首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
VlsE, the variable surface antigen of Borrelia burgdorferi, contains two invariable domains located at the amino and carboxyl terminal ends, respectively, and a central variable domain. In this study, both immunogenicity and antigenic conservation of the C-terminal invariable domain were assessed. Mouse antiserum to a 51-mer synthetic peptide (Ct) which reproduced the entire sequence of the C-terminal invariable domain of VlsE from B. burgdorferi strain B31 was reacted on immunoblots with whole-cell lysates extracted from spirochetes of 12 strains from the B. burgdorferi sensu lato species complex. The antiserum recognized only VlsE from strain B31, indicating that epitopes of this domain differed among these strains. When Ct was used as enzyme-linked immunosorbent assay (ELISA) antigen, all of the seven monkeys and six mice that were infected with B31 spirochetes produced a strong antibody response to this peptide, indicating that the C-terminal invariable domain is immunodominant. None of 12 monkeys and only 11 of 26 mice that were infected with strains other than B31 produced a detectable anti-Ct response, indicating a limited antigenic conservation of this domain among these strains. Twenty-six of 33 dogs that were experimentally infected by tick inoculation were positive by the Ct ELISA, while only 5 of 18 serum samples from dogs clinically diagnosed with Lyme disease contained detectable anti-Ct antibody. Fifty-seven of 64 serum specimens that were collected from American patients with Lyme disease were positive by the Ct ELISA, while only 12 of 21 European samples contained detectable anti-Ct antibody. In contrast, antibody to the more conserved invariable region IR(6) of VlsE was present in all of these dog and human serum samples.  相似文献   

2.
VlsE is a surface exposed lipoprotein of the Lyme disease spirochete, Borrelia burgdorferi. Spirochetes are able to generate many antigenic variants of VlsE by DNA recombination at the vlsE locus. Novel VlsE antigenic variants are readily observed in mice infected with B. burgdorferi. We followed a clonal population of spirochetes through a tick transmission cycle and report that unlike in vertebrates, the vlsE locus is stable in ticks.  相似文献   

3.
Expression and recombination of the antigenic variation vlsE gene of the Lyme disease spirochete Borrelia burgdorferi were analyzed in the tick vector. To assess vlsE expression, Ixodes scapularis nymphs infected with the B. burgdorferi strain B31 were fed on mice for 48 or 96 h or to repletion and then crushed and acetone fixed either immediately thereafter (ticks collected at the two earlier time points) or 4 days after repletion. Unfed nymphs also were examined. At all of the time points investigated, spirochetes were able to bind a rabbit antibody raised against the conserved invariable region 6 of VlsE, as assessed by indirect immunofluorescence, but not preimmune serum from the same rabbit. This same antibody also bound to B31 spirochetes cultivated in vitro. Intensity of fluorescence appeared highest in cultured spirochetes, followed by spirochetes present in unfed ticks. Only a dim fluorescent signal was observed on spirochetes at the 48 and 96 h time points and at day 4 postrepletion. Expression of vlsE in vitro was affected by a rise in pH from 7.0 to 8.0 at 34 degrees C. Hence, vlsE expression appears to be sensitive to environmental cues of the type found in the B. burgdorferi natural history. To assess vlsE recombination, nymphs were capillary fed the B. burgdorferi B31 clonal isolate 5A3. Ticks thus infected were either left to rest for 4 weeks (Group I) or fed to repletion on a mouse (Group II). The contents of each tick from both groups were cultured and 10 B. burgdorferi clones from the spirochetal isolate of each tick were obtained. The vlsE cassettes from several of these clones were amplified by PCR and sequenced. Regardless of whether the isolate was derived from Group I or Group II ticks, no changes were observed in the vlsE sequence. In contrast, vlsE cassettes amplified from B. burgdorferi clones derived from a mouse that was infected with B31-5A3 capillary-fed nymphs showed considerable recombination. It follows that vlsE recombination does not occur in the tick vector.  相似文献   

4.
VlsE, the variable surface antigen of Borrelia burgdorferi, consists of two invariable domains at the amino and carboxyl termini and one central variable domain. The latter contains six invariable regions, IR(1) to IR(6), and six variable regions. In the present study, the antigenicity of all of the invariable regions in B. burgdorferi-infected monkeys, humans, and mice was assessed by peptide-based enzyme-linked immunosorbent assays. Only one invariable region, IR(6), was antigenic in all animals of the three host species. IR(2) and IR(4) were also antigenic in mice.  相似文献   

