首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) also has an immunological function to suppress T cell activation in inflammatory circumstances, including graft-versus-host disease (GVHD), a fatal complication after allogeneic bone marrow transplantation (allo-BMT). Although the mononuclear cell expression of IDO1 has been associated with improved outcomes in GVHD, the underlying mechanisms remain unclear. Herein, we used IDO-deficient (Ido1−/−) BMT to understand why myeloid IDO limits the severity of GVHD. Hosts with Ido1−/− BM exhibited increased lethality, with enhanced proinflammatory and reduced regulatory T cell responses compared with wild type (WT) allo-BMT controls. Despite the comparable expression of the myeloid-derived suppressor cell (MDSC) mediators, arginase-1, inducible nitric oxide synthase, and interleukin 10, Ido1−/− Gr-1+CD11b+ cells from allo-BMT or in vitro BM culture showed compromised immune-suppressive functions and were skewed toward the Ly6ClowLy6Ghi subset, compared with the WT counterparts. Importantly, Ido1−/−Gr-1+CD11b+ cells exhibited elevated levels of reactive oxygen species (ROS) and neutrophil numbers. These characteristics were rescued by human IDO1 with intact heme-binding and catalytic activities and were recapitulated by the treatment of WT cells with the IDO1 inhibitor L1-methyl tryptophan. ROS scavenging by N-acetylcysteine reverted the Ido1−/−Gr-1+CD11b+ composition and function to an MDSC state, as well as improved the survival of GVHD hosts with Ido1−/− BM. In summary, myeloid-derived IDO1 enhances GVHD survival by regulating ROS levels and limiting the ability of Gr-1+CD11b+ MDSCs to differentiate into proinflammatory neutrophils. Our findings provide a mechanistic insight into the immune-regulatory roles of the metabolic enzyme IDO1.

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-binding metabolic enzyme that catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn). In addition to Trp catabolism, IDO1 has long been recognized to have immune-regulatory roles, preventing excessive inflammation (1). IDO1 is up-regulated in response to inflammatory stimuli, including Toll-like receptor (TLR) and type I/II interferon (IFN) signaling (1, 2). The induction of IDO1 after TLR9 stimulation has been demonstrated to mitigate experimental colitis (3). Catalytic function blockade in mice by pharmacological inhibition or genetic ablation of IDO1 (Ido1−/−) enhanced inflammation and aggravated autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE) (4). The enhanced immune responses induced by IDO1 deficiency were associated with increased T helper (Th)1/Th17 responses; in contrast, regulatory T cell (Treg) responses were repressed (46). Consistently, IDO1 inhibition enhanced antitumor immune responses (79). The immune-regulatory effects of IDO1 have been ascribed to the depletion of Trp (10, 11) and the production of toxic catabolites along the Kyn pathway (4, 1214). However, it remains unclear whether additional mechanisms are involved in IDO1-mediated immune suppression.Graft-versus-host disease (GVHD) is a severe inflammatory disease for which IDO1 has been shown to play a protective role (2, 14, 15). GVHD often develops as an adverse systemic complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is induced by activation of donor T cells reactive to the recipient’s major histocompatibility complexes (MHCs) and/or minor histocompatibility antigens (MiHAs) (16). Allo-reactivity of the activated donor T cells promotes tissue inflammation in the host, leading to morbidity and mortality. IDO1 deficiency in the bone marrow (BM) of the donor or the recipient has been linked to increased lethality (2, 14, 15), indicating a crucial role of IDO1 expression in the parenchymal and hematopoietic compartments in preventing GVHD. Kyn produced in IDO1-expressing lung epithelial cells and tissue macrophages suppressed T cell activation by binding to and activating immunomodulatory aryl hydrocarbon receptors (AhRs), which could explain the GVHD aggravation in Ido1−/− recipients (14). Nevertheless, the mechanisms behind GVHD exacerbation by Ido1−/− BM transfer remain obscure. Wild-type (WT) donor antigen-presenting cells prolonged survival in GVHD regardless of epithelial cell expression of IDO1, and IDO1 up-regulation after treatment of donor BM with TLR ligands reduced GVHD severity (2). These findings suggest an important role of IDO1 expressed by donor-derived myeloid cells in preventing severe GVHD. However, the immune-regulatory roles of IDO1 expressed in myeloid cells (termed myeloid IDO1 hereafter) remain elusive.Myeloid-derived suppressor cells (MDSCs) are innate cells that have immune-suppressive functions (17). Conventionally, MDSCs are identified as Gr-1+CD11b+ cells and can be further classified into Ly6ChiLy6Glow monocytic (M) or Ly6ClowLy6Ghi polymorphonuclear (PMN) subsets. MDSCs produce various immune-suppressive mediators, including arginase-1 (Arg-1), inducible nitric oxide synthase (iNOS), and interleukin 10 (IL-10) (17, 18). Their ability to enhance Treg responses has also been reported (19, 20). As immature cells, MDSCs maintain the ability to differentiate into dendritic cells (DCs), macrophages, or neutrophils (21, 22). In GVHD, MDSCs derived from donor BM are the major population of myeloid cells expanding in the host (23), and along with Tregs they suppress GVHD (2426). We previously reported that transplantation of MyD88-deficient (Myd88−/−) BM suppressed Gr-1+CD11b+ cell expansion and polarized the differentiation of Gr-1+CD11b+ cells into DCs, aggravating GVHD (27, 28). These findings indicate that increasing the number of undifferentiated Gr-1+CD11b+ cells is essential for MDSC-mediated immune suppression in GVHD. Additionally, the finding that IDO1 expression in mononuclear cells, rather than in parenchymal cells, correlated positively with the survival of GVHD patients (29) suggested that IDOl expression in myeloid cells might be involved in the MDSC-mediated suppression of GVHD. Understanding the role of IDO1 in the function of MDSCs derived from the donor BM could lead to novel therapeutic strategies for the treatment of GVHD.In this study, we investigated the mechanisms underlying GVHD aggravation in hosts transplanted with IDO1-deficient BM. We found that IDO1 deficiency in donor BM did not affect the expansion of Gr-1+CD11b+ cells in GVHD hosts but polarized them toward a Ly6ClowLy6Ghi phenotype, reducing their immune-regulatory potential. This phenomenon was ascribed to increased reactive oxygen species (ROS) generation in the Ido1−/− Gr-1+CD11b+ cells and their skewing to neutrophil differentiation. Treatment of ROS-scavenging chemical reversed this phenomenon. Our findings suggest that the immune-regulatory roles of IDO1 are mediated by ROS scavenging and suppression of the differentiation of Gr-1+CD11b+ cells.  相似文献   

5.
6.
7.
8.
The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman’s capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.

