首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
目的对自锁托槽与传统托槽滑动阻力的大小及变化规律进行对比研究。方法本研究于2011年9—12月在山西医科大学口腔医院和太原理工大学应用力学与生物医学研究所共同完成。根据人体实际弹性模量比例制作含牙周膜的上颌仿真模型,测试自锁托槽和传统托槽分别与0.016英寸、0.018英寸的镍钛丝和0.017英寸×0.022英寸、0.018英寸×0.025英寸、0.019英寸x0.025英寸的不锈钢方丝匹配时的滑动阻力大小。结果使用同种弓丝时,滑动阻力由小到大排列:DamonQ被动自锁托槽〈Tomy主动自锁托槽〈传统金属托槽,两两比较差异有统计学意义(P〈0.05)。同一种托槽情况下,除0.019英寸×0.025英寸不锈钢方丝外,其余滑动阻力都随弓丝直径的增大而增大,且两两比较差异有统计学意义(P〈0.05)。结论临床实践中托槽类型与弓丝的匹配对滑动阻力的影响十分重要,从而实现牙齿的快速有效移动。  相似文献   

2.
目的:探讨在不同结扎方式下,舌侧托槽在牙弓后段所产生静摩擦力的差异。方法:测试2种舌侧托槽系统(STb、e·Brace)与4种弓丝(0.016英寸镍钼合金丝、0.016英寸不锈钢圆丝、0.016×0.022英寸镍钼合金丝、、0.016×0.022英寸不锈钢方丝)组合在3种结扎方式下的静摩擦力。结果:不同结扎状态下,舌侧托槽-弓丝间的静摩擦力有显著性差异(P<0.05)。结论:舌侧托槽-弓丝组合的静摩擦力随结扎力的增大而增大。  相似文献   

3.
不同自锁托槽摩擦力的实验研究   总被引:1,自引:0,他引:1  
目的:探讨干燥条件下,被动自锁托槽系统与主动自锁托槽系统分别和不同弓丝组合时,在后牙段所产生的摩擦力差异.方法:在干燥条件下,分别测试2种被动自锁托槽系统(Damon 3,3M Smart clip)、2种主动自锁托槽系统(Tomy,Time 2)与3种弓丝(0.019×0.025英寸NiTi方丝、0.019×0.025英寸SS方丝、0.014英寸NiTi圆丝)组合在后牙段的动、静摩擦力.结果:0.019×0.025英寸NiTi方丝组中,被动自锁托槽与主动自锁托槽的摩擦力比较均有显著性差异,大小依次为Tomy>Time2>3M SmartClip>Damon3自锁托槽的摩擦力;0.019×0.025英寸方丝组中,Tomy自锁托槽的摩擦力最大,然后依次为Time 2、3M SmartClip与Damon3自锁托槽(被动自锁托槽的摩擦力无显著性差异);0.014英寸NiTi圆丝组中,4种自锁托槽的摩擦力无明显差异p>0.05).同一自锁托槽系统时,0.019×0.025英寸NiTi方丝的摩擦力最大,其次为0.019×0.025英寸SS方丝、0.014英寸NiTi圆丝.结论:在0.019×0.025英寸SS弓丝-自锁托槽组合中,被动自锁托槽系统产生的摩擦力<主动自锁托槽系统(p<0.05):在0.014英寸SS弓丝-自锁托槽组合中,被动自锁托槽系统产生的摩擦力与主动自锁托槽系统的无明显差异(p>0.05).  相似文献   

4.
两种不同被动式自锁托槽摩擦力的实验研究   总被引:1,自引:0,他引:1  
目的:探讨2种被动式自锁托槽系统(SmartClip,Damon3)分别和不同弓丝组合时在后牙段所产生的摩擦力差异.方法:24℃及干燥条件下,分别测试这2种被动自锁托槽系统与3种弓丝(0.36 mm NiTi圆丝、0.48 mm×0.64 mm NiTi方丝、0.48 mm×0.64 mm不锈钢方丝)组合时在后牙段的动、静摩擦力.结果:当使用0.36 mm NiTi圆丝时,SmartClip与Damon3自锁托槽的摩擦力相比无显著差异(P>0.05).当使用0.48mm×0.64 mm NiTi方丝和不锈钢方丝时,SmartClip与Damon3自锁托槽的摩擦力相比差异有显著性(P<0.05),并且SinartClip大于Damon3自锁托槽的摩擦力.结论:SmarlClip自锁托槽可以有效调节摩擦力大小,在使用较小尺寸弓丝时可达到同Damon3自锁托槽相似的低摩擦力效果,当放入0.48 mm×0.64 mm以上的方丝时摩擦力迅速增加.  相似文献   

