首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Parathyroid hormone-related peptide (PTHrP) and insulin-like growth factor I (IGF-I) are both involved in the regulation of bone and cartilage metabolisms and their interaction has been reported in osteoblasts. To investigate the interaction of PTHrP and IGF-I during fracture healing, the expression of mRNA for PTHrP and IGF-I, and receptors for PTH/PTHrP and IGF were examined during rat femoral fracture healing using an in situ hybridization method and an immunohistochemistry method, respectively. During intramembranous ossification, PTHrP mRNA, IGF-I mRNA and IGF receptors were detected in preosteoblasts, differentiated osteoblasts and osteocytes in the newly formed trabecular bone. PTH/PTHrP receptors were markedly detected in osteoblasts and osteocytes, but only barely so in preosteoblasts. During cartilaginous callus formation, PTHrP mRNA was expressed by mesenchymal cells and proliferating chondrocytes. PTH/PTHrP receptors were detected in proliferating chondrocytes and early hypertrophic chondrocytes. IGF-I mRNA and IGF receptor were co-expressed by mesenchymal cells, proliferating chondrocytes, and early hypertrophic chondrocytes. At the endochondral ossification front, osteoblasts were positive for PTHrP and IGF-I mRNA as well as their receptors. These results suggest that IGF-I is involved in cell proliferation or differentiation in mesenchymal cells, periosteal cells, osteoblasts and chondrocytes in an autocrine and/or paracrine fashion. Furthermore, PTHrP may be involved in primary callus formation presumably co-operating with IGF-I in osteoblasts and osteocytes, and by regulating chondrocyte differentiation in endochondral ossification.  相似文献   

2.
Fracture repair provides an interesting model for chondrogenesis and osteogenesis as it recapitulates in an adult organism the same steps encountered during embryonic skeletal development and growth. The fracture callus is not only a site of rapid production of cartilage and bone, but also a site of extensive degradation of their extracellular matrices. The present study was initiated to increase our understanding of the roles of different proteolytic enzymes, cysteine cathepsins B, H, K, L, and S, and matrix metalloproteinases (MMPs) 9 and 13, during fracture repair, as this aspect of bone repair has previously received little attention. Northern analysis revealed marked upregulation of cathepsin K, MMP-9, and MMP-13 mRNAs during the first and second weeks of healing. The expression profiles of these mRNAs were similar with that of osteoclastic marker enzyme tartrate-resistant alkaline phosphatate (TRAP). The changes in the mRNA levels of cathepsins B, H, L, and S were smaller when compared with those of the other enzymes studied. Immunohistochemistry and in situ hybridization confirmed the predominant localization of cathepsin K and MMP-9 and their mRNA in osteoclasts and chondroclasts at the osteochondral junction. MMP-13 was present in osteoblasts and individual hypertrophic chondrocytes near the cartilage-bone interphase. In cartilaginous callus, the expression of cathepsins B, H, L, and S was mainly related to chondrocyte hypertrophy. During bone remodeling both osteoblasts and osteoclasts contained these cathepsins. The present data demonstrate that degradation and remodeling of extracellular matrices during fracture healing involves activation of MMP-13 production in hypertrophic chondrocytes and osteoblasts, and cathepsin K and MMP-9 production in osteoclasts and chondroclasts. Received: 2 February 2000 / Accepted: 25 May 2000 / Online publication: 2 November 2000  相似文献   

3.
During endochondral ossification, proliferative activity of chondrocytes is arrested and the cells undergo terminal hypertrophic differentiation. We examined the expression of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1 in permanent cartilage (xyphoid and articular cartilage) and in cartilage undergoing endochondral ossification (growth plate, epiphyseal ossification centers, and costochondral junctions) to determine if p21 is up-regulated in chondrocytes during hypertrophic differentiation. Northern blot analyses demonstrated expression of p21 in chondrocytes undergoing endochondral ossification and from sites of permanent cartilage. Quantitative analyses of Northern data showed an association between expression of the hypertrophic-specific marker, collagen type X, and the level of 21 expression. In situ hybridization of rodent femoropatellar joints and costochondral junctions localized p21 mRNA to chondrocytes within both the proliferative and hypertrophic zones of the growth plates, in chondrocytes involved in formation of the epiphyseal ossification centers, and in articular chondrocytes. Immunohistochemical analyses of p21 expression in the same tissues demonstrated comparatively higher levels of p21 protein in postmitotic chondrocytes. These data suggest that p21 is active in cell cycle regulation in chondrocytes, and that increased p21 expression is associated with hypertrophic differentiation. Received: 11 October 1996 / Accepted: 23 April 1997  相似文献   

