首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease.  相似文献   

2.
Pheromone‐mediated conjugative transfer of enterococcal plasmids can contribute to the dissemination of genes involved in antibiotic resistance, fitness, and virulence among co‐residents of mixed microbial communities. We have previously shown that intergeneric signaling by the Streptococcus gordonii strain Challis heptapeptide s.g.cAM373 (SVFILAA) induces an aggregation substance‐mediated mating response and facilitates plasmid transfer from Enterococcus faecalis cells carrying the pheromone‐responsive plasmid pAM373 to both pheromone‐producing and non‐pheromone‐producing oral streptococcal recipients. To further investigate the streptococcal pheromone‐like peptides, s.g.cAM373‐like sequences were identified in the signal sequences of streptococcal CamG lipoproteins and their abilities to induce a mating response in E. faecalis/pAM373 cells were examined. Synthetic heptamers with the consensus sequence (A/S)‐(I/V)‐F‐I‐L‐(A/V/T)‐(S/A) induced AS‐mediated clumping. The conserved pheromone ABC transporter encoded by S. gordonii genome loci SGO_RS02660 and SGO_RS02665 was identified and confirmed to be required for s.g.cAM373 activity. Functional assays of culture supernatants from representative oral and blood isolates of S. gordonii showed that in addition to strains encoding s.g.cAM373, strain SK120, encoding the newly identified pheromone s.g.cAM373‐V (SVFILVA), was able to induce enterococcal clumping, whereas strains SK6, SK8, SK9, and SK86 which encoded s.g.cAM373‐T (SVFILTA) did not elicit a detectable mating response. Absence of pheromone activity in supernatants of heterologous hosts encoding its CamG precursor suggested that s.g.cAM373‐T was not effectively processed and/or transported. Overall, these studies demonstrated the distribution of active pheromone peptides among strains of S. gordonii, and support a potential role for enterococcal–streptococcal communication in contributing to genetic plasticity in the oral metagenome.  相似文献   

3.
Bacteria that persist in the oral cavity exist within complex biofilm communities. A hallmark of biofilms is the presence of an extracellular polymeric substance (EPS), which consists of polysaccharides, extracellular DNA (eDNA), and proteins, including the DNABII family of proteins. The removal of DNABII proteins from a biofilm results in the loss of structural integrity of the eDNA and the collapse of the biofilm structure. We examined the role of DNABII proteins in the biofilm structure of the periodontal pathogen Porphyromonas gingivalis and the oral commensal Streptococcus gordonii. Co‐aggregation with oral streptococci is thought to facilitate the establishment of P. gingivalis within the biofilm community. We demonstrate that DNABII proteins are present in the EPS of both S. gordonii and P. gingivalis biofilms, and that these biofilms can be disrupted through the addition of antisera derived against their respective DNABII proteins. We provide evidence that both eDNA and DNABII proteins are limiting in S. gordonii but not in P. gingivalis biofilms. In addition, these proteins are capable of complementing one another functionally. We also found that whereas antisera derived against most DNABII proteins are capable of binding a wide variety of DNABII proteins, the P. gingivalis DNABII proteins are antigenically distinct. The presence of DNABII proteins in the EPS of these biofilms and the antigenic uniqueness of the P. gingivalis proteins provide an opportunity to develop therapies that are targeted to remove P. gingivalis and biofilms that contain P. gingivalis from the oral cavity.  相似文献   

4.
The cell envelope of gram‐negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host–pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea‐extracted membrane proteins were identified by mass spectrometry‐based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 27% of the predicted open reading frames in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. A total of 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, whereas others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity.  相似文献   

5.
Streptococcus mutans is generally considered to be the principal etiological agent for dental caries. Many of the proteins necessary for its colonization of the oral cavity and pathogenesis are exported to the cell surface or the extracellular matrix, a process that requires the assistance of the export machineries. Bioinformatic analysis revealed that the S. mutans genome contains a prsA gene, whose counterparts in other gram‐positive bacteria, including Bacillus and Lactococcus, encode functions involved in protein post‐export. In this study, we constructed a PrsA‐deficient derivative of S. mutans and demonstrated that the prsA mutant displayed an altered cell wall/membrane protein profile as well as cell‐surface‐related phenotypes, including auto‐aggregation, increased surface hydrophobicity and abnormal biofilm formation. Further analysis revealed that the disruption of the prsA gene resulted in reduced insoluble glucan production by cell surface localized glucosyltransferases, and mutacin as well as cell surface‐display of a heterologous expressed GFP fusion to the cell surface protein SpaP. Our study suggested that PrsA in S. mutans encodes functions similar to those identified in Bacillus, and so is likely to be involved in protein post‐export.  相似文献   