5.
FAS自锁托槽与传统自锁托槽的摩擦力对比研究   总被引:5,自引:0,他引:5       下载免费PDF全文
目的测量FAS托槽在两种不同调节状态下与正畸钢丝之间的摩擦力大小,并与DamonⅢ和SPEED两种传统自锁托槽进行对比。方法制作尺寸放大20倍的FAS、DamonⅢ和SPEED托槽钢制模型,同时制作放大20倍的钢制圆丝和方丝,采用拉力传感器测量托槽与弓丝间摩擦力的大小。实验中FAS托槽分为两种调节状态:垫片完全收入和与弓丝平面无压力状态相切后旋转0.5圈。结果在垫片完全收入的状态下,FAS托槽与直径8.128 0 mm的不锈钢圆丝之间的动静摩擦力与DamonⅢ和SPEED托槽均无统计学差异(P>0.05);在使用9.144 0 mm×12.700 0 mm不锈钢方丝时,FAS托槽与方丝之间的动静摩擦力与DamonⅢ托槽无统计学差异(P>0.05),而低于SPEED托槽,且有统计学差异(P<0.05)。当垫片与弓丝平面无压力状态相切后旋转0.5圈时,FAS托槽与圆丝、方丝的动、静摩擦力均明显高于DamonⅢ和SPEED托槽(P<0.01)。结论FAS托槽可以有效调节摩擦力的大小,在无压力状态下,托槽与弓丝间的摩擦力与DamonⅢ托槽相似;在有压力状态下,可以有效锁定弓丝,防止弓丝滑动。  相似文献   

6.
目的探讨滑动法关闭间隙时牵引力大小对弓丝滑动的影响。方法在全牙列及其牙周组织、弓丝、矫治器的三维有限元模型上,用非线性方法计算不同大小牵引力作用下沿0.048cm×0.064cm(0.019英寸×0.025英寸)不锈钢弓丝滑动时,弓丝与托槽的接触点数目、接触力大小等影响滑动摩擦力大小的因素。结果牵引力小于或大于150g时,后牙接触点多、接触正压力大,滑动阻力较大,使滑动受限;150g牵引力时,整段弓丝特别是后段弓丝与托槽接触点均匀,后段弓丝接触正压力最小,滑动阻力最小。结论使用0.048cm×0.064cm(0.019英寸×0.025英寸)不锈钢弓丝滑动关闭间隙时,过小、过大的牵引力均不利于弓丝的滑动,150g力时滑动阻力最小,有利于弓丝的滑动。  相似文献   

7.
自锁托槽和传统直丝弓托槽弓丝结扎时间的对比研究   总被引:1,自引:1,他引:1  
目的:比较Damon3、DamonMX、In-Ovation3种自锁托槽的弓丝自锁结扎与传统弹力结扎圈结扎、不锈钢丝结扎的椅旁操作时间。方法:5种结扎方式各选取10例不拔牙病例。上下牙列完全排齐整平、安放0.019×0.025”的不锈钢丝后,分别测量记录每位患者全口弓丝结扎以及去结扎所需要的时间,并进行统计学分析:结果:5种结扎方式的全口结扎时间分别为Damon 3:(13.4±0.4)s,Damon MX:(13.1±0.4)s,In—Ovation:(13.5±0.4)s,弹力结扎圈:(135.2±5.9)s,不锈钢丝:(644.6±22.8)s;全口去结扎时间分别为Damon3:(28.5±1.0)s,Damon MX:(27.5±1.1)s,In—Ovation:(28.9±0.8)s,弹力结扎圈:(42.2±2.5)s,不锈钢丝:(232.2±9.5)s。3种自锁托槽的全口结扎、去结扎时间均明显短于弹力结扎圈和不锈钢丝结扎,经统计学分析其差异具有统计学意义(P〈0.05)。结论:自锁托槽矫治器的弓丝自锁结扎与传统的弓丝结扎方式相比能明显地缩短弓丝结扎、去结扎所需的时间,从而减少椅旁操作时间,提高工作效率。  相似文献   