4.
Cell-cell signaling is a major strategy that vertebrate embryos employ to coordinately control cell proliferation, differentiation, and survival in many developmental processes. Similar cell signaling pathways also control adult tissue regeneration and repair. We demonstrated in the developing skeletal system that the Wnt/beta-catenin signaling controls the differentiation of progenitor cells into either osteoblasts or chondrocytes. Genetic ablation of beta-catenin in the developing mouse embryo resulted in ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Conversely, ectopic upregulation of the canonical Wnt signaling led to suppression of chondrocyte formation and enhanced ossification. As other signaling pathways also play critical roles in controlling skeletal development, to gain a full picture of the molecular regulatory network of skeletal development, we investigated how the Wnt/beta-catenin signaling is integrated with Indian hedgehog (Ihh) signaling in controlling various aspects of skeletal development. We found that Wnt signaling acts downstream of Ihh signaling and is required in osteoblasts after Osterix expression to promote osteoblast maturation during endochondral bone formation. Since similar controlling mechanisms of osteoblast proliferation and differentiation may be employed by adult mesenchymal progenitor cells during fracture repair, these studies suggest that, to enhance fracture repair or bone formation, Ihh signaling needs to be enhanced at early stages, whereas Wnt signaling should be upregulated slightly later in differentiated osteoblasts.  相似文献   

5.
This investigation tested the hypothesis that the removal of chondrocytes during endochondral fracture healing involves an ordered process of programmed cell death. To accomplish this, unilateral closed fractures were created in the femora of 36 Sprague-Dawley rats. The rats were killed in groups of four on days 1, 3, 7, 14, 21, 28, 42, 49, and 56 after fracture. The femora were embedded in paraffin and tested for expression of specific markers of fragmented DNA with use of a terminal deoxyuridyl transferase-mediated deoxyuridine triphosphatebiotin nick end labeling (TUNEL) technique. To determine the potential for trans–differentiation of chondrocytes to osteoblasts calluses were also hybridized to detect expression of osteocal in mRNA. Cell proliferation was assessed by an immunohistochemical detection method for proliferating cell nuclear antigen. A separate group of four rats was killed on day 28 to represent the later stage of the endochondral ossification, and the calluses were examined for cellular morphology with transmission electron microscopy. The results showed a coordination in both time and space of the activities of cellular proliferation and programmed cell death. Cell proliferation was most active in the earlier phases of fracture healing (days 1 through 14) although TUNEL expression was apparent in hypertrophic chondrocytes on day 14 after fracture and persisted until day 28. In the later stages of fracture healing (days 14 through 28), proliferating cell nuclear antigen was no longer synthesized in hard callus (intramembranous bone) and cell removal was the dominant activity in soft callus chondrocytes. Expression of osteocalcin mRNA was detected in osteoblasts but not in hypertrophic chondrocytes or in any other nonosteoblastic cell type. These findings support the hypothesis that the removal of chondrocytes during endochondral fracture healing is part of an ordered transition of tissue types in which the cellular mechanisms are genetically programmed to involve proliferation, maturation, and apoptotic cell death.  相似文献   

6.
H Ji  G Dang  Q Ma 《中华外科杂志》1998,36(2):72-73
OBJECTIVE: To observe the effect of TGF-beta 1 in the regulation of fracture healing. METHOD: The expression of transforming growth factor-beta 1 (TGF-beta 1) in different period of fracture healing was investigated by immunohistochemistry. RESULTS: It was found that the expression of TGF-beta 1 changed in different period. The cells in the cambial layer of the periostlum showed low or negative signal in the immediate injury response period. The osteoblasts differentiated from the periosteum cells stained strongly in the intramembranous ossification period, and the differentiated chondrocytes stained most strongly in the chondrogenesis period. The hypertrophic chondrocytes showed negative signal and the osteoblasts stained strongly in the endochondral ossification period. These results suggested that the expression of TGF-beta 1 was closely related to the proliferation and differentiation state of repair cells. CONCLUSION: TGF-beta 1 is intimately involved in the control of fracture healing.  相似文献   