Selenocysteine-containing mitochondrial thioredoxin reductase (TrxR2) is the key regulator of the thioredoxin system and essential for mitochondrial redox homeostasis (13). This system constitutes a primary defense against peroxides produced in mitochondria, such as hydrogen peroxide and peroxynitrite (4). TrxR2 is necessary for maintaining thioredoxin 2 (Trx2) in its reduced state by using electrons from NADPH. In turn, Trx2 is a cofactor of mitochondrially localized peroxiredoxin 3 (Prx3) and peroxiredoxin 5 (Prx5) that reduce H2O2 and peroxynitrite* generated by mitochondrial metabolism (1, 2, 47). The reaction rate constants of H2O2 and peroxynitrite with the fast reacting thiols of both Prx3 and Prx5 have been compiled recently (4). Notably, Prx3, the only peroxiredoxin which is exclusively localized in mitochondria (8, 9), was reported to accept electrons also from glutaredoxin 2 (Grx2) (10). Among the biologically recognized functions, TrxR2 plays essential roles in hematopoiesis, heart development, and heart function (11, 12). In a previous study, we could show that loss of TrxR2 in endothelial cells (ECs) attenuated vascular remodeling processes following ischemic events and led to a prothrombotic and proinflammatory endothelium (13). While these studies pointed toward an important role of TrxR2 in the cardiovascular system, the underlying biochemical mechanisms, particularly in vivo, have remained largely unclear. Unlike many other cell types in the body, ECs are unique as they are constantly exposed to changing biochemical and mechanical stimuli. Furthermore, they do not just separate the circulating blood and the vascular smooth muscle cells but also have to fulfill a wide range of physiological tasks, including regulation of vascular tone, cellular adhesion, thromboresistance, smooth muscle cell proliferation, and inflammoresistance (14, 15). One of the most significant biomolecules that is involved in vascular endothelial function is the free radical nitric oxide (·NO) (16, 17). ·NO is not only an important vasodilator but also has antiinflammatory properties by inhibiting the synthesis and expression of cytokines and adhesion molecules that attract inflammatory cells and facilitate their entrance into the vessel wall (18, 19). Furthermore, ·NO suppresses platelet aggregation (20), vascular smooth muscle cell migration, and proliferation (21). Consequentially, a decreased synthesis of ·NO, as well as an enhanced inactivation, can result in endothelial dysfunction (2224). Oxidative stress contributes to this phenomenon, starting with the diffusion-controlled reaction of ·NO with superoxide radical (O2·), which shortens the biological half-life and compromises the signaling actions of ·NO (2528). In addition, the oxidative inactivation of ·NO by O2· yields a powerful oxidizing and nitrating species, peroxynitrite anion (28, 29). Moreover, peroxynitrite itself leads to uncoupling of endothelial nitric oxide synthase to become a dysfunctional O2· and peroxynitrite-producing enzyme that additionally contributes to cellular oxidative stress (30, 31). A sustained overload of O2· and, peroxynitrite combined with insufficient levels of ·NO may contribute to a switch of the endothelium from the quiescent stage toward an activated one, setting up a vicious cycle, causing endothelial dysfunction and inflammation. ECs are equipped with a number of antioxidant systems known to be potentially protective against vascular oxidative stress that, however, under persistent pathological stimuli, may become overwhelmed.In this context, it is increasingly recognized that mitochondrial-derived O2· and the disruption of mitochondrial redox homeostasis contribute to alter the signaling actions of ·NO in vascular biology (3234). Besides the mitochondrial thioredoxin system, a number of professional redox systems, including mitochondrial superoxide dismutase (MnSOD/SOD2), glutathione peroxidase, and glutathione reductase, are involved in maintaining mitochondrial redox homeostasis.However, the specific roles of these enzymes in the context of endothelial dysfunction are far from being understood. The fact that genetically modified mouse models revealed that many of the different antioxidant enzymes are indispensable for murine development (3538) impedes further insights into their role for vascular homeostasis, and, to our knowledge, only a limited number of EC-specific transgenic mice have yet been described in this context (3942). Interestingly, Trx2 transgenic mice that overexpress Trx2 specifically in the endothelium demonstrated an increased ·NO bioavailability and EC function, decreased oxidative stress, and reduced propensity to atheroma formation (3, 43).The aim of this study was to analyze the impact of endothelial TrxR2 on vascular homeostasis (in vitro, ex vivo, and in vivo), focusing on its role on mitochondrial peroxynitrite catabolism. The data support that enhanced mitochondrial steady-state levels of peroxynitrite in vascular ECs are connected with disruption of redox homeostasis and vascular structural and functional integrity.  相似文献   

9.
10.
CD8+ T cells play a central role in antitumor immune responses that kill cancer cells directly. In aged individuals, CD8+ T cell immunity is strongly suppressed, which is associated with cancer and other age-related diseases. The mechanism underlying this age-related decrease in immune function remains largely unknown. This study investigated the role of T cell function in age-related unresponsiveness to PD-1 blockade cancer therapy. We found inefficient generation of CD44lowCD62Llow CD8+ T cell subset (P4) in draining lymph nodes of tumor-bearing aged mice. In vitro stimulation of naive CD8+ T cells first generated P4 cells, followed by effector/memory T cells. The P4 cells contained a unique set of genes related to enzymes involved in one-carbon (1C) metabolism, which is critical to antigen-specific T cell activation and mitochondrial function. Consistent with this finding, 1C-metabolism–related gene expression and mitochondrial respiration were down-regulated in aged CD8+ T cells compared with young CD8+ T cells. In aged OVA-specific T cell receptor (TCR) transgenic mice, ZAP-70 was not activated, even after inoculation with OVA-expressing tumor cells. The attenuation of TCR signaling appeared to be due to elevated expression of CD45RB phosphatase in aged CD8+ T cells. Surprisingly, strong stimulation by nonself cell injection into aged PD-1–deficient mice restored normal levels of CD45RB and ameliorated the emergence of P4 cells and 1C metabolic enzyme expression in CD8+ T cells, and antitumor activity. These findings indicate that impaired induction of the P4 subset may be responsible for the age-related resistance to PD-1 blockade, which can be rescued by strong TCR stimulation.

