首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immunocytochemistry was combined with a recent modification of Timm's method to evaluate semiquantitatively the mossy fiber innervation of dendrites and somata of parvalbumin-containing neurons of the hilus of the dentate gyrus and the CA3 area of Ammon's horn. Using this electron microscopic double staining technique, it was found that (1) the overwhelming majority (95%) of terminals forming asymmetric synapses with parvalbumin-positive dendrites in the dentate hilus, and the strata pyramidale and lucidum of the CA3 area of Ammon's horn, originated from granule cells; (2) two-thirds of the asymmetric axosomatic terminals of parvalbumin-positive neurons contained zinc; and (3) no zinc-containing axon terminals formed synapses with somata or main dendritic shafts of the granule cells.  相似文献   

2.
Neurons and axon terminals containing neuron-specific nitric oxide synthase (nNOS) were examined in the rat subiculum and CA1 area of Ammon's horn. In the subiculum, a large subpopulation of the pyramidal neurons and non-pyramidal cells are immunoreactive for nNOS, whereas in the neighbouring CA1 area of Ammon's horn only non-pyramidal neurons are labelled with the antibody against nNOS. In the pyramidal layer of the subiculum, nNOS-positive axon terminals form both asymmetric and symmetric synapses. In the adjacent CA1 area the nNOS-positive terminals that form symmetric synapses are found in all layers, whereas those terminals that form asymmetric synapses are only in strata radiatum and oriens, but not in stratum lacunosum-moleculare. In both the subiculum and CA1 area, labelled terminals make symmetric synapses only on dendritic shafts, whereas asymmetric synapses are exclusively on dendritic spines. Previous observations demonstrated that all nNOS-positive non-pyramidal cells are GABAergic local circuit neurons, which form exclusively symmetric synapses. We suggest that nNOS-immunoreactive pyramidal cells of the subiculum may innervate neighbouring subicular pyramidal cells and, to a smaller extent, pyramidal cells of the adjacent CA1 area, forming a backward projection between the subicular and hippocampal principal neurons. Electronic Publication  相似文献   

3.
Summary Recent studies have indicated that hippocampal basket cells in both the dentate gyrus and Ammon's horn develop their somal and dendritic features during the first two postnatal weeks in rats. Their axon terminals form exclusively symmetric synapses that are found as early as 5 postnatal days in both regions. The present study used Golgi-electron microscopic material from 10 and 16 day old rats to demonstrate that the axon terminals of basket cells form synapses not only with somata, dendrites, and dendritic spines as reported for adult material but also with axon initial segments. However, the terminals forming synapses with axon initial segments and dendritic spines represent only a minor portion of the total number of basket cell terminals. Quantitative results indicate that 36–62% of the total number of these terminals form axosomatic synapses and 32–50% form axodendritic synapses depending on the analyzed cell. These data indicate that hippocampal basket cells have an axonal distribution similar to that found for cortical basket cells.  相似文献   

4.
Summary Non-pyramidal neurons of the CA 1 area of the rat hippocampus were identified with a combined Golgi-electron microscopic method. They were observed to have distinctive light and electron microscopic characteristics that are different from those of pyramidal cells. These features included smooth dendrites, locally arborizing axons, infolded cell nuclei with intranuclear rods or sheets, and a well-developed perikaryal cytoplasm with many organelles. In addition, the axon terminals that contact the somata and dendrites of local circuit neurons may form asymmetric as well as symmetric synapses. The axons of these cells form symmetric synapses with dendrites and somata of pyramidal cells. Some of these features were utilized to identify non-pyramidal neurons of the CA 1 area for studies of connectivity. Degenerating commissural terminals were found to form synapses with the dendrites and somata of non-pyramidal neurons. These results indicate that these neurons are a significant population of hippocampal neurons that may provide feed-forward inhibition of pyramidal neurons.  相似文献   

5.
Immunocytochemical results indicate that GAD-positive neurons are found in the molecular and granule cell layers of the dentate gyrus as well as in the hilar region. GAD-positive cells in the molecular and granule cell layers are identified as various types of local circuit neurons. Most of the GAD-positive puncta found throughout the molecular layer and within the granule cell layer are interpreted as axon terminals of these neurons, including five types of basket cells. This interpretation is based on data that indicate the axons of basket cells form synapses with the somata and proximal dendrites of granule cells. The results in the hilus show that 60% of the hilar neurons are GAD-positive. Since previous studies have indicated that 80% of hilar neurons give rise to both associational and commissural pathways, many GABAergic neurons in the hilus are probably projection neurons. This finding is consistent with recent physiological data which suggest that commissural pathway stimulation directly inhibits granule cells. Therefore, GABAergic cells in the dentate gyrus appear to be both projection and local circuit neurons.  相似文献   

