首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Preterm infants often spend a significant amount of time in the neonatal intensive care unit (NICU) where they are exposed to many stressors including pain and reduced maternal care. These early-life stressful experiences can have negative consequences on brain maturation during the neonatal period; however, less is known about the long-term cognitive and affective outcomes. Thus, this study was conducted to investigate the impact of neonatal pain and reduced maternal care on adult behavior and HPA axis reactivity in an animal model. Male and female rats underwent a series of repetitive needle pokes and/or reduced maternal care (through a novel tea ball infuser encapsulation method) during the first 4 days of life and were then assessed in a battery of behavioral tests as adults. We found that early-life pain enhanced spatial learning independent of the animal's sex, but altered HPA recovery from an acute stressor in females only. Moreover, reduced maternal care altered long-term spatial memory and reversal learning in males. These findings indicate that neonatal stressors have unique sex-dependent long-term biobehavioral effects in rodents. Continued examination of the behavioral consequences of these stressors may help explain varying vulnerability and resiliency in preterm infants who experienced early stress in the NICU.  相似文献   

2.
Cortisol levels were compared in children born preterm at extremely low gestational age (ELGA; 24-28 weeks), very low gestational age (VGLA; 29-32 weeks), and full-term in response to cognitive assessment at 18 months corrected age (CA). Further, we investigated the relationship between maternal interactive behaviors and child internalizing behaviors (rated by the mother) in relation to child cortisol levels. EGLA children had higher "pretest" cortisol levels and a different pattern of cortisol response to cognitive assessment compared to VGLA and full-terms. Higher cortisol levels in ELGA, but not full-term, children were associated with less optimal mother interactive behavior. Moreover, the pattern of cortisol change was related to internalizing behaviors among ELGA, and to a lesser degree VLGA children. In conclusion, our findings suggest altered programming of the hypothalamic-pituitary-adrenal (HPA) axis in preterm children, as well as their greater sensitivity to environmental context such as maternal interactive behavior.  相似文献   

3.
The hypothalamic-pituitary-adrenal (HPA) axis plays an important immunomodulatory role during viral infection. Activation of the HPA axis ultimately leads to elevated plasma levels of glucocorticoid (GC) hormones with the ability to mediate adaptive behavioral, metabolic, cardiovascular and immune system effects. In this review, we focus on the modulation of anti-viral immunity and viral pathogenesis by the HPA axis.  相似文献   

4.
The hypothalamo–pituitary–adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.  相似文献   

5.
6.
The present study examined the consistency over time of individual differences in behavioral and physiological responsiveness of calves to intuitively alarming test situations as well as the relationships between behavioral and physiological measures. Twenty Holstein Friesian heifer calves were individually subjected to the same series of two behavioral and two hypothalamo-pituitary-adrenocortical (HPA) axis reactivity tests at 3, 13 and 26 weeks of age. Novel environment (open field, OF) and novel object (NO) tests involved measurement of behavioral, plasma cortisol and heart rate responses. Plasma ACTH and/or cortisol response profiles were determined after administration of exogenous CRH and ACTH, respectively, in the HPA axis reactivity tests. Principal component analysis (PCA) was used to condense correlated measures within ages into principal components reflecting independent dimensions underlying the calves' reactivity. Cortisol responses to the OF and NO tests were positively associated with the latency to contact and negatively related to the time spent in contact with the NO. Individual differences in scores of a principal component summarizing this pattern of inter-correlations, as well as differences in separate measures of adrenocortical and behavioral reactivity in the OF and NO tests proved highly consistent over time. The cardiac response to confinement in a start box prior to the OF test was positively associated with the cortisol responses to the OF and NO tests at 26 weeks of age. HPA axis reactivity to ACTH or CRH was unrelated to adrenocortical and behavioral responses to novelty. These findings strongly suggest that the responsiveness of calves was mediated by stable individual characteristics. Correlated adrenocortical and behavioral responses to novelty may reflect underlying fearfulness, defining the individual's susceptibility to the elicitation of fear. Other independent characteristics mediating reactivity may include activity or coping style (related to locomotion) and underlying sociality (associated with vocalization).  相似文献   