Aging affects numerous physiological functions, resulting in the onset of a variety of diseases. Cancer risk increases with age, as mutations accumulate in the genome and immune surveillance against cancer cells gradually declines (1, 2). Immunotherapy that reactivates tolerized immune function has emerged as an effective strategy for treating cancer. Among the array of cancer immune therapeutics, antibodies that block the PD-1/PD-L1 pathway have yielded highly promising results in patients with a broad spectrum of cancers (36). However, clinical studies have shown that many cancer patients are unresponsive to PD-1 blockade therapy (7, 8). The efficacy of such therapy is impaired in aged-mouse models, with similar attenuation to that observed in some clinical reports (912).Immune senescence results from quantitative and/or qualitative changes in immune cells. One of the major quantitative changes in T cells is the decline of the T cell receptor (TCR) repertoire diversity due to thymic involution, reducing the output of naive cells into the periphery (1315). In addition, peripheral T cells in aged individuals accumulate qualitative defects such as impaired TCR signaling, diminished differentiation capacity to effector and memory cells, and reduced cytokine production (16, 17). In fact, age-associated changes strongly affect the frequency of well-defined CD8+ T cell subsets (1820). CD44 and CD62L (L-selectin) surface markers were used to define three major subsets of CD8+ T cells in mice: naive (also called P1; CD44lowCD62Lhigh), central memory (P2; CD44highCD62Lhigh), and effector/memory (P3; CD44highCD62Llow). The remaining CD44lowCD62Llow (P4) CD8+ T cell subset is a very minor population in naive mice and has been rarely studied. Naive T cells differentiate into effector T cells by antigenic stimulation (14, 21). Some effector cells become memory cells, which quickly give rise to effector cells in response to the same antigenic stimulation. In aged humans and animals, T cell maintenance requires self-antigen–dependent proliferation (homeostatic proliferation) because of the decline in T cell output from the thymus (22, 23). In aged individuals, this homeostatic proliferation gradually boosts naive T cell differentiation, resulting in an increased frequency of differentiated T cell subsets including effector and memory cells.T cell proliferation and differentiation are promoted by TCR signaling cascades. The phosphorylation and dephosphorylation of TCR signaling molecules affect signaling complex formation and the propagation of TCR signals. CD45 is a transmembrane phosphatase that plays a central role in the modulation of TCR signaling by controlling the level of tyrosine phosphorylation of lymphocyte protein kinase (Lck), which serves as an activator of TCRζ-chain–associated protein (ZAP)-70, and the linker of activated T cells (LAT) (24, 25). In young naive and memory CD8+ T cells, high CD45 expression inhibits TCR signal transduction through dephosphorylation of ZAP-70 and PLCγ (26). While aging is known to alter TCR signaling, the molecular mechanisms underlying these changes remain largely unclear (27, 28).In activated and proliferating cells, one-carbon (1C) metabolism is generally up-regulated, supporting their survival and differentiation through promoting biosynthesis of purine and thymidine, amino acid homeostasis, epigenetic maintenance, and redox defense (29, 30). Recent reports indicate that 1C metabolism is one of the most strongly induced metabolic pathways during early CD4+ or CD8+ T cell activation (31, 32). After T cell activation, up-regulation of the 1C metabolic network increases the processing of serine to provide de novo nucleotide biosynthesis from one-carbon units, which is required for antigen-specific T cell proliferation, differentiation, and effector functions. The 1C metabolic pathways also contribute to energy production through the regulation of mitochondrial protein synthesis by mitochondrial tRNA methylation (33, 34). Mitochondrial function and 1C metabolism are lower in aged than in young CD4+ T cells (35), suggesting a possible link between T cell aging and the inactivation of 1C metabolism.To elucidate the mechanism underlying age-related attenuation of the antitumor effect of PD-1 blockade, we compared CD8+ T cells from young and aged PD-1 knockout (KO) or wild type (WT) mice with or without tumors. Here, we show that resistance to PD-1 deficiency or blockade antitumor therapy in aged mice depends on inefficient generation of the P4 subset, which is an intermediate between the naive and effector subsets and highly expresses genes related to 1C metabolism. This inhibition in aged mice is due to TCR signal suppression through elevated expression of CD45RB and can be rescued by strong immune stimulation. These findings provide insights into the mechanisms by which age-dependent changes in CD8+ T cell subsets contribute to metabolic alterations and antitumor activity.  相似文献   

11.
Bacteria deploy rearrangement hotspot (Rhs) proteins as toxic effectors against both prokaryotic and eukaryotic target cells. Rhs proteins are characterized by YD-peptide repeats, which fold into a large β-cage structure that encapsulates the C-terminal toxin domain. Here, we show that Rhs effectors are essential for type VI secretion system (T6SS) activity in Enterobacter cloacae (ECL). ECL rhs mutants do not kill Escherichia coli target bacteria and are defective for T6SS-dependent export of hemolysin-coregulated protein (Hcp). The RhsA and RhsB effectors of ECL both contain Pro−Ala−Ala−Arg (PAAR) repeat domains, which bind the β-spike of trimeric valine−glycine repeat protein G (VgrG) and are important for T6SS activity in other bacteria. Truncated RhsA that retains the PAAR domain is capable of forming higher-order, thermostable complexes with VgrG, yet these assemblies fail to restore secretion activity to ∆rhsA rhsB mutants. Full T6SS-1 activity requires Rhs that contains N-terminal transmembrane helices, the PAAR domain, and an intact β-cage. Although ∆rhsA rhsB mutants do not kill target bacteria, time-lapse microscopy reveals that they assemble and fire T6SS contractile sheaths at ∼6% of the frequency of rhs+ cells. Therefore, Rhs proteins are not strictly required for T6SS assembly, although they greatly increase secretion efficiency. We propose that PAAR and the β-cage provide distinct structures that promote secretion. PAAR is clearly sufficient to stabilize trimeric VgrG, but efficient assembly of T6SS-1 also depends on an intact β-cage. Together, these domains enforce a quality control checkpoint to ensure that VgrG is loaded with toxic cargo before assembling the secretion apparatus.

