock protein in these vacuolated, injured neurons, and PCP also induces hsp70 in injured neocortical, piriform, and amygdala neurons. The PCP, MK801, and ketamine drug induced injury occurs in 30 day and older rats, but not in 0-20 day old rats, and is prevented by prior administration of the antipsychotic drugs haloperidol and rimcazole. Since haloperidol and rimcazole block dopamine and sigma receptors, and since M1 muscarinic cholinergic receptor antagonists also prevent the injury produced by PCP, MK801, and ketamine, future studies will be needed to determine whether dopamine, sigma, M1, or other receptors mediate the injury.  相似文献   

3.
The neuroprotective effects of the NMDA antagonists MK-801 and ketamine were analyzed in a mutant strain of Han-Wistar rats which develop neurodegeneration in the hippocampus and cerebellum. Previous experiments have shown that the progressive neuronal degeneration observed in this mutant may be the result of a dysfunctional glutamatergic system. For MK-801 studies, mutants were injected in a chronic paradigm with (+)MK-801 or its weaker acting isomer (-)MK-801 at a dose of 1 mg/kg. Ketamine studies consisted of both acute (50 mg/kg once) and chronic (10 mg/kg multiple times) injection paradigms. MK-801-treated mutants exhibited longer life spans (8-23%) compared to saline-injected mutants. Ketamine-injected mutants in both paradigms also lived slightly longer (6-9%) than the saline mutants. Motor skill deterioration was monitored in an open-field test, and after 50 days of age the MK-801 and ketamine mutants displayed over 20% greater motor skill activity than the saline mutants. In the cerebellum, mutants treated with ketamine and both forms of MK-801 had 10-20% more Purkinje cells surviving at 55 days than the saline mutants. Further, the density of CA3c pyramidal hippocampal neurons in ketamine and MK-801-treated mutants as compared to saline mutants appeared to be greater upon qualitative analysis. This study shows that these mutants derive some protective effects from the NMDA antagonists MK-801 and ketamine, confirming glutamate-induced excitotoxicity as a possible cause of neuronal degeneration in this mutant strain of rat.  相似文献   

4.

Objective

NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI.

Methods

Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays.

Results

The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited.

Conclusion

MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.  相似文献   

5.
BACKGROUND: The effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist on neurodegeneration in the immature brain following traumatic brain injury (TBI) are still widely unknown. OBJECTIVE: To study the effects of dizocipine maleate (MK-801), a non-competitive NMDA receptor antagonist, on mitochondrial ultramicrostructure of neurons in the ipsilateral cingulate cortex and hippocampus after TBI in neonatal rats, and to analyze the optimal time interval of MK-801 administration (1 mg/kg). DESIGN: Completely randomized controlled study.
SETTING: Shanghai Jiao Tong University.
MATERIALS: Eight 7-day-old neonatal SD rats, irrespective of gender, were provided by Experimental Animal Center, Medical College of Fudan University. The experiment was approved by a local ethics committee. MK-801 was provided by Sigma. A CM-120 transmission electron microscope (Philips, Holland) was used for tissue analysis.
METHODS: This study was performed at the Departments of Anatomy, Neuromorphology, and Biophysics, Medical College of Shanghai, Jiaotong University, between October 2006 and January 2007. Focal models of contusion and laceration of brain were established by the free-falling impact method. Eight rats were randomly divided into a normal control group (n = 2 ) and a MK-801 group (n = 6). Rats in the normal control group did not receive model establishment and administration, and they were only analyzed by an electron microscope. In the MK-801 group, the cingulate cortex was damaged using a contusion device. MK-801 (1 mg/kg) was intraperitoneally injected 30 minutes before lesion, immediately after lesion, and 30 minutes after lesion (n = 2 for each time point).
MAIN OUTCOME MEASURES: The cingulate cortex and hippocampal tissues from the injured side were removed 24 hours after lesion and routinely processed for analysis of neuronal ultramicrostructure using transmission electron microscopy. RESULTS: Differential therapeutic effects of MK-801 (1 mg/kg) at d  相似文献   