7.
The time around birth is accompanied by behavioural and physiological adaptations of the maternal brain, which ensure reproductive functions, maternal care and the survival of the offspring. In addition, profound neuroendocrine and neurobiological adaptations have been described with respect to behavioural and neuroendocrine stress responsiveness in rodents and human mothers. Thus, the hormonal response of the hypothalamo-pituitary-adrenal (HPA) axis and the response of the sympathetic nervous system to emotional and physical stressors are severely attenuated. Moreover, anxiety-related behaviour and emotional responsiveness to stressful stimuli are reduced with the result of general calmness. These complex adaptations of the maternal brain are likely to be a consequence of an increased activity of brain systems with inhibitory effects on the HPA axis (such as the oxytocin and prolactin systems) and of a reduced activity of excitatory pathways (noradrenaline (norepinephrine), corticotrophin-releasing factor and opioids). Experimental manipulation of these systems using complementary approaches indeed demonstrates their importance in these maternal brain adaptations. Maternal stress adaptations are not only important for the healthy prenatal development of the offspring by preventing excessive glucocorticoid responses and in the promotion of postnatal maternal behaviour, but are also vital for the well-being of the mother and her mental health.  相似文献   

8.
The neuropeptide oxytocin (OT) supports the development of parenting in mammals primarily through its impact on parent-infant proximity and touch behaviors; however, much less is known about the links between OT and parental touch and contact in humans. In this study, we examined the relations between maternal and paternal OT and patterns of touch and contact in the family unit during triadic interactions. Thirty-seven parents and their firstborn child were seen twice: during the 2nd and 6th postpartum month. Plasma OT and salivary cortisol (CT) were assessed with ELISA methods. At six months, triadic mother-father-infant interactions were videotaped and micro-coded for patterns of proximity, touch, and gaze behavior. Triadic synchrony, defined as moments of coordination between physical proximity and affectionate touch between the parents as well as between parent and infant while both parent and child are synchronizing their social gaze, was predicted by both maternal and paternal OT. Among mothers, triadic synchrony was also independently related to lower levels of CT. Results highlight the role of OT in the early formation of the family unit at the transition to parenthood.  相似文献   

9.
Social interactions can profoundly affect the hypothalamic-pituitary-adrenal (HPA) axis. Although most research on social modulation of glucocorticoid concentrations has focused on the consequences of exposure to stressful social stimuli, there is a growing body of literature which suggests that social support in humans and affiliative behaviors in some animals can provide a buffer against stress and have a positive impact on measures of health and well-being. This review will compare HPA axis activity among individuals for whom social relationships are maintained through aggressive displays, such as dominance hierarchies, vs. individuals engaging in high levels of prosocial behavior. We also will examine oxytocin, a neuropeptide that is well known for promoting social behavior, as the physiological link between positive social interactions and suppression of the HPA axis. Despite many examples of social interaction modulating the HPA axis and improving health outcomes, there is relatively little known regarding the underlying mechanisms through which social behavior can provide a buffer against stress-related disease.  相似文献   

10.
BACKGROUND: The hypothalamic-pituitary-adrenal (HPA) axis exerts a complex, mostly inhibitory, effect on the female reproductive system. In addition, the principal regulator of this axis, the hypothalamic neuropeptide corticotropin-releasing hormone (CRH) and its receptors have been identified in most female reproductive tissues, including the ovary, uterus, and placenta. Furthermore, CRH is secreted in peripheral inflammatory sites where it exerts strong inflammatory actions. Antalarmins (CRH receptor type 1 antagonists) have been used to elucidate the roles of CRH in stress, inflammation and reproduction. METHOD OF STUDY: We review existing data on the effects of CRH in the female reproductive system. RESULTS: Ovarian CRH participates in female sex steroid production, follicular maturation, ovulation and luteolysis. Uterine CRH participates in decidualization, implantation, and early maternal tolerance. Placental CRH participates in the physiology of pregnancy and the onset of parturition. Circulating placental CRH is secreted mostly during the latter half of pregnancy and is responsible for the concurrently increasing physiologic hypercortisolism of this period. After labor and delivery, this hypercortisolism is ensued by a transient suppression of hypothalamic CRH secretion, which may explain the postpartum blues and depression and the increased autoimmune manifestations depression of period, the postpartum period. CONCLUSIONS: These data show that CRH is present in female reproductive tissues, and is regulating key reproductive functions with an inflammatory component, such as ovulation, luteolysis, implantation, and parturition.  相似文献   