Bacteria use many strategies to compete against other microorganisms in the environment. Research over the past 15 y has uncovered several distinct mechanisms by which bacteria deliver inhibitory toxins directly into neighboring competitors (18). Cell contact-dependent competition systems have been characterized most extensively in Gram-negative bacteria, and the most widespread mechanism is mediated by the type VI secretion system (T6SS) (9). T6SSs are multiprotein complexes related in structure and function to the contractile tails of Myoviridae bacteriophages. T6SS loci vary considerably between bacterial species, but all encode 13 core type VI secretion (Tss) proteins that are required to build a functional apparatus. TssJ, TssL, and TssM form a multimeric complex that spans the cell envelope and serves as the secretion conduit. The phage-like baseplate is composed of TssE, TssF, TssG, and TssK proteins, which form a sixfold symmetrical array surrounding a central “hub” of trimeric valine−glycine repeat protein G (VgrG/TssI). VgrG is structurally homologous to the gp27−gp5 tail spike of phage T4 (10, 11). The T4 tail spike is further acuminated with gp5.4, a small protein that forms a sharpened apex at the tip of the gp5 spike (12). Proline−alanine−alanine−arginine (PAAR) repeat proteins form an orthologous structure on VgrG; and PAAR is thought to facilitate penetration of the target cell outer membrane (13). The T6SS duty cycle begins when the baseplate docks onto TssJLM at the cytoplasmic face of the inner membrane (14). The baseplate then serves as the assembly origin for the contractile sheath and inner tube. The sheath is built from TssB−TssC subunits, and the tube is formed by stacked hexameric rings of hemolysin-coregulated protein (Hcp/TssD). TssA coordinates this assembly process to ensure that the sheath and tube are polymerized at equivalent rates (15). After elongating across the width of the cell, the sheath undergoes rapid contraction to expel the PAAR•VgrG-capped Hcp tube through the transenvelope complex. The ejected tube impales neighboring cells and delivers a variety of toxic effector proteins into the target. After firing, the contracted sheath is disassembled by the ClpV (TssH) ATPase (16), and the recycled TssBC subunits are used to support additional rounds of sheath assembly and contraction.T6SSs were originally identified through their ability to intoxicate eukaryotic host cells (17), and VgrG proteins were the first effectors to be recognized. VgrG-1 from Vibrio cholerae V52 carries a C-terminal domain that cross-links actin and blocks macrophage phagocytosis (10). Similarly, the VgrG1 protein from Aeromonas hydrophila American Type Culture Collection (ATCC) 7966 carries a C-terminal actin adenosine 5′-diphosphate (ADP) ribosyltransferase domain that disrupts the host cytoskeleton (18). Although the T6SS clearly plays a role in pathogenesis, most of the systems characterized to date deliver toxic effectors into competing bacteria. Because antibacterial effectors are potentially autoinhibitory, these latter toxins are invariably encoded with specific immunity proteins. Antibacterial effectors commonly disrupt the integrity of the bacterial cell envelope. VgrG-3 from V. cholerae carries a lysozyme-like domain that degrades the peptidoglycan cell wall (19, 20). Other peptidoglycan-cleaving amidase toxins are packaged within the lumen of Hcp hexamers for T6SS-mediated delivery (2124). Phospholipase toxins collaborate with peptidoglycan degrading enzymes to lyse target bacteria (2527). Other T6SS effectors act in the cytosol to degrade nucleic acids and nicotinamide adenine dinucleotide cofactors (3, 28, 29). Most recently, Whitney and coworkers described a novel T6SS effector that produces the inhibitory nucleotide ppApp (30). These latter toxins are commonly delivered through noncovalent interactions with VgrG. Many effectors contain PAAR domains, which enable direct binding to the C-terminal β-spike of VgrG (13), whereas others are indirectly tethered to VgrG through adaptor proteins (3133). This combinatorial strategy allows multiple different toxins to be delivered with each firing event.Rearrangement hotspot (Rhs) proteins are potent effectors deployed by many T6SS+ bacteria (3, 3437). T6SS-associated Rhs effectors range from ∼150 kDa to 180 kDa in mass and carry highly variable C-terminal toxin domains. The N-terminal region of Rhs proteins often contains two predicted transmembrane (TM) helix regions followed by a PAAR domain. The central region is composed of many Rhs/YD-peptide repeats, which form a β-cage structure that fully encapsulates the toxin domain (38). Genes coding for Rhs were first identified in Escherichia coli K-12 as elements that promote chromosomal duplication (39, 40). This genomic rearrangement was the result of unequal recombination between the rhsA and rhsB loci, which share 99.4% sequence identity over some 3,700 nucleotides. Subsequently, Hill and coworkers recognized that rhs genes are genetic composites (41), and that the variable C-terminal extension domains inhibit cell growth (42). Although E. coli K-12 encodes four full-length Rhs proteins, it lacks a T6SS, and there is no evidence that it deploys Rhs in competition. However, other Rhs/YD-peptide repeat proteins are known to deliver toxins in a T6SS-independent manner. Gram-positive bacteria export antibacterial YD-repeat proteins through the Sec pathway (3), and the tripartite insecticidal toxin complexes released by Photorhabdus and Yersinia species contain subunits with Rhs/YD repeats (38, 43). Thus, the Rhs encapsulation structure has been incorporated into at least three different toxin delivery platforms.Here, we report that Rhs effectors are critical for the activity of the T6SS-1 locus of Enterobacter cloacae ATCC 13047 (ECL). ECL encodes two Rhs effectors—RhsA and RhsB—which are each exported in a constitutive manner by T6SS-1 (35). Deletion of either rhs gene has little effect on T6SS-1 activity, but mutants lacking both rhsA and rhsB are defective for Hcp1 secretion and no longer inhibit target bacteria. Although ∆rhsA rhsB mutants lose T6SS-1−mediated inhibition activity, they still assemble and fire contractile sheaths at a significantly reduced frequency. We further show that truncated RhsA that retains the PAAR domain still interacts with cognate VgrG2, but the resulting complex does not support Hcp1 secretion or target-cell killing. Full T6SS-1 function requires wild-type Rhs effectors that retain the N-terminal TM helices and PAAR domain together with an intact β-cage. These findings suggest that the Rhs β-cage mediates a quality control checkpoint on T6SS-1 assembly to ensure that VgrG is loaded with a toxic effector prior to export.  相似文献   