6.
Oral mucositis is a common side effect of cancer chemotherapy, with significant adverse impact on the delivery of anti‐neoplastic treatment. There is a lack of consensus regarding the role of oral commensal microorganisms in the initiation or progression of mucositis because relevant experimental models are non‐existent. The goal of this study was to develop an in vitro mucosal injury model that mimics chemotherapy‐induced mucositis, where the effect of oral commensals can be studied. A novel organotypic model of chemotherapy‐induced mucositis was developed based on a human oral epithelial cell line and a fibroblast‐embedded collagen matrix. Treatment of organotypic constructs with 5‐fluorouracil (5‐FU) reproduced major histopathologic characteristics of oral mucositis, such as DNA synthesis inhibition, apoptosis and cytoplasmic vacuolation, without compromising the three‐dimensional structure of the multilayer organotypic mucosa. Although structural integrity of the model was preserved, 5‐FU treatment resulted in a widening of epithelial intercellular spaces, characterized by E‐cadherin dissolution from adherens junctions. In a neutrophil transmigration assay we discovered that this treatment facilitated transport of neutrophils through epithelial layers. Moreover, 5‐FU treatment stimulated key proinflammatory cytokines that are associated with the pathogenesis of oral mucositis. 5‐FU treatment of mucosal constructs did not significantly affect fungal or bacterial biofilm growth under the conditions tested in this study; however, it exacerbated the inflammatory response to certain bacterial and fungal commensals. These findings suggest that commensals may play a role in the pathogenesis of oral mucositis by amplifying the proinflammatory signals to mucosa that is injured by cytotoxic chemotherapy.  相似文献   

7.
Biomarker research in oral squamous cell carcinoma (OSCC) aims for screening/early diagnosis and in predicting its recurrence, metastasis and overall prognosis. This article reviews the current molecular perspectives and diagnosis of oral cancer with proteomics using matrix‐assisted laser desorption ionization (MALDI) and surface‐enhanced laser desorption ionization (SELDI) mass spectrometry (MS). This method shows higher sensitivity, accuracy, reproducibility and ability to handle complex tissues and biological fluid samples. However, the data interpretation tools of contemporary mass spectrometry still warrant further improvement. Based on the data available with laser‐based mass spectrometry, biomarkers of OSCC are classified as (i) diagnosis and prognosis, (ii) secretory, (iii) recurrence and metastasis, and (iv) drug targets. Majority of these biomarkers are involved in cell homeostasis and are either physiologic responders or enzymes. Therefore, proteins directly related to tumorigenesis have more diagnostic value. Salivary secretory markers are another group that offers a favourable and easy strategy for non‐invasive screening and early diagnosis in oral cancer. Key molecular inter‐related pathways in oral carcinogenesis are also intensely researched with software analysis to facilitate targeted drug therapeutics. The review suggested the need for incorporating ‘multiple MS or tandem approaches’ and focusing on a ‘group of biomarkers’ instead of single protein entities, for making early diagnosis and treatment for oral cancer a reality.  相似文献   

8.
9.
Extracellular vesicles (EVs, including exosomes) are a group of heterogeneous nanometer‐sized vesicles that are released by all types of cells and serve as functional mediators of cell‐to‐cell communication. This ability is primarily due to their capacity to package and transport various proteins, lipids, and nucleic acids—namely DNA and messenger RNA (mRNA), but also microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs). These contents can influence the function and fate of both recipient and donor cells. More and more studies have shown that EVs are involved in every phase of cancer development, mediating bidirectional cross talk between cancer cells and their tissue microenvironment. More specifically, EVs can promote tumor progression by modifying vesicular contents and establishing a distant premetastatic niche with molecules that favor cancer cell proliferation, migration, invasion, metastasis, angiogenesis, and even drug resistance. Given that the packaging of these molecules is known to be tissue‐specific, EVs can not only serve as novel prognostic and diagnostic markers but also be used as potential therapeutic targets and vehicles for drug delivery. The present review discusses the current understanding of the multifaceted roles of EVs in the progression of oral and salivary gland cancers, as well as their potential use in clinical applications.  相似文献   