11.
Pair-bonded relationships form during periods of close spatial proximity and high sociosexual contact. Like other monogamous species, marmosets form new social pairs after emigration or ejection from their natal group resulting in periods of social isolation. Thus, pair formation often occurs following a period of social instability and a concomitant elevation in stress physiology. Research is needed to assess the effects that prolonged social isolation has on the behavioral and cortisol response to the formation of a new social pair. We examined the sociosexual behavior and cortisol during the first 90-days of cohabitation in male and female Geoffroy's tufted-ear marmosets (Callithrix geoffroyi) paired either directly from their natal group (Natal-P) or after a prolonged period of social isolation (ISO-P). Social isolation prior to pairing seemed to influence cortisol levels, social contact, and grooming behavior; however, sexual behavior was not affected. Cortisol levels were transiently elevated in all paired marmosets compared to natal-housed marmosets. However, ISO-P marmosets had higher cortisol levels throughout the observed pairing period compared to Natal-P marmoset. This suggests that the social instability of pair formation may lead to a transient increase in hypothalamic-pituitary-adrenal (HPA) axis activity while isolation results in a prolonged HPA axis dysregulation. In addition, female social contact behavior was associated with higher cortisol levels at the onset of pairing; however, this was not observed in males. Thus, isolation-induced social contact with a new social partner may be enhanced by HPA axis activation, or a moderating factor.  相似文献   

12.
The role of material responsiveness to offspring behaviors in the research on early experience and behavioral development is discussed. The proposition is offered that the behavioral changes following experimenter manipulation of the offspring during the preweaning period, as by handling, isolation, shock stimulation, or cold stress, are attributable to the altered interaction between mother and infant, such that the mother responds differentially to certain behaviors of her offspring or predominantly to those offspring showing such behaviors. In support of this proposition, data are cited on preferential maternal responsiveness to infants by sex and the frequency is enumerated of significant Sex × Treatment interactions in the early experience studies.  相似文献   

13.
Infant rats deprived of food, maternal care, and the opportunity to suckle display a dramatic behavioral activation and vigorously ingest when provided milk through oral cannulas. These experiments assessed which components of deprivation are important in producing these responses to milk. Nutritional deprivation alone, with or without the presence of an active maternal female, appears to be sufficient to produce ingestion. Behavioral activation, on the other hand, appears to require both nutritional deprivation and deprivation from a maternal female. The effect of maternal stimulation on later behavioral reactivity was not a function of the pups' opportunity to suckle. However, active maternal stimulation was more effective in preventing activation than was passive maternal stimulation (e.g., thermotactile and olfactory stimulation). Stimulation provided by an active, nonlactating mother was effective in preventing behavioral activation, but the effect was short-lived, lasting only 2 hr after the pup was removed from the mother's care. This series of studies thus reveals that identified components of maternal separation have dissociable effects on appetitively motivated behaviors in infant rats.  相似文献   