5.
6.
Detection of antibody to C6, a peptide that reproduces the sequence of the sixth invariable region within the central domain of the VlsE protein of Borrelia burgdorferi, is used currently for the serologic diagnosis of Lyme disease in humans. B. burgdorferi isolates taken from infected humans can be categorized into specific genetic subtypes (designated RST1, -2, and -3) by restriction fragment length polymorphisms in the 16S to 23S rRNA spacer sequence. Many of these, usually categorized as RST2, retain only segments of the linear plasmid lp28-1, which encodes VlsE. The VlsE genetic region is retained, but altered expression of this molecule could affect diagnosis by the C6 enzyme-linked immunosorbent assay (ELISA). Serum samples from patients infected with each of the three genotypes and from mice infected with three RST2 isolates were tested with the C6 ELISA. Such isolates elicited marked C6 responses in infected mice. The sensitivity of C6 antibody detection in patients infected with RST2 spirochetes was statistically indistinguishable from detection of RST1 and RST3 infections. These findings demonstrate that diagnosis by C6 ELISA remains effective for infection with all B. burgdorferi genotypes, including those with incomplete lp28-1 plasmids.  相似文献   

7.
8.
The VlsE lipoprotein of Borrelia burgdorferi elicits a strong immune response during the course of Lyme disease. The present study was aimed at characterization of the epitopes of VlsE targeted by the antibody response in patients with post-Lyme disease syndrome, a condition characterized by persisting symptoms of pain, fatigue, and/or neurocognitive impairment despite antibiotic treatment of B. burgdorferi infection. Epitope mapping was carried out using microarrays that contained synthesized overlapping peptides covering the full sequence of VlsE from B. burgdorferi B31. In addition to the previously characterized IR6 region in the variable domain, specific sequences in the N- and C-terminal invariable domains of VlsE were found to be major B cell epitopes in affected patients. The crystal structure of VlsE indicated that the newly described epitopes form a contiguous region in the surface-exposed membrane-proximal part of the monomeric form of the protein.  相似文献   

9.
We have produced, by using a sonicate of Borrelia burgdorferi, a monoclonal antibody (MAb), NYSP39H, that is specific for the P39 protein band. This MAb reacted with 13 isolates of B. burgdorferi but not with eight different spirochetes (four borrelias, two leptospiras, and two treponemas). Surface labeling of B. burgdorferi with biotin and subsequent treatment with Nonidet P-40 showed that P39 was not biotinylated but was extracted with Nonidet P-40, indicating that it is present within the outer membrane, but not on the surface of the spirochete. Immunoelectron microscopy revealed the immunogold probe primarily at the cytoplasmic membrane region of the spirochete. The MAb detected B. burgdorferi in the indirect fluorescent-antibody test only when the spirochetes from a culture or in a tick homogenate were fixed with polylysine and not with acetone. NYSP39H appears to be an appropriate probe for use in the specific detection of B. burgdorferi.  相似文献   

10.
Lyme borreliosis (LB) is a disease for which antibody-based detection assays are often required for diagnosis. The variable surface molecule VlsE and IR6, one of its invariable regions, are commonly targeted by the antibody response in infected individuals. A series of enzyme-linked immunosorbent assays was performed to comparatively examine the antibody responses of North American LB patients (n = 37) to VlsE and invariable segments of this molecule. Both immunoglobulin M (IgM) and IgG responses to full-length VlsE and to peptides reproducing invariable regions 2, 4, and 6, as well as the invariable domains at the amino and carboxyl termini of VlsE, were assessed. The proportions and specificities of reactivity to the invariable segments were tested by using cognate peptides as competitors for VlsE binding by patient serum antibodies. IR6 epitopes (by the C6 peptide) were found to dominate the response to invariable segments. IR6 (C6)-specific antibodies were detected in 78% of the serum specimens, whereas <40% of patients generated antibodies that bound the N- or C-terminal domain and <12% of patients responded to either IR2 or IR4. Interestingly, 15 of 37 patients generated IgG antibodies that reacted with C6 but not with VlsE. Conversely, IgM responses were frequent for VlsE but not for invariable segments. A representative number of the serum specimens (n = 8) that contained IgG antibodies reacting with both C6 and VlsE was assessed in competition experiments, using C6 as a competitor. Only half of these specimens contained IgG antibodies whose binding to VlsE could be inhibited >50% by competition with the added C6 peptide. The median percent inhibition was 45.5%. These findings indicate that IR6 epitopes are largely concealed from the VlsE molecular surface and that full-length VlsE-based diagnosis likely detects antibodies to conformational and/or variable region epitopes.  相似文献   