7.
The spatial and temporal expression domains of the fibroblast growth factor receptor genes were examined in the healing rat femur fracture by in situ hybridization. Fibroblast growth factor receptor gene expression was detected in diverse fracture tissues throughout healing. Fibroblast growth factor receptor 1 and 2 expression was present throughout fracture repair, in the early proliferating periosteal mesenchyme, in the osteoblasts during intramembranous bone formation, and in the chondrocytes and osteoblasts during endochondral bone formation. Fibroblast growth factor receptor 3 expression colocalized with fibroblast growth factor receptor 1 and 2 expression in the chondrocytes and osteoblasts beginning at 10 days of healing, and persisted throughout endochondral bone formation. Fibroblast growth factor receptor 3 recapitulated its expression in fetal skeletal development, suggesting that it has a similar function in the control of endochondral bone growth during fracture repair. Fibroblast growth factor receptor 4 expression was not observed at any time. The extensive colocalized expression of the fibroblast growth factor receptors in healing indicates that fibroblast growth factor regulation of fracture callus maturation is extensive, and accurate identification of the receptor isoforms is necessary to establish the functions of fibroblast growth factor family members in fracture repair.  相似文献   

8.
Bone morphogenetic protein-7, or BMP-7 (OP-1), is highly expressed in the perichondrium of embryonic long bones and is thought to play a role in endochondral ossification. Previously we have shown that BMP-7 inhibits terminal chondrocyte differentiation; that is, chondrocyte hypertrophy and mineralization in cultured explants of embryonic mouse metatarsals. However, the mechanism of this inhibition and the target cells of BMP-7 are still unknown. In this study we show that BMP-7 inhibits terminal chondrocyte differentiation indirectly, via an interaction with the periarticular region of the explants. This region also expresses parathyroid hormone-related peptide (PTHrP). PTHrP regulates terminal chondrocyte differentiation by inhibiting hypertrophic differentiation of prehypertrophic chondrocytes. The differentiating center in turn regulates PTHrP expression via a feedback loop involving Indian hedgehog (Ihh), which is expressed in the prehypertrophic chondrocytes. Ihh is thought to act on perichondrial cells, which in turn start to express an as yet unknown mediator that stimulates PTHrP expression in the periarticular region. It has been suggested that this factor belongs to the BMP-family. We investigated whether the inhibition of terminal chondrocyte differentiation by BMP-7 was due to upregulation of the PTHrP-Ihh feedback loop and whether BMP-7 was the unknown factor in the loop. Here we show that exogenous BMP-7 did not upregulate the mRNA expression of PTHrP, Ihh, or the PTH/PTHrP receptor in cultured wild-type embryonic metatarsals. Furthermore, BMP-7 could still inhibit terminal chondrocyte differentiation in the metatarsals of PTHrP-deficient (PTHrP-/-) mouse embryos. These data indicate that the BMP-7-mediated inhibition of terminal chondrocyte differentiation in vitro is independent of the PTHrP-Ihh feedback loop. We concluded that BMP-7 modulates terminal chondrocyte differentiation and cartilage mineralization of fetal bone explants in vitro via as yet unknown inhibitory factor(s) produced in the periarticular region.  相似文献   

9.

Purpose

The haematoma at a fracture site plays an important role in fracture healing. Previously, we demonstrated that a fracture haematoma contains multilineage mesenchymal progenitor cells. We postulated that the haematoma provided a source of chondrogenic cells for endochondral ossification during fracture healing and preservation of the cells contributed to biological fracture healing. In this study, we investigated whether haematoma-derived cells (HCs) could differentiate into hypertrophic chondrocytes and finally induce calcification of the extracellular matrix in vitro.

Methods

Fracture haematomas were obtained from four patients. HCs were cultured for five weeks under conditions that induce chondrogenic differentiation, followed by two weeks of hypertrophic induction using a pellet culture system. The pellets were analysed histologically and immunohistochemically. The gene expression levels of chondrogenic, hypertrophic, osteogenic, and angiogenic markers were measured by real-time PCR.