8.
目的比较国产3B自锁托槽、Damon Q自锁托槽以及国产3B直丝弓托槽的椅旁操作时间,为国产3B自锁托槽的临床应用提供参考依据。方法选择正畸患者80例,其中20人使用国产3B自锁托槽(3B自锁组),20人使用Damon Q自锁托槽(Damon Q自锁组),20人使用国产3B直丝弓托槽+结扎丝结扎(结扎丝组),20人使用国产3B直丝弓托槽+橡皮圈结扎(橡皮圈组)。待患者上下颌牙列基本排齐后,使用0.018*0.025英寸镍钛方丝入槽,记录全口结扎和拆除时间。采用单因素方差分析,比较4组患者的结扎和拆除时间。结果 3B自锁组的结扎、拆除和总时间均明显短于结扎丝组和橡皮圈组(P<0.01)。3B自锁组和Damon Q自锁组在结扎、拆除和总时间方面的差异均无统计学意义(P>0.05)。结论无论是采用结扎丝结扎还是橡皮圈结扎,国产3B自锁托槽的椅旁操作时间明显短于直丝弓托槽,且与进口的Damon Q自锁托槽相比无明显统计学差异。  相似文献   

9.
目的:分析唇舌侧托槽转矩控制性能的差异,同时探讨不同材质不同尺寸的弓丝对舌侧托槽转矩控制的影响规律。方法:建立左上尖牙到右上尖牙的唇舌侧托槽三维有限元模型,在弓丝尺寸及材质不同的情况下,模拟临床左上中切牙转矩加载±20°。结果:随着转矩角度的增大,唇舌侧托槽转矩值逐渐增大,舌侧托槽转矩值为唇侧托槽的3~5倍;0.48 mm ×0.64 mm 弓丝的转矩值大于0.43 mm ×0.64 mm;弓丝尺寸相同时,不锈钢丝(SS),β-钛丝(TMA),镍钛丝(NiTi),转矩值依次减小。结论:唇舌侧托槽转矩均随着转矩角度和弓丝的弹性模量的增大而增大;在相同的转矩角度下,舌侧托槽产生的转矩值大于唇侧托槽;舌侧托槽的转矩值与弓丝尺寸及材质有关。  相似文献   

10.
在直丝弓矫正技术中用滑动机制内收切牙是临床上广为流行的手段。在正畸力作用下弓丝沿着托槽和额面管向远中滑动,而后牙段托槽及颊面管与弓丝之间的摩擦力会妨碍这种牙齿移动,所以尽力减小摩擦力就可以最大程度地维护磨牙支抗。本实验用Instr。n测试仪来研究三种0.022系统的直丝弓托槽(分别为标准直丝托槽、Act卜a直丝托槽和SPeed直丝托槽)与五种正畸弓丝之间的摩擦力,(五种弓丝分别为0.018、0.020的圆丝和0016X0.022、0·018X0.025、0.019X0.025的方丝)体外实验的装置模拟第一双尖牙拔除后尖牙已与第二双尖牙靠拢开始内…  相似文献   

11.
This study, performed using a specially designed apparatus that included 10 aligned brackets, evaluated the frictional resistance generated by conventional stainless steel (SS) brackets (Victory Series), self-ligating Damon SL II brackets, Time Plus brackets, and low-friction ligatures (Slide) coupled with various SS, nickel-titanium (NiTi), and beta-titanium (TMA) archwires. All brackets had a 0.022-inch slot and the orthodontic wire alloys were 0.016, 0.016 x 0.022, and 0.019 x 0.025 inch NiTi, 0.017 x 0.025 inch TMA, and 0.019 x 0.025 inch SS. Each bracket-archwire combination was tested 10 times. Coupled with 0.016 inch NiTi, Victory brackets generated the most friction and Damon SL II the least (P < 0.001); with 0.016 x 0.022 inch NiTi, the self-ligating brackets (Time and Damon SL II) generated significantly lower friction (P < 0.001) than Victory Series and Slide ligatures; with 0.019 x 0.025 inch SS or 0.019 x 0.025 inch NiTi, Slide ligatures generated significantly lower friction than all other groups. No difference was observed among the four groups when used with a 0.017 x 0.025-inch TMA archwire. These findings suggest that the use of an in vitro testing model that includes 10 brackets provides information about the frictional force of the various bracket-archwire combinations.  相似文献   