6.
H K Proudfit  M Monsen 《Neuroscience》1999,91(4):1499-1513
Potent antinociception can be produced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group and this effect is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. Microinjection of substance P near A7 neurons also produces antinociception that is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. These observations suggest that substance P produces antinociception by activating noradrenergic A7 neurons. However, it is not known whether this effect of substance P is produced by a direct or an indirect action on A7 neurons. Although light microscopic studies have demonstrated the existence of both substance P-containing axon terminals and neurokinin-1 receptors in the region of the A7 cell group, it is not known whether substance P terminals form synapses with noradrenergic A7 neurons. These experiments used double-labeling immunocytochemical methods and electron microscopic analysis to determine whether substance P-containing axons form synapses with noradrenergic neurons in the A7 cell group. Pre-embedding immunocytochemistry, combined with light and electron microscopic analysis, was used to provide ultrastructural evidence for synaptic connections between substance P-immunoreactive terminals labeled with immunoperoxidase and tyrosine hydroxylase-immunoreactive A7 neurons labeled with silver-enhanced immunogold. Tyrosine hydroxylase labeling was found in perikarya and dendrites in the A7 region, and substance P labeling was found in axons and synaptic terminals. Substance P-labeled terminals formed asymmetric synapses with tyrosine hydroxylase-labeled dendrites, but only a few of these were present on tyrosine hydroxylase-labeled somata. Substance P-labeled terminals also formed asymmetric synapses with unlabeled dendrites, and many unlabeled terminals formed both symmetric and asymmetric synapses with tyrosine hydroxylase-labeled dendrites. These results demonstrate that substance P neurons form a significant number of synapses with the dendrites of noradrenergic A7 neurons and support the conclusion that microinjection of substance P in the A7 cell group produces antinociception by direct activation of spinally projecting noradrenergic neurons.  相似文献   

7.
In the present study cell formation was studied in the human hippocampal formation from the 24th gestational week until the end of the first postnatal year. Proliferating cells were detected with the monoclonal antibody MIB-1.The cytoarchitectonic layers of Ammon's horn are formed before the 24th gestational week. In harmony with this observation, cell proliferation in the hippocampal ventricular zone is minimal after the 24th week. In addition, local cell multiplication in Ammon's horn is occasional and the proliferating cells are glial or endothelial cells. In contrast, cell formation continues in the hilar region of the dentate gyrus even after birth. Immature cells accumulate in the hilus, and at the border between the hilus and the granule cell layer throughout the first eight postnatal months. The subgranular zone of the dentate gyrus becomes a cell sparse area at about the 11th postnatal month, indicating that immature cells from the hilus have already migrated to the granule cell layer and differentiated into granule cells. There is an increase in glial cell proliferation both in Ammon's horn and the dentate gyrus at the 11.5th postnatal month suggesting the onset of myelination by the end of the first year.Our findings indicate that most pyramidal neurons of Ammon's horn are generated in the first half of pregnancy and no pyramidal neurons are formed after the 24th gestational week. In contrast, granule cells of the dentate gyrus proliferate in a decreasing rate during the second half of pregnancy and after birth. Proliferating neuronal precursors occur in a low percentage in the dentate gyrus of 3-, 5- and 11.5-month-old children.  相似文献   

8.
Summary Light and electron microscopic preparations were used to analyze the postnatal development of the basket cells of the rat dentate gyrus. The basket cells, located at the hilar border, were recognized in 2-day-old rats in Golgi preparations, where they displayed immature dendrites and a small axon arbor in the granule cell layer. At 5 days, the basket cells were found to have a large perikaryal cytoplasm, a round nucleus, an axon that forms symmetric synapses with granule cells, and dendrites and somata that are contacted by other axon terminals. The 10-day basket cells display more mature features, such as Nissl bodies and well-developed Golgi complexes. The basket cells from 16-day-old rats are mature in terms of their ultrastructural features, in that the nuclei are highly indented and display intranuclear rods or sheets, the perikaryal cytoplasm is packed with organelles, and the axon has developed an extensive arborization with the somata and dendrites of granule cells at the border with the molecular layer. This arborization will continue to expand as more granule cells are generated and added to the hilar border. These data correlate well with the immunocytochemical and biochemical development of GABAergic neurons in the dentate gyrus. Furthermore, the maturation of the structure of basket cells appears to precede the appearance of adult-like electrical activity in the hippocampus.  相似文献   