6.
Several histological and behavioral experiments were conducted to investigate the neurotoxic effects of MK-801 in male mice. Moderate subcutaneous (s.c.) doses of MK-801 (0.5 and 1.0 mg/kg) induced the formation of intracytoplasmic vacuoles in pyramidal neurons in layers III and IV of the posterior cingulate/retrosplenial (PC/RS) cortex in 50% and 100% of the mice from the two respective treatment groups. Electron microscopic analysis of the vacuoles indicated that mitochondria and endoplasmic reticulum are the cellular organelles most prominently involved in this pathomorphological change. Treating mice with a high systemic dose of MK-801 (10 mg/kg s.c. or intraperitoneal (i.p.)) caused selective, irreversible degeneration of a small number of PC/RS cortical neurons. Compared to saline controls, the acquisition performance of mice treated i.p. with 10 mg/kg MK-801 was chronically impaired on a spatial learning task (modified hole board food search task) when tested at several posttreatment intervals (up to at least 5 months), although the groups did not differ on activity or sensorimotor tests conducted 2 weeks posttreatment. In summary, MK-801 caused histopathological changes in the mouse brain similar to those observed in the rat. Furthermore, high dose MK-801 treatment that killed a small number of mouse PC/RS cortical neurons resulted in a chronic acquisition impairment in spatial learning, an effect not previously demonstrated in any species.  相似文献   

7.
The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 has been shown to induce an acute Fos and Fos-related antigen (Fra) expression in the rat retrosplenial granular cortex (RSG), but the exact composition of the Fos protein family and their individual dynamic alterations are unknown. We examined this issue using immunocytochemistry and Western blot analysis with two antibodies that recognize, respectively, Fos and all the identified members of Fos protein family. Immunocytochemistry detected a rapid and transient expression of Fos proteins in some RSG neurons and a delayed and prolonged expression of Fra proteins in most RSG neurons following a single systemic MK-801 injection (1 mg/kg). Multiple MK-801 injections (i.e., ten consecutive injections once every other day; 1 mg/kg) produced a moderate Fra expression but failed to induce detectable Fos expression. Western blot analysis further showed a transient expression of 72-kDa Fos proteins following a single MK-801 injection and a prolonged expression of 46- and 43-kDa Fra proteins after either a single or multiple MK-801 administration. The delayed onset and prolonged expression of these Fra proteins suggest that they may be DeltaFosB. The possible relevance of these results to clinical psychotomimetic effects of the NMDA receptor antagonists phencyclidine and ketamine is discussed.  相似文献   

8.
Effects of MK-801 and ketamine, N-methyl-D-aspartate (NMDA) receptor blockers, on cocaine-stimulated locomotor activity were investigated in male Swiss-Webster mice. MK-801 (0.25, 0.5, 1.0 and 2.5 mg/kg), ketamine (10, 25 and 50 mg/kg) or saline was injected 20 min before cocaine (5, 10 and 20 mg/kg i.p.). Locomotor activity was measured for 30 min immediately following cocaine treatment. All doses of the drugs were also tested for ability to depress or stimulate locomotor activity in the naive (no cocaine-treated) mice. Cocaine produced a dose-dependent increase in locomotor activity that was blocked dose-dependently by MK-801 or ketamine. The blockade by MK-801 was more prominent than by ketamine. Our results may suggest that cocaine-induced locomotor stimulation in mice is modulated via NMDA receptor mediated mechanisms.  相似文献   

9.
Systemic approaches to modifying quinolinic acid striatal lesions in rats   总被引:2,自引:0,他引:2  
Quinolinic acid (QA) is an endogenous excitotoxin present in mammalian brain that reproduces many of the histologic and neurochemical features of Huntington's disease (HD). In the present study we have examined the ability of a variety of systemically administered compounds to modify striatal QA neurotoxicity. Lesions were assessed by measurements of the intrinsic striatal neurotransmitters substance P, somatostatin, neuropeptide Y, and GABA. Histologic examination was performed with Nissl stains. The antioxidants ascorbic acid, beta-carotene, and alpha-tocopherol administered s.c. for 3 d prior to striatal QA lesions had no significant effect. Other drugs were administered i.p. 1/2 hr prior to QA striatal lesions. The following were ineffective in blocking QA excitotoxicity: allopurinol, 50 and 100 mg/kg; ketamine, 75 mg/kg; nimodipine, 2.4, and 10 mg/kg; baclofen, 10 mg/kg; 2-amino-5-phosphonovalerate, 50 mg/kg; and 2-amino-7-phosphonoheptanoate, 50 mg/kg. Oral taurine administration for 4 weeks resulted in significantly increased levels of brain taurine but had no significant effect in blocking QA neurotoxicity. Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK-801 resulted in a dose-responsive protection against QA toxicity, with complete block at a dose of 4 mg/kg. If the pathogenesis of HD involves QA or another excitotoxin acting at the NMDA receptor, it is possible that MK-801 could retard the degenerative process.  相似文献   