10.
The junctional epithelium (JE) is a specialized portion of the gingiva that seals off the tooth‐supporting tissues from the oral environment. This relationship is achieved via a unique adhesive extracellular matrix that is, in fact, a specialized basal lamina (sBL). Three unique proteins – amelotin (AMTN), odontogenic ameloblast‐associated (ODAM), and secretory calcium‐binding phosphoprotein proline‐glutamine rich 1 (SCPPPQ1) – together with laminin‐332 structure the supramolecular organization of this sBL and determine its adhesive capacity. Despite the constant challenge of the JE by the oral microbiome, little is known of the susceptibility of the sBL to bacterial degradation. Assays with trypsin‐like proteases, as well as incubation with Porphyromonas gingivalis, Prevotella intermedia, and Treponema denticola, revealed that all constituents, except SCPPPQ1, were rapidly degraded. Porphyromonas gingivalis was also shown to alter the supramolecular network of reconstituted and native sBLs. These results provide evidence that proteolytic enzymes and selected gram‐negative periodontopathogenic bacteria can attack this adhesive extracellular matrix, intimating that its degradation could contribute to progression of periodontal diseases.  相似文献   

11.
Introduction: Fusobacterium nucleatum represents one of the predominant anaerobic species in the oral microbiota. Penicillin‐resistant F. nucleatum have been isolated from intra‐ and extraoral infections. This study aimed to assess ampicillin resistance in F. nucleatum by investigating the synthesis of resistance‐associated proteins. Methods: Ampicillin‐resistant and ampicillin‐susceptible F. nucleatum isolates were obtained from 22 dental plaque samples. Two‐dimensional gel electrophoresis and mass spectrometry were used to investigate bacterial protein synthesis. Proteins exhibiting statistically significant quantitative changes between sensitive and resistant isolates were identified using peptide mass mapping and matrix‐assisted laser desorption/ionization – time of flight/time of flight (MALDI‐TOF/TOF) mass spectrometry. Results: Twenty‐three F. nucleatum isolates were recovered from plaque samples and their ampicillin minimum inhibitory concentrations ranged between 0.125 μg/ml and 256 μg/ml. Analysis of the bacterial cellular proteins by two‐dimensional gel electrophoresis resolved 154–246 distinct protein spots (mean 212, n = 9). Between 32% and 83% of the protein spots were common for the F. nucleatum isolates. Comparisons of the protein profiles of sensitive and resistant isolates revealed the presence of a 29 kDa protein and significant increases in the synthesis of two proteins at 37 and 46 kDa in the ampicillin‐resistant F. nucleatum isolates. These proteins were identified as a class D β‐lactamase, ATP‐binding cassette (ABC) transporter ATP‐binding protein and enolase, respectively. Conclusion: Synthesis of a class D β‐lactamase by ampicillin‐resistant F. nucleatum isolates could complicate antimicrobial treatment because these enzymes might confer resistance to many classes of β‐lactam antibiotics. The differences observed in protein synthesis between ampicillin‐resistant and ampicillin‐susceptible F. nucleatum may contribute to the antibiotic resistance and virulence of these bacteria.  相似文献   

12.
13.
14.
The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter‐kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial‐mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.  相似文献   

15.
Adhesin‐mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species‐specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non‐mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram‐positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD‐SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species‐ and subspecies‐dependent adhesin interactions.  相似文献   

16.
Background: Autoinducer (AI)‐2 has an important role in biofilm formation in the oral environment. Mature biofilms formed as a result of the cell‐to‐cell communication make it difficult to overcome periodontitis with the use of antibiotics. Previous in vitro studies suggest that quorum‐sensing inhibitors (QSIs) interfere with AI‐2. This study compares the QSI effects resulting from an oral inoculation of Porphyromonas gingivalis in an experimental animal model. Methods: Forty‐five male mice were divided into three groups (n = 15 each): 1) infection; 2) QSI; and 3) control. Infection and QSI groups received oral inoculation of P. gingivalis, whereas treatment with QSIs (furane compound and d ‐ribose) was only performed in the QSIs group. The control group was a negative control not receiving manipulation. After 42 days, mice were sacrificed, and the distance from the alveolar bone crest (ABC) to the cemento‐enamel junction (CEJ) was measured by microcomputed tomography. P. gingivalis DNA was quantified in the soft and hard tissues around the molar teeth by real‐time polymerase chain reaction. Results: Distance from ABC to CEJ was significantly increased in the P. gingivalis infection group compared with the control group (P = 0.02) and significantly decreased in the QSI group compared with the infection group (P = 0.02). The QSI group contained 31.64% of the bacterial DNA count of the infection group. Conclusion: Use of QSIs in the mice infection model showed a reduction of bone breakdown and a decrease in the number of bacteria in vivo, suggesting that QSIs can be a new approach to prevention and treatment of periodontitis.  相似文献   