12.
13.
Teflon is an anti-adherent and aesthetic material. The aim of this study was to evaluate, in vitro, the influence of Teflon coating on the resistance to sliding (RS) of orthodontic archwires. For this purpose, Teflon-coated archwires were examined using frictional resistance tests by means of a universal testing machine and compared with conventional uncoated wires. Twelve types of archwires with round and rectangular sections (0.014, 0.018, and 0.018 × 0.025 inches) and of different materials (stainless steel and nickel-titanium) were tested with two passive self-ligating brackets (SmartClip? and Opal(?)) and one active self-ligating bracket (Quick(?)). Each archwire-bracket combination was tested 10 times under 8 simulated clinical scenarios. Statistical comparisons were conducted between the uncoated and Teflon-coated archwires using Wilcoxon and Mann-Whitney tests, and linear regression analysis. For all bracket-archwire combinations, Teflon-coated archwires resulted lower friction than the corresponding uncoated archwires (P < 0.01). The results showed that Teflon coating has the potential to reduce RS of orthodontic archwires.  相似文献   

14.
The friction generated by various bracket-archwire combinations previously has been studied using in vitro testing models that included only one or three brackets. This study was performed using a specially designed apparatus that included 10 aligned brackets to compare the frictional resistance generated by conventional stainless steel brackets, self-ligating Damon SL II brackets and Time Plus brackets coupled with stainless steel, nickel-titanium and beta-titanium archwires. All brackets had a 0.022-inch slot, and five different sizes of orthodontic wire alloys used. Each bracket-archwire combination was tested 10 times, and each test was performed with a new bracket-wire sample. Time Plus self-ligating brackets generated significantly lower friction than both the Damon SL II self-ligating brackets and Victory brackets. However, the analysis of the various bracket-archwire combinations showed that Damon SL II brackets generated significantly lower friction than the other brackets when tested with round wires and significantly higher friction than Time Plus when tested with rectangular archwires. Beta-titanium archwires generated higher frictional resistances than the other archwires. All brackets showed higher frictional forces as the wire size increased. These findings suggest that the use of an in vitro testing model that includes 10 brackets can give additional interesting information about the frictional force of the various bracket-archwires combinations to the clinician and the research worker.  相似文献   

15.
Evaluation of methods of archwire ligation on frictional resistance   总被引:6,自引:0,他引:6  
The aim of the study was to investigate the effect of elastomeric type and stainless steel (SS) ligation on frictional resistance using a validated method. To assess the validity of the new test system to measure mean frictional forces, SS and TMA wires, each with dimensions of 0.017 x 0.025 and 0.019 x 0.025 inches, were used in combination with a self-ligating Damon II bracket or a conventional preadjusted edgewise premolar SS bracket without ligation. Four types of elastomeric module, purple, grey, Alastik or SuperSlick, and a pre-formed 0.09 inch SS ligature were then assessed as methods of ligation using preadjusted edgewise premolar SS brackets. The specimens were tested on a Nene M3000 testing machine, with a crosshead speed of 5 mm/minute and each test run lasted for 4 minutes. Each bracket/wire combination with each method of ligation was tested 10 times in the presence of human saliva and the mean frictional force was recorded. The mean frictional forces were compared using three-way analysis of variance. The Damon II self-ligating bracket and unligated conventional SS bracket produced negligible mean frictional forces with any of the wires tested. For the 0.017 x 0.025 SS, 0.019 x 0.025 SS or 0.019 x 0.025 inch TMA wires, SS ligatures produced the lowest mean frictional forces. With the 0.017 x 0.025 TMA wire, purple modules produced the lowest mean frictional force. There was no consistent pattern in the mean frictional forces across the various combinations of wire type, size and ligation method. Under the conditions of this experiment, the use of passive self-ligating brackets is the only method of almost eliminating friction.  相似文献   

16.
陈馨  赵春洋  陈文静  谷妍  张彦  王林 《口腔医学》2010,30(7):389-391
目的 探讨使用SmartClip自锁矫治器与传统结扎式矫治器排齐拥挤上颌牙弓的效能是否有差异。方法 选取48例牙列不齐指数>5mm、年龄12~15岁、采取拔除上颌第一前磨牙治疗的患者,按随机对照原则抽选使用SmartClip自锁矫治器或传统结扎式矫治器。结果 使用SPSS15.0进行分析。结果 排齐速度与初始不齐指数相关。矫治5周及10周时,自锁组前牙不齐指数及两侧拔牙间隙的减小、前段弓长的增加大于传统组,两组间有显著性差异(P<0.05)。自锁组排齐速度快于传统组。结论 使用SmartClip自锁托槽可以缩短、中重度拥挤采取拔牙矫治患者牙弓的排齐时间。  相似文献   