14.
Methamphetamine, a potent and indirect dopaminergic agonist, also increases glucocorticoid hormone secretion. Glucocorticoid hormones facilitate behavioral effects of methamphetamine in rodents. Several reports suggest that glucocorticoid hormones modulate expression of DNA (cytosine-5-)-methyltransferase 1 (Dnmt1). Dnmt1 was originally recognized as being involved in DNA replication, but a recent study found high levels of Dnmt1 in rodent brains, suggesting a neuron-specific unknown function of Dnmt1. In the present study, we found subchronic methamphetamine treatment (4 mg/kg, i.p., once daily for 21 days) to induce different patterns of Dnmt1 mRNA expression in the nucleus caudatus and nucleus accumbens of two inbred rat strains, Fischer 344/N (increased Dnmt1) and Lewis/N (decreased Dnmt1). These patterns paralleled methamphetamine-induced striatal glucocorticoid receptor mRNA in these two rat strains in our previous study. Because Fischer rats have a hyperresponsive negative feedback in their hypothalamic-pituitary-adrenocortical (HPA) axis and thus a shorter duration corticosterone response to subchronic methamphetamine treatment, they were resistant to sensitizing effects of methamphetamine and their glucocorticoid receptor mRNA levels were upregulated. Lewis rats which have a hyporesponsive feedback in their HPA axis and a longer duration of corticosterone secretion with subchronic methamphetamine were prone to methamphetamine sensitization and their striatal glucocorticoid receptor mRNA levels were downregulated. Our present data suggest that methamphetamine results in differential DNA methylation as well as gene expression in the nucleus caudatus and nucleus accumbens of F344 and Lewis rats. Methamphetamine-induced differences in gene expression might be related to the contrasting susceptibilities of these rats to behavioral and neurochemical effects of methamphetamine.  相似文献   

15.
Prenatal depression is associated with adverse offspring outcomes, and the prevailing mechanistic theory to account for mood-associated effects implicates alterations of the maternal and foetal hypothalamic-pituitary adrenal (HPA) axes. Recent research suggests that depression may be associated with a failure to attenuate cortisol reactivity during early pregnancy. The aim of the current study is to investigate whether this effect continues into mid and late gestation. A further aim is to test whether maternal prenatal cortisol reactivity directly predicts infant cortisol reactivity. One hundred three pregnant women were recruited during either the second or third trimester. Depressive symptoms were assessed by self-report, and maternal salivary cortisol responses to a stressor (infant distress film) were measured. Approximately 2 months after birth, mothers (n?=?88) reported postnatal depression and infant salivary cortisol responses to inoculation were measured. Prenatal depression was not associated with cortisol reactivity to acute stress in mid and late pregnancy. Similarly, neither prenatal depression nor maternal prenatal cortisol reactivity predicted infant cortisol reactivity to inoculation at 2 months. If the effects of prenatal depression on foetal and infant development are mediated by alterations of the maternal and foetal HPA axes, then early pregnancy may be a particularly vulnerable period. Alternatively, changes to HPA reactivity may not be as central to this association as previously thought.  相似文献   

16.
We studied the long term effects of neonatal stress in female rats and subsequent responses to stress when adults. Female rats that experienced maternal separation (MS) showed in adulthood depressive-like behavior in the forced swimming test and cognitive impairments in the novel object recognition test, which were reverted by the glucocorticoid receptor antagonist mifepristone or the beta-adrenoceptor antagonist propranolol. Markers of HPA axis (corticosterone levels, CRF mRNA levels in the paraventricular nucleus and glucocorticoid receptor density in the hippocampus) were altered by MS, suggesting that an altered HPA axis function may be associated to behavioral and cognitive deficits in MS female rats. In addition, MS rats were found to be more vulnerable to chronic stress than controls as shown by decreases in open field activity, increases in immobility time in the forced swim test, and changes in markers of HPA axis (decreases in the density of glucocorticoid receptors). These present findings are discussed in terms of gender differences in adulthood.  相似文献   