9.
Inhibitory zinc-enriched terminals in mouse spinal cord   总被引:3,自引:0,他引:3  
The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution of zinc selenium autometallographic silver grains, and zinc transporter-3 and glutamate decarboxylase immunohistochemical puncta in both ventral and dorsal horns as seen in the light microscope corresponded to their presence in the synaptic vesicles of zinc-enriched terminals at ultrastructural levels. The densest populations of zinc-enriched terminals were seen in dorsal horn laminae I, III and IV, whereas the deeper laminae V and VI contained fewer terminals. At ultrastructural levels, zinc-enriched terminals primarily formed symmetrical synapses on perikarya and dendrites. Only relatively few asymmetrical synapses were observed on zinc-enriched terminals. In general, the biggest zinc-enriched terminals contacted neuronal somata and large dendritic elements, while medium-sized and small terminals made contacts on small dendrites. The ventral horn was primarily populated by big and medium-sized zinc-enriched terminals, whereas the dorsal horn was dominated by medium-sized and small zinc-enriched terminals.The presence of boutons with flat synaptic vesicles with zinc ions and symmetric synaptic contacts suggests the presence of inhibitory zinc-enriched terminals in the mammalian spinal cord, and this was confirmed by the finding that zinc ions and glutamate decarboxylase are co-localized in these terminals. The pattern of zinc-enriched boutons in both dorsal and ventral horns is compatible with evidence suggesting that zinc may be involved in both sensory transmission and motor control.  相似文献   

10.
Tenascin-C (TN-C) is an astroglia-derived extracellular matrix protein that has been shown to be an early marker for astroglial precursors in the embryonic mouse brain. This study examined astroglial generation, migration, and differentiation in the developing mouse hippocampus by in situ hybridization histochemistry for TN-C mRNA. Special reference was given to the difference in the mode of astroglial development between the two cortical structures of the hippocampus: the dentate gyrus and Ammon's horn. TN-C-positive cells were found in the ventricular germinative zone of the hippocampus as early as the 15th gestational day, and the labeled cells in the zone apposed to the fimbria migrated tangentially through the subpial area towards the forming dentate gyrus. The TN-C-positive cells aligned in the dentate gyrus exhibited the characteristic morphology of unipolar astrocytes as revealed by double labeling with glial fibrillary acidic protein (GFAP)-immunohistochemistry. On the other hand, the TN-C-positive cells ranging over a wide area of the ventricular germinative zone facing the forming Ammon's horn migrated radially towards the cortex, with most of them aligned in the Ammon's horn exhibiting a GFAP-positive stellate morphology. The onset of migration towards the dentate gyrus was two days earlier than that towards the Ammon's horn. TN-C-positive cells in both cortical structures exhibited a DNA-replicating activity after settlement in the early postnatal stage and were considered to further generate astrocytes. On the other hand, TN-C-positive cells with DNA-replicating activity were also found in the subpial migratory stream moving towards the dentate gyrus and were considered to form the subpial matrix for the generation of the dentate astrocytes. Migratory TN-C-positive cells directed towards both the dentate gyrus and Ammon's horn were apposed to radial glial processes and were believed to be guided by contact with these processes in a manner similar to migratory immature neurons. These findings indicate that TN-C-positive cells for the dentate gyrus and those for the Ammon's horn have different migratory patterns and undergo different morphological differentiations depending on their site of origin at the early stage of astrogliogenesis and corresponding to the different modes of neurogenesis in the two cortical structures.  相似文献   