17.
弓丝与结扎方法对摩擦力影响的实验研究   总被引:5,自引:0,他引:5  
目的:了解4种弓丝和2种结扎方法对托槽与弓丝摩擦力的影响。方法:在干燥条件下,按正交实验设计,使用LJ-500型拉力实验机的微型测力计,测试4种弓丝与6种直丝托槽组合及采用2种结扎法时在后牙段的动、静摩擦力。所得数据进行方差分析和二次响应回归分析。结果:在弓丝与所有托槽组合中,0.018英寸×0.025英寸(1in=2.54cm)的不锈钢方丝动、静摩擦力最小,0.019英寸×0.025英寸的不锈钢方丝动、静摩擦力最大,0.018与0.020英寸不锈钢圆丝介于两者之间,但0.018英寸圆丝的动摩擦力较大,0.020英寸圆丝的静摩擦力较大。动、静摩擦力平均百分比从小到大依次为:0.019英寸×0.025英寸方丝、0.020英寸圆丝、0.018英寸×0.025英寸方丝、0.018英寸的圆丝。弹力橡皮圈结扎的动、静摩擦力及动、静摩擦力平均百分比均大于不锈钢丝结扎。结论:0.018英寸的不锈钢圆丝不适宜滑动机制;在0.022英寸系统的直丝托槽中,用0.019英寸×0.025英寸不锈钢方丝关闭间隙,应尽可能加强支抗控制;干燥条件下弹力橡皮圈结扎不利于托槽、弓丝滑动。  相似文献   

18.
Objective:To evaluate the quantitative effects on torque expression of varying the slot size of stainless steel orthodontic brackets and the dimension of stainless steel wire, and to analyze the limitations of the experimental methods used.Materials and Methods:In vitro studies measuring torque expression in conventional and self-ligating stainless steel brackets with a torque-measuring device, with the use of straight stainless steel orthodontic wire without second-order mechanics and without loops, coils, or auxiliary wires, were sought through a systematic review process.Results:Eleven articles were selected. Direct comparison of different studies was limited by differences in the measuring devices used and in the parameters measured. On the basis of the selected studies, in a 0.018 inch stainless steel bracket slot, the engagement angle ranges from 31 degrees with a 0.016 × 0.016 inch stainless steel archwire to 4.6 degrees with a 0.018 × 0.025 inch stainless steel archwire. In a 0.022 inch stainless steel bracket slot, the engagement angle ranges from 18 degrees with a 0.018 × 0.025 inch stainless steel archwire to 6 degrees with a 0.021 × 0.025 inch stainless steel archwire. Active stainless steel self-ligating brackets demonstrate an engagement angle of approximately 7.5 degrees, whereas passive stainless steel self-ligating brackets show an engagement angle of approximately 14 degrees with 0.019 × 0.025 inch stainless steel wire in a 0.022 inch slot.Conclusions:The engagement angle depends on archwire dimension and edge shape, as well as on bracket slot dimension, and is variable and larger than published theoretical values. Clinically effective torque can be achieved in a 0.022 inch bracket slot with archwire torsion of 15 to 31 degrees for active self-ligating brackets and of 23 to 35 degrees for passive self-ligating brackets with a 0.019 × 0.025 inch stainless steel wire.  相似文献   

19.
Factors affecting friction in the pre-adjusted appliance   总被引:4,自引:0,他引:4  
A jig was constructed to measure the frictional forces created by various tip and torque values in association with two types of straightwire bracket moving along tainless steel (SS) archwires. Forces were measured during translation of the bracket using an Instron machine. Steel and cobalt chromium brackets were tested in association with 0.019 x 0.025 and 0.021 x 0.025 inch steel archwires at tips from 0 to 3 degrees and torque values in 2 degree increments from 0 to 6 degrees.The mean values for static (2.2 N) and kinetic (2.1 N) friction were very similar (P = 0.71), as were the overall friction values for stainless steel (2.1 N) and chromium cobalt (2.2 N) brackets of similar dimensions (P = 0.44). Use of 0.021 x 0.025 inch wire produced three times as much friction as 0.019 x 0.025 inch wire, 3.0 N against 1.2 N (P < 0.01). Increased tip and torque were associated with highly significant increases in friction (P < 0.01). Every degree of tip produced approximately twice as much friction as comparable torque. The main conclusion of the study was that space closure should be completed on a 0.019 x 0.025 inch archwire before a 0.021 x 0.025 inch wire is used to complete tooth alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号