17.
Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida–streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual‐species biofilms. Three‐dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast‐embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild‐type strain, or pseudohyphal‐forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.  相似文献   

18.
Lactobacillus rhamnosus is a lactic acid bacterium with a diverse ecological habitat. We recently isolated a L. rhamnosus strain (LRB) from a healthy baby‐tooth that had naturally fallen out. We determined the whole genome sequence of LRB and found that the isolate is closely genetically related to an intestinal isolate, L. rhamnosus GG (ATCC 53103). However, the LRB genome had lost about a 75‐kb segment and undergone a genomic rearrangement. We assessed LRB's capacity to survive in the gut environment, at least temporarily. We found that LRB, like the intestinal isolate ATCC 53103, showed resistance to low pH but sensitive to bile salt. Surprisingly, we found that this oral isolate LRB showed strong antimicrobial activity against a variety of oral streptococci including Streptococcus mutans. The production of antimicrobial activity is dependent on media composition since some media supported the production while others did not. The production of antimicrobial activity is also dependent on growth temperature, with optimal production at 37°C. The antimicrobial activity was not restricted to streptococci, but effective against a variety of organisms, including ESKAPE pathogens.  相似文献   

19.
Type II toxin/antitoxin (TA) systems contribute to the formation of persister cells and biofilm formation for many organisms. Aggregatibacter actinomycetemcomitans thrives in the complex oral microbial community subjected to continual environmental flux. Little is known regarding the presence and function of type II TA systems in this organism or their contribution to adaptation and persistence in the biofilm. We identified 11 TA systems that are conserved across all seven serotypes of A. actinomycetemcomitans and represent the RelBE, MazEF and HipAB families of type II TA systems. The systems selectively responded to various environmental conditions that exist in the oral cavity. Two putative RelBE‐like TA systems, D11S_1194‐1195 and D11S_1718‐1719 were induced in response to low pH and deletion of D11S_1718‐1719 significantly reduced metabolic activity of stationary phase A. actinomycetemcomitans cells upon prolonged exposure to acidic conditions. The deletion mutant also exhibited reduced biofilm biomass when cultured under acidic conditions. The D11S_1194 and D11S_1718 toxin proteins inhibited in vitro translation of dihydrofolate reductase (DHFR) and degraded ribosome‐associated, but not free, MS2 virus RNA. In contrast, the corresponding antitoxins (D11S_1195 and D11S_1719), or equimolar mixtures of toxin and antitoxin, had no effect on DHFR production or RNA degradation. Together, these results suggest that D11S_1194‐1195 and D11S_1718‐1719 are RelBE‐like type II TA systems that are activated under acidic conditions and may function to cleave ribosome‐associated mRNA to inhibit translation in A. actinomycetemcomitans. In vivo, these systems may facilitate A. actinomycetemcomitans adaptation and persistence in acidic local environments in the dental biofilm.  相似文献   

20.
Porphyromonas gingivalis and Tannerella forsythia are gram‐negative pathogens strongly associated with periodontitis. Their abilities to interact, invade and persist within host cells are considered crucial to their pathogenicity, but the mechanisms by which they subvert host defences are not well understood. In this study, we set out to investigate whether P. gingivalis and T. forsythia directly target key signalling molecules that may modulate the host cell phenotype to favour invasion and persistence. Our data identify, for the first time, that P. gingivalis, but not T. forsythia, reduces levels of intracellular mammalian target of rapamycin (mTOR) in oral epithelial cells following invasion over a 4‐h time course, via the action of gingipains. The ability of cytochalasin D to abrogate P. gingivalis‐mediated mTOR degradation suggests that this effect is dependent upon cellular invasion. We also show that levels of several other proteins in the mTOR signalling pathway are modulated by gingipains, either directly or as a consequence of mTOR degradation including p‐4E‐BP1. Taken together, our data suggest that P. gingivalis manipulates the mTOR pathway, providing evidence for a potentially novel mechanism by which P. gingivalis mediates its effects on host cell responses to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号