11.
Stimulation of neurons in the ventrolateral periaqueductal gray produces antinociception that is mediated in part by pontine noradrenergic neurons. Previous light microscopic analysis provided suggestive evidence for a direct projection from neurons in the ventrolateral periaqueductal gray to noradrenergic neurons in the A7 cell group that innervate the spinal cord dorsal horn. Therefore, the present ultrastructural study used anterograde tracing combined with tyrosine hydroxylase immunoreactivity to provide definitive evidence that neurons in the ventrolateral periaqueductal gray form synapses with the somata and dendrites of noradrenergic neurons of the A7 cell group. Injections of the anterograde tracers biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin into the ventrolateral periaqueductal gray of Sasco Sprague-Dawley rats yielded a dense innervation in the region of the lateral pons containing the A7 cell group. Electron microscopic analysis of anterogradely labeled terminals (n=401) in the region of the A7 cell group indicated that approximately 10% of these formed plasmalemmal appositions to tyrosine hydroxylase-immunoreactive dendrites with no intervening astrocytic processes. About 23% of these were asymmetric synapses, 10% were symmetric synapses, and 67% did not exhibit clearly differentiated synaptic specializations. The majority of anterogradely labeled terminals (60%) formed plasmalemmal appositions with dendrites and somata that lacked detectable tyrosine hydroxylase immunoreactivity. About 35% of these were symmetric synapses, 9% were asymmetric synapses and 56% did not form synaptic specializations. Approximately 30% of all anterogradely labeled terminals displayed features characteristic of axo-axonic synapses.The present results provide direct ultrastructural evidence to support the hypothesis that the analgesia produced by stimulation of neurons in the ventrolateral periaqueductal gray is mediated, in part, by activation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group.  相似文献   

12.
Summary The ultrastructure of the centromedian nucleus of the monkey thalamus was analysed qualitatively and quantitatively and projection neurons, local circuit neurons, and synaptic bouton populations identified. Projection neurons were mostly medium-sized, with oval-fusiform or polygonal perikarya, few primary dendrites, and frequent somatic spines; local circuit neurons were smaller. Four basic types of synaptic boutons were distinguished: (1) Small- to medium-sized boutons containing round vesicles (SR) and forming asymmetric contacts, identified as corticothalamic terminals. (2) Heterogeneous medium-sized boutons with asymmetric contacts and round vesicles, similar to the so-called large round (LR) boutons, which were in part of cortical origin. (3) Heterogeneous GAD-positive small- to medium-sized boutons, containing pleomorphic vesicles and forming symmetric contacts (F1 type), which included pallidothalamic terminals. (4) Presynaptic profiles represented by GAD-positive vesicle-containing dendrites of local circuit neurons. Complex synaptic arrangements, serial synapses and triads with LR and SR boutons engaging all parts of projection neuron dendrites and somata, were seen consistently, whereas classical glomeruli were infrequent. LR and SR boutons also established synapses on dendrites of local circuit neurons. F1 boutons established synapses on projection neuron somata, dendrites and initial axon segments. Compared to other previously studied motor-related thalamic nuclei, differences in synaptic coverage between proximal and distal projection neuron dendrites were less pronounced, and the density of synapses formed by local circuit dendrites on projection neuron dendrites was lower. Thus, compared to other thalamic nuclei, the overlap of different inputs was higher on monkey centromedian cells, and centromedian inhibitory circuits displayed a different organization.  相似文献   

13.
Jinno S  Kosaka T 《Neuroscience》2004,124(4):797-808
In some brain regions, previous studies reported the frequent coexistence between neuronal nitric oxide synthase (nNOS) and somatostatin (SOM). In the hippocampus, nNOS and SOM were mainly expressed in GABAergic nonprincipal neurons. Here we estimated the immunocytochemical colocalization of nNOS and SOM in the mouse hippocampus using the optical disector. Both in the Ammon's horn and dentate gyrus, we encountered only a few nNOS-immunoreactive (IR)/SOM-like immunoreactive (LIR) neurons. They were mainly located in the stratum oriens of the Ammon's horn and in the dentate hilus. The nNOS-IR/SOM-LIR neurons usually showed characteristic large somata with thick dendrites, whereas the majority of nNOS-IR/SOM-negative neurons showed small somata with thin dendrites. Quantitative data revealed that the double-labeled cells represented only 4% and 7% of nNOS-IR neurons and SOM-LIR neurons, respectively, in the whole area of the hippocampus. We also found the laminar and dorsoventral differences in the degree of colocalization between nNOS and SOM. The percentages of nNOS-IR neurons containing SOM-like immunoreactivity were relatively high in the stratum oriens of the ventral CA1 region (24%), stratum lucidum of the dorsal CA3 region (29%) and dorsal dentate hilus (32%), but they were quite low in the other layers. On the other hand, the percentages of SOM-LIR neurons containing nNOS immunoreactivity were somewhat high in the stratum lucidum of the dorsal CA3 region (19%) and dorsal dentate hilus (28%), whereas they were very low in the other layers. Immunofluorescent triple labeling of axon terminals for nNOS, SOM and glutamic acid decarboxylase indicated that some nNOS-IR/SOM-LIR neurons might be dendritic inhibitory cells. The present results show the infrequent colocalization of nNOS and SOM in the mouse hippocampus, and also suggest that the double-labeled cells may be a particular subpopulation of hippocampal GABAergic nonprincipal neurons.  相似文献   