10.
N-Methyl-D-aspartate (NMDA) receptor antagonists inhibit both the kindling process and the expression of seizures in previously kindled adult rats. Experimental seizures are more readily produced in infant than adult rats, possibly related to a developmental predominance of NMDA receptor-mediated effects. If so, reduction of seizure susceptibility by NMDA receptor antagonists should be more dramatic in infant rats than in adults. We studied the effect of ketamine and MK-801 on kindling epileptogenesis and seizure expression in 15-day-old rats. Ketamine (5, 10, and 20 mg/kg) and MK-801 (0.033 and 0.1 mg/kg) both significantly increased the latency to stage 3 or 4 seizures in dose-dependent fashion. These results were similar to those found in adults but occurred at slightly lower doses. Ketamine 20 mg/kg and MK-801 0.33 mg/kg totally eliminated clinical seizure activity and nearly abolished afterdischarge in previously kindled infant rats, effects exceeding those reported in adults using doses up to 6 times as great. These results support the hypotheses that NMDA receptor-mediated neurotransmission plays an important role in seizure production and the increased seizure susceptibility in immature brain and raise the possibility that NMDA receptor antagonists could be useful antiepilepsy agents in young children.  相似文献   

11.
PURPOSE: Zinc chelation with diethyldithiocarbamate (DEDTC) during nondamaging kainic acid administration enhances excitotoxicity to the level of cell damage. The objective of this work was to study the developing of the lesion in this model of temporal lobe epilepsy and the implications of the different types of glutamate receptors. METHODS: The antagonist of the N-methyl-D-aspartate (NMDA) receptor MK-801, and the antagonist of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor GYKI52466, were used concomitantly with intraperitoneal administration of kainic acid (15 mg/kg) followed by DEDTC (150 mg/kg) in mouse. The animals were killed at different times from 4 h to 7 days. Fos proteins were used as markers of cell overexcitation; heat-shock protein 72 (HSP72) as marker of cell stress. RESULTS: Neither kainic acid nor DEDTC alone, at the doses used, led to cell loss, HSP72 expression, or permanent Fos protein induction. When combined, the hilus and cornu ammonis were damaged; principal cells in these areas coexpressed c-Fos and HSP72, with the exception of CA2; interneurons did not express HSP72 in any area. MK-801 completely abolished damage and HSP72 expression from the hippocampus. GYKI52466 blocked CA1 damage and HSP72 expression in the CA1 but not in the CA3. CONCLUSIONS: Synaptic zinc increases the tolerance of hippocampus to overexcitation. All the areas that are fated to die are determined simultaneously; the damage in the CA1 is not an extension of the damage in the CA3. Damage of the CA3 is dependent on kainate and NMDA receptors, whereas the damage of the CA1 depends on AMPA and NMDA receptors.  相似文献   

12.
We have investigated the potential role of neurotrophic factors in antipsychotic drug action by examining the effects of antipsychotic and psychotropic treatments on the mRNA expression of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and their receptors, trkB and trkC, respectively, in rat brain. Neither acute nor chronic clozapine treatment significantly affected the expression of these mRNAs in any brain area investigated, except for a decrease in trkB expression in the granule cells of the olfactory bulb. We then examined the effects of the psychotropic agent MK-801. MK-801 (5 mg/kg; 4h) significantly increased BDNF mRNA in the entorhinal cortex, but did not influence NT-3, trkB, or trkC expression in any brain area except for the olfactory bulb. The induction of BDNF mRNA by MK-801 was attenuated by pre-treatment (1 h prior to MK-801 administration) with the antipsychotics, clozapine (25 mg/kg) and haloperidol (2 mg/kg), but not with the antidepressant desipramine (15 mg/kg). Finally, we confirmed that the effects of MK-801 on BDNF mRNA were reflected in the respective changes in BDNF protein levels: MK-801 significantly increased anti-BDNF reactivity in the entorhinal cortex (126 ± 7% of control) while concomitantly decreasing in the hippocampus (71 ± 2% of control). These data do not support the hypothesis that neurotrophins play an important role in antipsychotic drug action, but rather suggest that induction of BDNF in the entorhinal cortex may play a significant role in the psychotropic action of MK-801.  相似文献   