12.
Recessive loss-of-function mutations in ATP13A2 (PARK9) are associated with a spectrum of neurodegenerative disorders, including Parkinson’s disease (PD). We recently revealed that the late endo-lysosomal transporter ATP13A2 pumps polyamines like spermine into the cytosol, whereas ATP13A2 dysfunction causes lysosomal polyamine accumulation and rupture. Here, we investigate how ATP13A2 provides protection against mitochondrial toxins such as rotenone, an environmental PD risk factor. Rotenone promoted mitochondrial-generated superoxide (MitoROS), which was exacerbated by ATP13A2 deficiency in SH-SY5Y cells and patient-derived fibroblasts, disturbing mitochondrial functionality and inducing toxicity and cell death. Moreover, ATP13A2 knockdown induced an ATF4-CHOP-dependent stress response following rotenone exposure. MitoROS and ATF4-CHOP were blocked by MitoTEMPO, a mitochondrial antioxidant, suggesting that the impact of ATP13A2 on MitoROS may relate to the antioxidant properties of spermine. Pharmacological inhibition of intracellular polyamine synthesis with α-difluoromethylornithine (DFMO) also increased MitoROS and ATF4 when ATP13A2 was deficient. The polyamine transport activity of ATP13A2 was required for lowering rotenone/DFMO-induced MitoROS, whereas exogenous spermine quenched rotenone-induced MitoROS via ATP13A2. Interestingly, fluorescently labeled spermine uptake in the mitochondria dropped as a consequence of ATP13A2 transport deficiency. Our cellular observations were recapitulated in vivo, in a Caenorhabditis elegans strain deficient in the ATP13A2 ortholog catp-6. These animals exhibited a basal elevated MitoROS level, mitochondrial dysfunction, and enhanced stress response regulated by atfs-1, the C. elegans ortholog of ATF4, causing hypersensitivity to rotenone, which was reversible with MitoTEMPO. Together, our study reveals a conserved cell protective pathway that counters mitochondrial oxidative stress via ATP13A2-mediated lysosomal spermine export.

Loss-of-function mutations in ATP13A2 (PARK9) are causative for a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome (KRS, a juvenile onset parkinsonism with dementia) (1), early-onset Parkinson’s disease (PD) (2, 3), hereditary spastic paraplegia (HSP) (4), neuronal ceroid lipofuscinosis (5), and amyotrophic lateral sclerosis (6), which are commonly hallmarked by lysosomal and mitochondrial dysfunction (4, 6, 7). Also, ATP13A2 deficiency causes lysosomal and mitochondrial impairment in various models, as evidenced by decreased lysosomal functionality (8, 9), reduced mitochondrial clearance capacity (810), mitochondrial fragmentation, mitochondrial DNA damage, and increased oxygen consumption (11, 12).We recently discovered that ATP13A2 transports the polyamines spermidine and spermine from the late endo/lysosome to the cytosol (9). Polyamines are ubiquitous polycationic aliphatic amines that stabilize nucleic acids, influence protein folding, regulate ion channels, and modulate cell proliferation and differentiation (1315). We found that the late endo-lysosomal transporter ATP13A2 strongly contributes to the total cellular polyamine content via a two-step process: Firstly, polyamines enter the cell via endocytosis and subsequently, polyamines are transported by ATP13A2 into the cytosol (9). This process complements polyamine biosynthesis via the ornithine decarboxylase (ODC) pathway (9). Importantly, ATP13A2’s polyamine transport function is crucial for its neuroprotective effect, since it prevents lysosomal polyamine accumulation and subsequent lysosomal rupture, while improving lysosomal health and functionality (9). Moreover, when activated by its two regulatory lipids—phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] and phosphatidic acid (PA)—ATP13A2 exerts a cell protective effect against the mitochondrial neurotoxin rotenone (16), an environmental risk factor for PD (17). Rotenone is a mitochondrial complex I inhibitor, which leads to high levels of reactive oxygen species (ROS), promoting protein aggregation and damaging organelles. However, how ATP13A2’s polyamine transport function exerts a cell protective effect against rotenone, or other mitochondrial neurotoxins, is not yet clear.Interestingly, the transported substrates spermine and spermidine reduce oxidative stress (14, 15). Spermine is a potent free radical scavenger (18) and a biologically important antioxidant (1923). We therefore hypothesize that ATP13A2-mediated polyamine transport may counteract oxidative stress (16, 24) and preserve mitochondrial health (11, 12). Here, we demonstrate in complementary human cell models and Caenorhabditis elegans that lysosomal polyamine export by ATP13A2 effectively lowers ROS levels and promotes mitochondrial health and functionality, pointing to a lysosomal-dependent cell protective pathway that may be implicated in ATP13A2-related neurodegenerative disorders.  相似文献   

13.
The extracellular matrix (ECM) provides a precise physical and molecular environment for cell maintenance, self-renewal, and differentiation in the stem cell niche. However, the nature and organization of the ECM niche is not well understood. The adult freshwater planarian Schmidtea mediterranea maintains a large population of multipotent stem cells (neoblasts), presenting an ideal model to study the role of the ECM niche in stem cell regulation. Here we tested the function of 165 planarian homologs of ECM and ECM-related genes in neoblast regulation. We identified the collagen gene family as one with differential effects in promoting or suppressing proliferation of neoblasts. col4-1, encoding a type IV collagen α-chain, had the strongest effect. RNA interference (RNAi) of col4-1 impaired tissue maintenance and regeneration, causing tissue regression. Finally, we provide evidence for an interaction between type IV collagen, the discoidin domain receptor, and neuregulin-7 (NRG-7), which constitutes a mechanism to regulate the balance of symmetric and asymmetric division of neoblasts via the NRG-7/EGFR pathway.