17.
The stress response alters behavior, autonomic function and secretion of multiple hormones, including CRF, ACTH, and glucocorticoid, through the HPA axis. Consecutive stress exposures lead to HPA axis dysregulation such as hyperactivity in Alzheimer's disease and depression, and hypoactivity in post-traumatic stress disorder. In the present study, we established a model of hypoactivated HPA axis in rat through chronic administration of corticosterone (40 mg/kg, s.c.) for 19 consecutive days. In this model, CRF mRNA expression in the hypothalamus and ACTH levels in serum were significantly decreased by chronic administration of corticosterone. In addition, the effect of treadmill exercise was investigated in our hypoactivated HPA axis rat model. Treadmill exercise recovered the dysregulated hypoactivity of the HPA axis induced by corticosterone administration for 19 days. The results of the present study suggest that treadmill exercise may aid recovery of hypoactivated HPA axis dysregulation in psychological diseases such as post-traumatic stress disorder.  相似文献   

18.
Studies of mother–infant relationships in nonhuman primates have increasingly attempted to understand the neuroendocrine bases of interindividual variation in mothering styles and the mechanisms through which early exposure to variable mothering styles affects infant behavioral development. In this study of free-ranging rhesus macaques on Cayo Santiago, Puerto Rico, we aimed to: 1) compare lactating and nonlactating females to investigate whether lactation is associated with changes in plasma cortisol, prolactin and oxytocin, as well as changes in CSF levels of serotonin and dopamine metabolites (5-HIAA and HVA); 2) examine the extent to which interindividual variation in maternal physiology is associated with variation in maternal behavior; 3) examine the extent to which interindividual variation in infant physiology and behavior is accounted for by variation in maternal physiology and behavior. Lactating females had higher plasma concentrations of cortisol, prolactin, and oxytocin but lower CSF concentrations of HVA than nonlactating females. Variation in maternal rejection behavior was positively correlated with variation in maternal plasma cortisol levels and in CSF 5-HIAA levels while variation in the time spent nursing and grooming was associated with maternal plasma oxytocin levels. Infants who were protected more by their mothers had higher cortisol levels than those who were protected less, while infants who were rejected more had lower CSF 5-HIAA than infants who were rejected less. Since exposure to high levels of maternal protectiveness and rejection is known to affect the offspring's behavior and responsiveness to the environment later in life, our results are consistent with the hypothesis that these effects are mediated by long-term changes in the activity of the offspring's HPA axis and brain serotonergic system.  相似文献   

19.
Juvenile female rats show maternal-like behavior toward pups. The purpose of the following experiment was to investigate whether the HPA axis, through the use of early separation manipulations that alter HPA functioning in rats, plays a role in the juvenile response to foster pups. Female rats were early deprived or maternally separated for 5 hours daily from PND 2 to 14 and compared to animal facility-reared rats. Deprivation or separation increased CRH-R1 IR in the juvenile PVN, but had no other effects on other HPA measures or on maternal behavior. Pup-exposure during the juvenile period blunted corticosterone levels after acute and repeated pup-exposures when compared to exposure to novelty and conspecifics respectively. Repeated exposures to pups also increased CRH-R1 IR relative to isolation during the juvenile period. Overall, the data suggest that although pup-exposure affects corticosterone levels, the HPA axis does not relate to juvenile maternal behavior in the present experiments.  相似文献   

20.
Stress and development: behavioral and biological consequences   总被引:6,自引:0,他引:6  
Childhood abuse is an important public health problem; however, little is known about the effects of abuse on the brain and neurobiological development. This article reviews the behavioral and biological consequences of childhood abuse and places them in a developmental context. Animal studies show that both positive and negative events early in life can influence neurobiological development in unique ways. Early stressors such as maternal separation result in lasting effects on stress-responsive neurobiological systems, including the hypothalamic-pituitary-adrenal (HPA) axis and noradrenergic systems. These studies also implicate a brain area involved in learning and memory, the hippocampus. in the long-term consequences of early stress. Clinical studies of patients with a history of abuse also implicate dysfunction in the HPA axis and the noradrenergic and hippocampal systems; however, there are multiple questions related to chronicity of stress, developmental epoch at the time of the stressor, presence of stress-related psychiatric disorders including posttraumatic stress disorder and depression. and psychological factors mediating the response to trauma that need to be addressed in this field of research. Understanding the effects of abuse on the development of the brain and neurobiology will nevertheless have important treatment and policy implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号