13.
The aim was to study the effects of an NMDA receptor antagonist on caspase-3 activation and DNA fragmentation after hypoxia-ischemia (HI) in 7-day-old rats. Animals were treated with vehicle or MK-801 (0.5 mg/kg) directly after HI and sacrificed 8, 24 or 72h later. MK-801 reduced injury (by 53%), cells positive for active caspase-3 (by 39%) and DNA fragmentation (by 79%) in the cerebral cortex. Furthermore, MK-801 significantly decreased caspase-3 activity, and Western blots revealed a tendency towards decreased proteolytic cleavage of the caspase-3 proform. The data imply that NMDA receptors are involved in the activation of apoptotic processes in the immature brain after HI.  相似文献   

14.
High-affinity N-methyl-d-aspartate (NMDA) receptor antagonists like MK-801 are known to induce the heat shock. protein, HSP70, in the posterior cingulate cortex and retrosplenial cortex of rat brain. Memantine, which is a low affinity uncompetitive NMDA receptor antagonist, has been used in the treatment of Parkinson's disease in Europe. The faster kinetics of memantine in blocking and unblocking the NMDA receptor-operated ion channel as opposed to high-affinity NMDA antagonists like MK-801 has been thought to account for the safety of memantine. The present study evaluated the neurotoxic potential of memantine and amantadine using the induction of HSP70 immunoreactivity in rat brain. Memantine (25, 50, 75 mg/kg) induced HSP70 in the posterior cingulate, retrosplenial cortex and dentate gyrus of rat brain. In contrast, amantadine (50, 100, 200 mg/kg) did not induce HSP70 in the rat brain. These results suggest that memantine has an antagonistic effect at NMDA receptor in vivo, and raises the possibility that high doses of memantine may cause neuronal damage similar to those observed with other high-affinity NMDA receptor antagonists.  相似文献   

15.
The non-competitiveN-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) has been shown to block methamphetamine (MA) induced damage to the dopamine (DA) and serotonin (5HT) systems of the brain.dl-Fenfluramine (FEN) is another potential neurotoxin but its long-term depletions are more selective to the 5HT system. To determine whether MK-801 protects against damage induced by FEN, we treated rats with FEN (4 injections of 12.5 mg/kg, at 1 h intervals) in conjunction with either saline or MK-801 (2 injections of 2.5 mg/kg, administered 15 min before and 90 min after the first FEN injection). Two weeks post-treatment, MK-801 alone caused a small but significant decrease in 5HT tissue concentrations in striatum and amygdala. FEN significantly reduced 5HT in all 8 brain regions studied. MK-801 + FEN did not protect against FEN-induced 5HT depletions in nucleus accumbens/olfactory tubercle, septum, frontal cortex, somatosensory cortex or hippocampus. MK-801 + FEN enhanced 5HT depletions in striatum, hypothalamus and amygdala. The differential protective effect of MK-801 between MA and FEN are discussed in terms of a possible dopaminergic mechanism.  相似文献   