Across the animal kingdom, stem cell function is regulated by the microenvironment in the surrounding niche (1), where the concentration of molecular signals for self-renewal and differentiation can be precisely regulated (2). The niche affects stem cell biology in many processes, such as aging and tissue regeneration, as well as pathological conditions such as cancer (3). Most studies have been done in tissues with large stem cell populations, such as the intestinal crypt (4) and the hair follicle (5) in mice. Elucidation of the role of the stem cell niche in tissue regeneration requires the study of animals with high regenerative potential, such as freshwater planarians (flatworms) (6). Dugesia japonica and Schmidtea mediterranea are two well-studied species that possess the ability to regenerate any missing body part (6, 7).Adult S. mediterranea maintain a high number of stem cells (neoblasts)—∼10 to 30% of all somatic cells in the adult worm—with varying potency, including pluripotent cells (814). Neoblasts are the only proliferating somatic cells: they are molecularly heterogeneous, but all express piwi-1 (1518). Lineage-committed neoblasts are “progenitors” that transiently express both piwi-1 and tissue-specific genes (15, 19). Examples include early intestinal progenitors (γ neoblast, piwi-1+/hnf4+) (8, 10, 15, 1921) and early epidermal progenitors (ζ neoblast, piwi-1+/zfp-1+) (8, 15). Other progenitor markers include collagen for muscles (22), ChAT for neurons (23), and cavII for protonephridia (24, 25). During tissue regeneration, neoblasts are recruited to the wound site, where they proliferate then differentiate to replace the missing cell types (16, 26). Some neoblasts express the pluripotency marker tgs-1, and are designated as clonogenic neoblasts (cNeoblasts) (10, 11). cNeoblasts are located in the parenchymal space adjacent to the gut (11).Neoblasts are sensitive to γ-irradiation and can be preferentially depleted in the adult planarian (27). After sublethal γ-irradiation, remaining cNeoblasts can repopulate the stem cell pool within their niche (10, 11). The close proximity of neoblasts to the gut suggests gut may be a part of neoblast niche (28, 29). When gut integrity was impaired by silencing gata4/5/6, the egfr-1/nrg-1 ligand-receptor pair, or wwp1, maintenance of non–γ-neoblasts were also disrupted (20, 30, 31), but whether that indicates the gut directly regulates neoblast remains unclear. There is evidence indicating the dorsal-ventral (D/V) transverse muscles surrounding the gut may promote neoblast proliferation and migration, with the involvement of matrix metalloproteinase mt-mmpB (32, 33). The central nervous system has also been implicated in influencing neoblast maintenance through the expression of EGF homolog neuregulin-7 (nrg-7), a ligand for EGFR-3, affecting the balance of neoblast self-renewal (symmetric or asymmetric division) (34).In other model systems, an important component of the stem-cell niche is the extracellular matrix (ECM) (35). Germline stem cells in Drosophila are anchored to niche supporting cells with ECM on one side, while the opposite side is exposed to differentiation signals, allowing asymmetric cell fate outcomes for self-renewal or differentiation following division (3638). Few studies have addressed the ECM in planarians, largely due to the lack of genetic tools to manipulate the genome, the absence of antibodies to specific planarian ECM homologs, or the tools required to study cell fate changes. However, the genomes of D. japonica (3941) and S. mediterranea (4145), and single-cell RNA-sequencing (scRNA-seq) datasets for S. mediterranea are now available (11, 4650). A recent study of the planarian matrisome demonstrated that muscle cells are the primary source of many ECM proteins (51), which, together with those produced by neoblasts and supporting parenchymal cells, may constitute components of the neoblast niche. For example, megf6 and hemicentin restrict neoblast’s localization within the parenchyma (51, 52). Functional studies also implicate ECM-modifiers, such as matrix metalloproteases (MMPs) in neoblast migration and regeneration. For example, reducing the activity of the ECM-degrading enzymes mt-mmpA (26, 33), mt-mmpB (53), or mmp-1 (33) impaired neoblast migration, proliferation, or overall tissue growth, respectively. Neoblasts are also likely to interact with ECM components of the niche via cell surface receptors, such as β1 integrin, inactivation of which impairs brain regeneration (54, 55).Here, we identified planarian ECM homologs in silico, followed by systematic functional assessment of 165 ECM and ECM-related genes by RNA interference (RNAi), to determine the effect on neoblast repopulation in planarians challenged by a sublethal dose of γ-irradiation (10). Surprisingly, multiple classes of collagens were shown to have the strongest effects. In particular, we show that the type IV collagens (COLIV) of basement membranes (BMs), were required to regulate the repopulation of neoblasts as well as lineage progression to progenitor cells. Furthermore, our data support an interaction between COLIV and the discoidin domain receptor (DDR) in neurons that activates signaling of NRG-7 in the neoblasts to regulate neoblast self-renewal versus differentiation. Together, these data demonstrate multifaceted regulation of planarian stem cells by ECM components.  相似文献   

14.
Inducible regulatory T (iTreg) cells play a crucial role in immune suppression and are important for the maintenance of immune homeostasis. Mounting evidence has demonstrated connections between iTreg differentiation and metabolic reprogramming, especially rewiring in fatty acid oxidation (FAO). Previous work showed that butyrate, a specific type of short-chain fatty acid (SCFA) readily produced from fiber-rich diets through microbial fermentation, was critical for the maintenance of intestinal homeostasis and capable of promoting iTreg generation by up-regulating histone acetylation for gene expression as an HDAC inhibitor. Here, we revealed that butyrate could also accelerate FAO to facilitate iTreg differentiation. Moreover, butyrate was converted, by acyl-CoA synthetase short-chain family member 2 (ACSS2), into butyryl-CoA (BCoA), which up-regulated CPT1A activity through antagonizing the association of malonyl-CoA (MCoA), the best known metabolic intermediate inhibiting CPT1A, to promote FAO and thereby iTreg differentiation. Mutation of CPT1A at Arg243, a reported amino acid required for MCoA association, impaired both MCoA and BCoA binding, indicating that Arg243 is probably the responsible site for MCoA and BCoA association. Furthermore, blocking BCoA formation by ACSS2 inhibitor compromised butyrate-mediated iTreg generation and mitigation of mouse colitis. Together, we unveil a previously unappreciated role for butyrate in iTreg differentiation and illustrate butyrate–BCoA–CPT1A axis for the regulation of immune homeostasis.