14.
Quantitative analyses of electron micrographs have shown a decrease in the number of synapses in the dentate gyrus of the senescent Fischer-344 rat. The loss of synapses, involving both dendritic spines and shafts and axon terminals of more than one population of presynaptic neurons, did not depend upon the antecedent loss of postsynaptic neurons or their dendrites. These findings suggest that the age-related loss of synapses in the dentate gyrus may depend upon an inability of presynaptic elements to maintain the structural integrity of synapses in senescence. It is proposed that a change in the glycoprotein component of presynaptic plasma membranes resulting from a deficiency in axonal transport mechanisms in the septo-hippocampal pathway may underly this presynaptic malfunction. The resulting partial deafferentation of neurons in the dentate gyrus in senescence appears to be associated with a secondary atrophy of dendrites, which results in a loss of postsynaptic membranes before a loss of postsynaptic neurons can be documented.  相似文献   

15.
This study analyzed the response of intrinsic substance P-immunoreactive fibers in the monkey dentate gyrus to disruption of the supramammillohippocampal projection. This projection normally forms a thin plexus of large, substance P-immunoreactive terminals in the innermost portion of the dentate molecular layer and establishes exclusively asymmetric synapses with dendritic shafts and spines of dentate neurons. Conversely, substance P-containing terminals have never been observed in synaptic contact with granule cell bodies. Ten days after ipsilateral fimbria-fornix transection, the prominent band of large immunostained axons in the inner molecular layer of the ipsilateral fascia dentata disappeared. Four and five weeks following transection, however, some small, substance P-containing terminals were observed in the innermost portion of the dentate molecular layer and the granule cell layer. These terminals established exclusively symmetric synapses with the somata and proximal dendritic shafts of granule cells. These results suggest that, following transection of the hypothalamo-hippocampal fiber tract, presumptive intrinsic substance P-containing axons are capable of sprouting into the granule cell layer and the former termination field of the hypothalamic fibers. The symmetric synapses established with granule cell bodies and their proximal dendrites might indicate a shift from an extrinsic excitation to an intrinsic inhibition of granule cells following disruption of substance P-containing hypothalamic afferents.  相似文献   

16.
This study analyzed the response of intrinsic substance P-immunoreactive fibers in the monkey dentate gyrus to disruption of the supramammillo-hippocampal projection. This projection normally forms a thin plexus of large, substance P-immunoreac tive terminals in the innermost portion of the dentate molecular layer and establishes exclusively asymmetric synapses with dendritic shafts and spines of dentate neurons. Conversely, substance P-containing terminals have never been observed in synaptic contact with granule cell bodies. Ten days after ipsilateral fimbria-fornix transection, the prominent band of large immunostained axons in the inner molecular layer of the ipsilateral fascia dentata disappeared. Four and five weeks following transection, however, some small, substance P-containing terminals were observed in the innermost portion of the dentate molecular layer and the granule cell layer. These terminals established exclusively symmetric synapses with the somata and proximal dendritic shafts of granule cells. These results suggest that, following transection of the hypothalamo-hippocampal fiber tract, presumptive intrinsic substance P-containing axons are capable of sprouting into the granule cell layer and the former termination field of the hypothalamic fibers. The symmetric synapses established with granule cell bodies and their proximal dendrites might indicate a shift from an extrinsic excitation to an intrinsic inhibition of granule cells following disruption of substance P-containing hypothalamic afferents.  相似文献   