11.
Multiple circular and linear plasmids of Lyme disease and relapsing fever Borrelia spirochetes carry genes for members of the Bdr (Borrelia direct repeat) protein family. To define their common and divergent attributes, we first comprehensively compared the known homologs. Bdr proteins with predicted sizes ranging from 10.7 to 30. 6 kDa formed five homology groups, based on variable numbers of short direct repeats in a central domain and diverse N- and C-terminal domains. In a further characterization, Western blots were probed with rabbit antisera raised against either of two purified recombinant Bdr proteins from Borrelia burgdorferi B31. The results showed that antibodies cross-react and several Bdr paralogs 19.5 to 30.5 kDa in size are expressed by cultured strain B31 in a temperature-independent manner. In situ proteolysis, immunofluorescence, and growth inhibition assays indicated that Bdr proteins are not surface exposed. Distinct patterns of cross-reacting proteins of 17.5 to 33 kDa were also detected in other B. burgdorferi, Borrelia garinii, and Borrelia afzelii strains as well as in relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae. Last, we examined whether these proteins are antibody targets during Lyme disease. Analysis of 47 Lyme disease patient sera by immunoblotting and enzyme-linked immunosorbent assays showed that 24 (51%) and 20 (43%), respectively, had detectable antibodies to one or more of the Bdr proteins. Together, these data indicate that Bdr proteins constitute a family of cross-reactive Borrelia proteins which are expressed in the course of Lyme disease and in vitro.  相似文献   

12.
The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within the vector. The Lyme disease outer surface protein A (OspA) vaccine is a transmission-blocking vaccine that targets spirochetes in the vector. In experiments with mice hyperimmunized with OspA, complement was not required to kill spirochetes within nymphs and to block transmission from nymphs to the vaccinated host. However, host complement did enhance the ability of OspA antibody to block larvae from acquiring spirochetes. Thus, the effects of OspA antibody on nymphal transmission and larval acquisition appear to be based on different mechanisms.  相似文献   

13.
Surface-exposed lipoproteins of relapsing fever (RF) and Lyme borreliosis Borrelia spirochetes mediate certain interactions of the bacteria with their arthropod and vertebrate hosts. RF spirochetes such as Borrelia hermsii serially evade the host's antibody response by multiphasic antigenic variation of Vsp and Vlp proteins. Furthermore, the expression of Vsp1 and Vsp2 by Borrelia turicatae is associated with neurotropism and higher blood densities, respectively. In contrast to RF Borrelia species, the Lyme borreliosis spirochete Borrelia burgdorferi is amenable to genetic manipulation. To facilitate structure-function analyses of RF surface lipoproteins, we used recombinant plasmids to introduce full-length vsp1 and vsp2 as well as two representative vlp genes into B. burgdorferi cells. Recombinant B. burgdorferi cells constitutively expressed the proteins under the control of the B. burgdorferi flaB promoter. Antibody and protease accessibility assays indicated proper surface exposure and folding. Expression of Vsp1 and Vsp2 conferred glycosaminoglycan binding to recombinant B. burgdorferi cells that was similar to that observed with purified recombinant proteins and B. turicatae expressing native Vsp. These data demonstrate that the lipoprotein modification and export mechanisms in the genus Borrelia are conserved. They also validate the use of recombinant B. burgdorferi in studies of surface lipoprotein structure-function and the biogenesis of spirochete membranes.  相似文献   

14.
The mechanism(s) by which Lyme arthritis is induced has not been elucidated. In this study, we showed that macrophages have a direct, effector role in the pathogenesis of Lyme arthritis. Severe destructive arthritis was induced in recipients of macrophages obtained from Borrelia burgdorferi-vaccinated and nonvaccinated hamsters exposed to Formalin-inactivated B. burgdorferi in vitro and then challenged with the Lyme spirochete. Swelling of the hind paws was detected within 8 h of infection, increased rapidly, and peaked at 21 h. This initial swelling decreased, and by day 4 only slight swelling was detected. Severe swelling of the hind paws was detected 8 days after infection and increased rapidly, with peak swelling occurring on day 11. Histopathologic examination affirmed that macrophages exposed to Formalin-inactivated spirochetes induced a severe destructive Lyme arthritis. The onset and severity of the severe destructive arthritis were dependent on the number of macrophages transferred. By contrast, macrophages not exposed to Formalin-inactivated B. burgdorferi failed to induce severe destructive arthritis in recipients after challenge with B. burgdorferi. Similarly, severe destructive arthritis was not detected in recipients of macrophages injected with spirochetal growth medium. Our results also showed that transferred macrophages could not protect hamsters from infection with B. burgdorferi, as spirochetes were readily recovered from their tissues when cultured. These findings demonstrate that macrophages exposed to B. burgdorferi are directly involved in the induction of Lyme arthritis.  相似文献   