Regulatory T (Treg) cells are CD4+ T cells expressing Foxp3 that play a key role in immune suppression (13). They can be divided into natural Treg (nTreg) and inducible Treg (iTreg) cells (13). nTreg cells, which are often referred to as thymic Treg (tTreg), arise during CD4+ T cell differentiation in the thymus under the influence of relatively high-avidity interactions of the T cell receptor (TCR) with self-antigens (13). iTreg cells, also called peripherally induced Treg (pTreg), develop in secondary lymphoid tissues. In the presence of TGFβ1, naive CD4+ T are induced into iTreg cells upon TCR ligation and costimulation by antigen-presenting cells (APCs) in response to non-self antigens, such as allergens, food, and the commensal microbiota (13).It has been demonstrated that iTreg cells are enriched in gut-associated lymphoid tissues (GALTs) and are important for the maintenance of intestinal immune homeostasis (35). Intestinal iTreg cells were found to be important for the regulation of inflammatory bowel diseases (IBDs), such as Crohn’s disease (CD) and ulcerative colitis (UC), which can potentially affect any portion of the gastrointestinal tract and induce many further complications such as tissue fibrosis, stenosis, fistulas, and colon cancer over time (6). Enhancement of intestinal iTreg function or adoptive transfer of iTreg could significantly alleviate IBDs in mice (79).Different types of T cells are featured by distinct metabolic characteristics. Unlike effector CD4+ T cells (Teffs), including Th1, Th2, Th9, and Th17 cells, that are mainly reliant on aerobic glycolysis, iTreg cells largely rely on fatty acid oxidation (FAO) (1012). Accumulating evidence has demonstrated that T cell differentiation is always coupled with metabolic reprogramming (13, 14). For instance, FAO needs to be established in the process of iTreg differentiation. Up-regulation of FAO improved iTreg generation, whereas impairment in FAO compromised iTreg differentiation (12, 13, 15, 16).FAO, comprised of a cyclical series of reactions, demands different fatty acids (FAs), which can be divided into long-, medium-, and short-chain fatty acids (LCFAs, SCFAs, and MCFAs). It dominantly occurs in mitochondria and results in acetyl-CoA (AcCoA), which could be consumed in tricarboxylic acid (TCA) cycle. For the oxidation of LCFA, it initiates from LCFA activation in cytoplasm, resulting in long-chain acyl-CoA. Subsequently, these resulting molecules are converted into long-chain acyl-carnitine by carnitine palmitoyltransferase 1 (CPT1), which is anchored on the mitochondrial outer membrane. Following its shuttling into mitochondria, long-chain acyl-carnitine experiences a chain of reactions to support FAO. Apparently, the transportation of LCFA from cytoplasm into mitochondria is a prerequisite for FAO. CPT1, the rate-limiting enzyme controlling this key step, is thus recognized as a determinant for FAO. In contrast, SCFAs and MCFAs can diffuse across mitochondrial membrane and drive FAO in a CPT1-independent manner (17). Nevertheless, extensive investigations have suggested an important role for CPT1 in iTreg differentiation (12, 13, 15, 16).In recent years, butyrate, a specific type of SCFA produced from fiber-rich diets through microbial fermentation, was shown to play a critical role in the maintenance of intestinal homeostasis and was therefore recognized as an effective ingredient from food (1824). By modulating distinct types of immune cells, including dendritic cells (18, 19), macrophages (20), and B and T cells (2124), butyrate contributes to the orchestration of the delicate balance in intestinal immune system. Elegant investigations have elucidated that butyrate is able to facilitate iTreg differentiation by up-regulating Foxp3 expression as a histone deacetylase (HDAC) inhibitor (22, 23). Meanwhile, butyrate, as metabolic fuel and energy source, could also support FAO in colonic epithelial cells (25). However, whether butyrate could regulate FAO to promote iTreg differentiation is unclear.In this study, we found that increased FAO contributed to enhanced iTreg cell differentiation in response to butyrate. Butyrate was processed, by acyl-CoA synthetase short-chain family member 2 (ACSS2), into butyryl-CoA (BCoA), which played a critical role in the control of FAO by targeting CPT1A. We found that BCoA competed with malonyl-CoA (MCoA), the best-known metabolic intermediate inhibiting CPT1A, to unleash CPT1A activity for FAO and thereby iTreg differentiation. Inhibition of ACSS2 to block BCoA generation compromised butyrate-mediated iTreg generation as well as mitigation of mouse colitis. Collectively, we depicted a previously unappreciated mechanism, namely, the butyrate–BCoA–CPT1A regulatory axis, for iTreg differentiation.  相似文献   

15.
Macrophages are the key regulator of T-cell responses depending on their activation state. C-C motif chemokine receptor-like 2 (CCRL2), a nonsignaling atypical receptor originally cloned from LPS-activated macrophages, has recently been shown to regulate immune responses under several inflammatory conditions. However, whether CCRL2 influences macrophage function and regulates tumor immunity remains unknown. Here, we found that tumoral CCRL2 expression is a predictive indicator of robust antitumor T-cell responses in human cancers. CCRL2 is selectively expressed in tumor-associated macrophages (TAM) with immunostimulatory phenotype in humans and mice. Conditioned media from tumor cells could induce CCRL2 expression in macrophages primarily via TLR4, which is negated by immunosuppressive factors. Ccrl2−/− mice exhibit accelerated melanoma growth and impaired antitumor immunity characterized by significant reductions in immunostimulatory macrophages and T-cell responses in tumor. Depletion of CD8+ T cells or macrophages eliminates the difference in tumor growth between WT and Ccrl2−/− mice. Moreover, CCRL2 deficiency impairs immunogenic activation of macrophages, resulting in attenuated antitumor T-cell responses and aggravated tumor growth in a coinjection tumor model. Mechanically, CCRL2 interacts with TLR4 on the cell surface to retain membrane TLR4 expression and further enhance its downstream Myd88-NF-κB inflammatory signaling in macrophages. Similarly, Tlr4−/− mice exhibit reduced CCRL2 expression in TAM and accelerated melanoma growth. Collectively, our study reveals a functional role of CCRL2 in activating immunostimulatory macrophages, thereby potentiating antitumor T-cell response and tumor rejection, and suggests CCLR2 as a potential biomarker candidate and therapeutic target for cancer immunotherapy.