17.
A combined Golgi-electron microscope method was used to study the ultrastructural maturation of synapses on identified pyramidal and multipolar non-pyramidal neurons in the visual cortex of young and adult rabbits. In samples of 10 (time of eye opening), 14, 20 day old and 7 month old animals, fully impregnated pyramidal neurons within the layers II-V and multipolar non-pyramidal neurons mainly located in lower layer III and layer IV was studied. We found that synapses in 10 and 14 day old animals were occasionally immature in appearance. They were characterized by either a poorly defined postsynaptic band or equal rims of pre- and postsynaptic electron-dense material and could therefore not be classified as Gray type I or II. The distinction between both types of synapses was easier at day 20 and in the adults when the postsynaptic band of the asymmetrical (type I) synapses had become remarkably thicker. In pyramidal neurons the cytoplasmic organelles increased in number during development. Although a few symmetrical synapses were present on dendritic spines of pyramidal neurons in 14 and 20 day old animals, all pyramidal neurons exhibited the same types of synapses on specific sites of their neuronal surface. They received exclusively type II synapses on their somata, type I synapses on their dendritic spines and both types of synapses on their dendritic shafts. However, in the adult animals the frequency of occurrence of type II synapses, especially on basal dendritic shafts, had increased. In some cases only type II and no type I synapses were present. A striking finding in all young and adult animals was that synapses at the borderline between somata and apical dendritic shafts as well as on dendritic spines were frequently complex or interrupted. The characteristic ultrastructural features of adult spine-free and sparsely spiny multipolar non-pyramidal neurons e.g. the many cytoplasmic organelles and type I and II synapses on somata and on dendrites were already present at day 10. After day 10 the number of organelles and synapses increased prominently and in adult animals the different types of synapses on dendrites were located at relatively short intervals of about 4 microns. In contrast with the dendritic shafts of pyramidal neurons many asymmetrical synapses were observed on dendritic shafts of the non-pyramidal neurons analysed in the adult animals. Furthermore, it appeared that the number of synapses on these non-pyramidal neurons is about twice that on pyramidal neurons in day 20 old animals and about four times in adult animals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Summary Golgi impregnation was used to study the dendritic differentiation of granule cells in the rat fascia dentata. The impregnated granule cells were gold-toned allowing for a fine structural study of the same identified neurons and of the input synapses onto their cell bodies and dendrites. Due to the long postnatal formation of these cells it was possible to describe a sequence of maturational stages coexisting on the same postnatal day (P5). Characteristic features of the dendritic development of granule cells were i) occurrence of varicose swellings along the dendrites, ii) growth cones on dendritic tips, iii) transient formation of basal dendrites, and iv) progressive development of dendritic spines. Incoming synapses on the differentiating granule cells were mainly found on dendritic shafts. Their membrane specializations were symmetric. At least some of these symmetric synapses were GABAergic because immunostaining of Vibratome sections from the same postnatal stage (P5) demonstrated a well-developed GABAergic axon plexus in the fascia dentata (antibodies against glutamate decarboxylase (GAD), the GABA synthesizing enzyme). Electron microscopy of the immunostained axon plexus revealed numerous GABAergic terminals that formed symmetric synaptic contacts, mainly on shafts of differentiating dendrites but also on cell bodies of granule cells. Our results thus indicate that the plexus of inhibitory GABAergic axons is already well developed at a stage when the target neurons, the granule cells, are still being formed.  相似文献   

20.
Three types of local circuit neurons have recently been reported in the homing pigeon hippocampus. The principal type appears to be constituted by the medium-sized angular or ovoid local circuit neurons that occur in all layers of the hippocampus. The current Golgi study has revealed that these neurons can be classified according to their axonal arborisation extension: (1) in all directions, (2) principally medio-laterally, or (3) dorso-ventrally. The local circuit neurons with dorso-ventral axon arborisation are present only in the subpyramidal layer. Serial sections of a Golgi-impregnated medium-sized, multiangular local circuit neuron in the pyramidal layer and a small, ovoid neuron in the suprapyramidal layer were investigated in the electron microscope. Some of these sections were processed for GABA immunogold cytochemistry. The soma and large dendrites of both neurons displayed GABA immunogold labelling. On the soma of medium-sized local circuit neuron there were numerous terminals; on the soma of the small one relatively fewer terminals were observed. The terminals contained round and/or flat synaptic vesicles. The long axonal branches of the neurons exhibited varicosities containing flattened or pleomorphic vesicles. Axo-dendritic, axo-somatic and a few axo-axonic synapses were observed. The large dense axon arborisation field of medium-sized local circuit neurons is properly situated to modulate intrinsic hippocampal activity and that of the small local circuit neurons is well situated to modulate the hippocampal input in the suprapyramidal layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号