15.
Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease.  相似文献   

16.
The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-alpha release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-alpha-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells.  相似文献   

17.
18.
The Lyme disease spirochete, Borrelia burgdorferi, is an extracellular microbe that causes persistent infection despite the development of strong immune responses against the bacterium. B. burgdorferi expresses several ligand-binding lipoproteins, including the decorin-binding proteins (Dbps) A and B, which may mediate attachment to decorin, a major component of the host extracellular matrix during murine infection. We show that B. burgdorferi was better protected in the joints and skin, two tissues with a higher decorin expression, than in the urinary bladder and heart, two tissues with a lower decorin expression, during chronic infection of wild-type mice. Targeted disruption of decorin alone completely abolished the protective niche in chronically infected decorin-deficient mice but did not affect the spirochete burden during early infection. The nature of protection appeared to be specific because the spirochetes with higher outer surface protein C expression were not protected while the protective niche seemed to favor the spirochetes with a higher dbpA expression during chronic infection. These data suggest that spirochetal DbpA may interact with host decorin during infection and such interactions could be a mechanism that B. burgdorferi uses to evade humoral immunity and establish chronic infection.  相似文献   

19.
Borrelia burgdorferi expresses a conserved, species-specific 39-kDa protein (P39) that can stimulate antibodies during human infection. To confirm that anti-P39 antibodies are produced consistently in animals exposed to infectious spirochetes, white-footed mice, Peromyscus leucopus, and laboratory white mice, Mus musculus (strain BALB/c), were experimentally inoculated with either infectious or noninfectious B. burgdorferi and the antibody response to P39 was determined by immunoblot at 21 days postinoculation. All mice inoculated with approximately 10(7) infectious B. burgdorferi produced anti-P39 antibodies and were cultured positive for this spirochete. Mice inoculated with similar numbers of inactivated or viable noninfectious B. burgdorferi still producing P39 did not induce anti-P39 antibodies. By contrast, putative antiflagellin antibodies were detected in less than 18% of the infected animals, which supports the notion that antibody reactive with flagellin may not be reliable as a marker for B. burgdorferi exposure as was originally thought. Mice infected with B. burgdorferi following exposure to ticks (Ixodes dammini) produced anti-P39 antibodies no later than 7 days postinfection, indicating that P39 is an effective immunogen in natural infections. Notably, anti-P39 antibodies were the predominant B. burgdorferi reactive antibodies detected early in the infection. Our results indicate that anti-P39 antibodies are produced in response to an active infection and are therefore reliable markers for infection in experimentally and naturally inoculated animals.  相似文献   

20.
Current biological and serological techniques for demonstrating infections by Borrelia burgdorferi can be inconclusive. In order to monitor Lyme borreliosis, we developed a rapid and sensitive assay for B. burgdorferi antigens in infected hosts. Polyclonal rabbit antisera were raised against membrane vesicles and an 83-kDa vesicle-associated protein band that was purified from in vitro B. burgdorferi cultures. Immunoglobulin G (IgG) antibodies were recovered from these sera and tested for a species-specific reaction with several geographically diverse Borrelia isolates by immunoblot analysis. Parlodion-coated electron microscope grids were activated with anti-vesicle F(ab')2 fragments and then incubated with confirmed or experimental sources of spirochetal antigens. Such sources included cultured spirochetes; spirochete culture supernatants; samples of urine, blood, or serum from mice, dogs, and humans; triturates of Ixodes ticks; and bladder, spleen, liver, kidney, heart, or brain tissues from infected or control mice. Captured antigens were assayed by immune electron microscopy by using anti-83-kDa IgG antibodies and protein A-colloidal gold conjugates. The results indicated that B. burgdorferi appears to shed surface antigens which are readily detectable in urine, blood, and several organs from infected hosts. Such antigens were detectable in mouse urine at dilutions exceeding 10(-6). Intact spirochetes were frequently observed on grids incubated with blood, spleen, or bladder preparations, and B. burgdorferi was reisolated from the urinary bladders of all experimentally infected mice. These results indicated that B. burgdorferi antigens arise in a variety of host materials. Such antigens can be captured and identified with specific polyclonal antibodies, providing a sensitive assay for monitoring and studying Lyme borreliosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号