The central role of T cells, particularly cytotoxic CD8+ T cells (CTL), in anti-tumor immunity has been highlighted by the clinical success of cancer immunotherapies. Melanoma is known as an immunogenic tumor with abundant tumor-infiltrating T cells and is susceptible to immune checkpoint blockades (1). However, many types of cancer are not responsive to immunotherapy, and even for melanoma, less than 40% of patients could benefit from these therapies, possibly due to insufficient activation of tumor-specific CTL or their failure to infiltrate tumors (2).Macrophages constitute the largest fraction of tumor-infiltrating immune cells and act as an important regulator during cancer progression (36). The abundance of tumor-associated macrophages (TAM) is generally associated with impaired anti-tumor T-cell immunity and poor clinical outcome and response to treatment in solid tumors (710). However, in some cases, macrophages can be associated with a good prognosis; for example, high frequencies of HLA-DR+ macrophages within tumors have been associated with good outcomes (1113). It has become clear that TAM consist of a continuum of phenotypes, ranging from an immunostimulatory M1-like phenotype to an immunosuppressive M2-like phenotype (14, 15). M1-like macrophages predominate at sites of early oncogenesis, mediating anti-tumor effects including direct killing and activation of anti-tumor T-cell immunity (5, 7, 1618). Over tumor progression, macrophages can be shifted toward M2-like phenotype by responding to cues within the tumor microenvironment (TME) (1921). M2-like macrophages predominate in established tumors, mediating protumor effects including the induction of immunosuppression, promotion of angiogenesis, and tumor cell biology (5, 7). Thus, targeting macrophages has become an attracting strategy to complement the existing cancer immunotherapy. Instead of depletion of all macrophages which contain both anti- and protumor subsets, induction of immunostimulatory phenotype or reprograming TAM from protumor into anti-tumor phenotype could be more efficient to control tumor progression primarily by enhancing anti-tumor T-cell responses (7). Thus, identification of the key factors that regulate the activation state of macrophages, particularly those enforcing anti-tumor M1-like phenotype, could facilitate the development of new therapeutic targets to improve the efficacy of anti-cancer immunotherapy.C-C motif chemokine receptor-like 2 (CCRL2) was originally cloned from LPS-stimulated macrophages and first named as a LPS inducible C-C chemokine receptor related gene (l-CCR) (22). CCRL2 is absent in resting immune cells and induced in activated myeloid cells, but not T cells, under certain pathological conditions (2327). CCRL2 was later identified as a nonsignaling atypical receptor to enrich and present its ligand chemerin to the functional receptor, CMKLR1 (24). Further studies demonstrated that CCRL2 expressed in endothelial cells promotes CMKLR1-dependent dendritic cell (DC) and natural killer (NK) cell transmigration (28, 29). In addition, CCRL2 expression in activated neutrophils regulates CXCR2-dependent neutrophil chemotaxis toward CXCL8 (25). Surprisingly, the role of CCRL2 in macrophages remains unknown. Preclinical mouse studies demonstrated that CCRL2 is involved in several inflammatory diseases (25, 27, 30). However, the involvement of CCRL2 in tumors has been reported until very recently. CCRL2 expression in nonhematopoietic cells inhibits lung tumors by facilitating NK cell migration (29), while CCRL2 expression in human breast cancer tissues positively correlates to tumor-infiltrating immune cells (31).Here, we demonstrate that CCLR2 expression is not only a predictive indicator of robust anti-tumor immunity in human cancers but also plays a functional role in the activation of immunostimulatory macrophages via interacting with surface TLR4 and amplifying its downstream inflammatory signaling, finally leading to optimal anti-tumor T-cell responses.  相似文献   

16.
17.
18.
Hepatitis B virus (HBV) vaccines are composed of surface antigen HBsAg that spontaneously assembles into subviral particles. Factors that impede its humoral immunity in 5% to 10% of vaccinees remain elusive. Here, we showed that the low-level interleukin-1 receptor antagonist (IL-1Ra) can predict antibody protection both in mice and humans. Mechanistically, murine IL-1Ra–inhibited T follicular helper (Tfh) cell expansion and subsequent germinal center (GC)-dependent humoral immunity, resulting in significantly weakened protection against the HBV challenge. Compared to soluble antigens, HBsAg particle antigen displayed a unique capture/uptake and innate immune activation, including IL-1Ra expression, preferably of medullary sinus macrophages. In humans, a unique polymorphism in the RelA/p65 binding site of IL-1Ra enhancer associated IL-1Ra levels with ethnicity-dependent vaccination outcome. Therefore, the differential IL-1Ra response to particle antigens probably creates a suppressive milieu for Tfh/GC development, and neutralization of IL-1Ra would resurrect antibody response in HBV vaccine nonresponders.

Follicular helper T (Tfh) cells are antigen-experienced CD4+ T cells within B cell follicles of secondary lymphoid organs, such as lymph nodes (LN), spleens, and Peyer’s patches, that constitutively express the B cell follicle homing receptor CXCR5 (1). Upon cellular interaction and cross-signaling with their cognate follicular B (FoB) cells in the presence of follicular dendritic cells (FDCs), Tfh cells trigger the formation and maintenance of germinal centers (GCs) through the expression of CD40 ligand and the secretion of IL-21 and IL-4 (24). Tfh-dependent paracrine activation of CD40 results in B cell survival and differentiation in the GC (5), whereas isotype class switching is believed to occur predominantly outside GCs. Therefore, Tfh cells play a critical role in mediating the selection of high-affinity B cells that differentiate either into plasma cells or memory B cells (611).Besides the inducible T cell costimulator (ICOS) that activates Tfh cells to secrete IL-21, other cytokines [e.g., IL-2 (12), IL-6 (13), and IL-7 (14)] also signal for Tfh cell differentiation. The role of IL-1 signaling remained puzzling until recently: Tfh cells can be primed by IL-1β, whose production is licensed by IFN-β in response to infectious agents (15). Such featured innate response of IFN-β and IL-1β relies on the activation of TLR and inflammasomes by live, but not dead, bacteria or recombinant vaccines (16, 17). Therefore, OVA antigen augments Tfh cell response in mice only when IL-1β is exogenously applied at a nonphysiological high concentration (18), whereas endogenous IL-1β/IL-1R1 signaling may not be required for antibody responses to T-dependent or -independent antigens (1921). We reasoned that IL-1Ra (encoded by IL-1rn), which can compete with IL-1 for binding to IL-1R1 in the homeostatic inflammatory response (2224), would intrinsically antagonize IL-1β/IL-1R1 signaling for Tfh/GC development. For example, IL-1rn−/− mice exhibit an excessive antibody response to sheep red blood cells immunization (25, 26). A thorough investigation is required to dissect how IL-1 and IL-1Ra mutually regulate a homeostatic Tfh/GC response.LN macrophages are conventionally divided into two subtypes. Subcapsular sinus (SCS, CD169+F4/80) macrophages are specialized antigen presenting cells that capture certain particle or opsonized antigens and display them intact for cognate recognition by FoB cells (2730). SCS macrophages also relay immune complex to noncognate B cells for antibody affinity maturation (30). Macrophages in medullary sinus (MSM, CD169+F4/80+), in contrast, are potent in phagocytosis (31) for clearance of pathogens and particulate antigens from the lymph. It has been postulated 10 y ago that SCS may capture particle antigens, such as hepatitis B virus (HBV) vaccine, and migrate to follicles to facilitate more effective activation of B cells and FDCs (32). In this work, we found that murine antibody response inversely correlated to IL-1Ra level and clearly distinguished responders from nonresponders in volunteers receiving HBV vaccination. Further studies showed that LN macrophages subsets exhibited different capture and activation kinetics for particle and soluble antigens, and IL-1Ra expression by MSM could critically modulate IL-1R1 potentiation of Tfh cells and, hence, the specific antibody response to particle antigens. Therefore, mice lacking IL-1Ra or with IL-1Ra being neutralized yielded more robust antibody response to HBV vaccine and enables protection against chronic HBV infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号