16.
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.  相似文献   

17.
The combination of central fluid percussion traumatic brain injury (TBI) followed 24 h later by a bilateral entorhinal cortical deafferentation (BEC) produces profound cognitive morbidity. We recently showed that MK-801 given prior to TBI in this insult improved spatial memory for up to 15 days. In the present study we examine whether MK-801 treatment of the BEC component in the combined insult model affects cognitive recovery. Two strategies for drug treatment were tested. Fifteen minutes prior to the BEC lesion in the combined insult, rats were given i.p. doses of either 3 mg/kg (acute group) or 1 mg/kg (chronic group) MK-801. The acute group received no further injections, whereas the chronic group received 1 mg/kg MK-801 i.p. twice a day for 2 days post-BEC lesion. Two additional groups of animals received BEC lesion alone and either acute or chronic MK-801 treatment identical with the combined insult cases. Each group was then assessed for spatial memory deficits with the Morris water maze at days 11–15 and 60–64 postinjury. Both acute and chronic MK-801 treatment in the combined insult group significantly reduced spatial memory deficits at 15 days postinjury relative to untreated injured cases (P < .01). This reduction appeared more robust at 15 days and persisted for up to 64 days in the chronically treated group (P < .05). By contrast, neither acute nor chronic MK-801 treatment affected memory performance with the BEC insult alone. Immunocytochemical localization of parvalbumin showed that chronic administration of MK-801 in the combined insult cases attenuated the injury-induced dendritic atrophy of inhibitory neurons in the dentate gyrus and area CA1. Synaptophysin immunobinding revealed that chronic MK-801 treatment of the BEC component of the combined insult normalized the distribution of presynaptic terminals within the dentate gyrus. These results suggest that cognitive deficits produced by head trauma involving both neuroexcitation and deafferentation can be attenuated with chronic application of glutamatergic antagonists during the period of deafferentation injury and that this attenuation is correlated with axo-dendritic integrity. Hippocampus 1998;8:390–401. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The ability of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 to prevent neuronal degeneration in the rat striatum and hippocampus caused by intracerebral injection of excitotoxins has been examined. Excitotoxic damage was assessed after 7 d, using histological and biochemical [choline acetyltransferase (ChAT) glutamate decarboxylase (GAD)] measurements. Systemically administered MK-801 was found to protect against neurodegeneration caused by NMDA (200 nmol) and the naturally occurring NMDA receptor agonist quinolinate (120-600 nmol) but not against that induced by kainate (5 nmol) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA; 50 nmol), indicating a selectivity for NMDA receptor-mediated neuronal loss. Neurotoxicity caused by NMDA (200 nmol) or quinolinate (200 nmol) was prevented by MK-801 (1-10 mg/kg, i.p.) administered in a single dose after excitotoxin injection. In the striatum, significant protection of cholinergic neurons (assessed by ChAT measurements) was observed when MK-801 was given up to 5 hr after injection of NMDA or quinolinate, whereas protection of GABAergic neurons (assessed by GAD measurements) was obtained up to 2 hr. The results suggest that GABAergic neurons degenerate more rapidly than cholinergic neurons. The competitive NMDA receptor antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonate (100 mg/kg, i.p.) gave partial protection of striatal neurons when administered 1 hr after quinolinate injection. In the rat hippocampus, administration of 10 mg/kg MK-801 i.p. 1 hr after quinolinate injection caused almost complete protection of pyramidal and granule neurons, whereas the degeneration of CA3/CA4 pyramidal neurons caused by kainate injection was unaffected. These observations indicate that neurons in rat striatum and hippocampus do not die as an immediate consequence of exposure to high concentrations of NMDA agonists but that a delayed process is involved that requires NMDA receptor activation. In this respect, intracerebral injections of NMDA agonists may mimic the pathological changes that are thought to occur in the brain following periods of cerebral ischemia, where delayed neuronal degeneration occurs.  相似文献   

19.
Excessive Ca2+ influx through NMDA receptor-coupled channels has been linked to neuronal cell death. Using an in vitro model of transient brain ischemia, we investigated possible protective effects of NMDA receptor antagonists ketamine or MK-801 and of calmidazolium, an inhibitor of intracellular Ca2(+)-activated proteins. Brain ischemia/recovery was simulated in isolated hippocampal slices and injury monitored by measurement of ATP levels. Omission of both glucose and oxygen (but not oxygen alone) for 20 min led to persistent ATP deficits after 4 h recovery. Addition of ketamine or MK-801 at 1 microM permitted ATP to recover within 1 h, as did addition of calmidazolium at 10 microM. Our findings are consistent with other reports that NMDA receptor antagonists can protect neuronal tissue from ischemic damage. The role of inappropriately activated Ca2(+)-mediated signaling processes in the mechanism(s) of such injury is suggested by the protection also seen with calmidazolium, an inhibitor of calmodulin and other structurally related proteins such as calpain(s) and protein kinase C. The inhibition of intracellular Ca2+ target proteins may be an alternative for protection of the brain against injury due to insults that activate NMDA receptors.  相似文献   

20.
Although treatment with N-methyl-D-aspartate (NMDA) receptor antagonists reduce neuronal loss after cerebral infarction and brain trauma in laboratory animals, there is little data concerning the effects of these drugs on behavioral recovery. Because NMDA receptor antagonists impede certain kinds of learning, and because motor recovery after sensorimotor cortex injury in the rat is dependent on post-lesion experience, we hypothesized that treatment with MK-801 after focal brain injury would be detrimental. Groups of rats were first trained to traverse a narrow elevated beam and then subjected a right sensorimotor cortex suction-ablation lesion. In the first experiment, 24 h later, each rat received a single dose of either saline or the NMDA receptor antagonist MK-801 (0.5, 1.0, or 2.0 mg/kg). Beam-walking recovery was measured over the next 12 days. In a second experiment, rats were given 3 doses of MK-801 (0.5 mg/kg) at 24 h intervals beginning 24 h after cortex injury. In a third experiment, lesioned and sham-operated rats were allowed to recover for 12 days and then given MK-801 (0.5 mg/kg). Despite obvious behavioral effects of the drug, there was no overall difference in beam-walking performances among the treatment groups in any of the experiments. If 're-learning' is involved in motor recovery after cortex injury, the present results suggest that the process is not susceptible to permanent disruption by the early or late administration of an NMDA receptor antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号