Results

The histological and immunohistochemical analyses revealed that HCs differentiated into chondrocytes and hypertrophic chondrocytes, followed by calcification of the extracellular matrix. This sequential differentiation was also reflected in the gene expression profiles. After chondrogenic induction, expression of osteogenic and angiogenic markers was not significantly upregulated. However, the expression of these markers was significantly upregulated following hypertrophic induction. These in vitro observations mimicked the process of endochondral ossification during fracture healing.

Conclusions

Our results suggest that the fracture haematoma may offer a source of cells with chondrogenic potential that play key roles in endochondral ossification during fracture healing. These findings support the opinion that the haematoma should be preserved for biological fracture healing.  相似文献   

10.
Wang FS  Yang KD  Kuo YR  Wang CJ  Sheen-Chen SM  Huang HC  Chen YJ 《BONE》2003,32(4):387-396
Extracorporeal shock wave (ESW) is a noninvasive acoustic wave, which has recently been demonstrated to promote bone repair. The actual healing mechanism triggered by ESW has not yet been identified. Bone morphogenetic proteins (BMP) have been implicated as playing an important role in bone development and fracture healing. In this study, we aimed to examine the involvement of BMP-2, BMP-3, BMP-4, and BMP-7 expression in ESW promotion of fracture healing. Rats with a 5-mm segmental femoral defect were given ESW treatment using 500 impulses at 0.16 mJ/mm(2). Femurs and calluses were subjected to immunohistochemistry and RT-PCR assay 1, 2, 4, and 8 weeks after treatment. Histological observation demonstrated that fractured femurs received ESW treatment underwent intensive mesenchymal cell aggregation, hypertrophic chondrogenesis, and endochondral/intramembrane ossification, resulting in the healing of segmental defect. Aggregated mesenchymal cells at the defect, chondrocytes at the hypertrophic cartilage, and osteoblasts adjunct to newly formed woven bone showed intensive proliferating cell nuclear antigen expression. ESW treatment significantly promoted BMP-2, BMP-3, BMP-4, and BMP-7 mRNA expression of callus as determined by RT-PCR, and BMP immunoreactivity appeared throughout the bone regeneration period. Mesenchymal cells and immature chondrocytes showed intensive BMP-2, BMP-3, and BMP-4 immunoreactivity. BMP-7 expression was evident on osteoblasts located at endochondral ossification junction. Our findings suggest that BMP play an important role in signaling ESW-activated cell proliferation and bone regeneration of segmental defect.  相似文献   

11.
Expression of dentin matrix protein 1 (DMP1) during fracture healing   总被引:1,自引:0,他引:1  
Dentin matrix protein 1 (DMP1) is one of the acidic phosphorylated extracellular matrix proteins called the SIBLING (small integrin-binding ligand, N-linked glycoproteins) family. Recent studies showed that DMP1 is expressed in the mineralized tissues and suggested that DMP1 is involved in the mineralization. We investigated the precise localization of DMP1 messenger RNA (mRNA) and protein during fracture healing. In situ hybridization demonstrated that DMP1 mRNA was strongly expressed in preosteocytes and osteocytes in the bony callus during intramembranous and endochondral ossification while DMP1 mRNA was not detected in osteoblasts and chondrocytes. During endochondral ossification, however, a low number of DMP1-expressing cells were identified in the cluster of hypertrophic chondrocytes. However, these DMP1-expressing cells were not hypertrophic and were likely to be osteoblast-lineage cells, which were embedded in the matrix of bone or cartilage, because type I collagen-expressing cells and invasion of capillary vessels were observed in the same area. Northern blot, in situ hybridization, and immunohistochemical analyses showed that DMP1 mRNA and protein expressions were increased until day 14 postfracture, when bony callus was formed, and then declined to a lower level during remodeling of the bony callus. Therefore, DMP1 is likely to play an important role in the mineralization of the bony callus.  相似文献   

12.
Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro–computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH‐deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH‐deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr?/?) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)‐expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin‐expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3‐day‐old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60‐fold. Furthermore, knockdown of the TH‐induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH‐induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix–producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. © 2014 American Society for Bone and Mineral Research.  相似文献   

13.
We have used a rabbit leg-lengthening model for detailed studies of the histology of distraction osteogenesis. Some unusual features of the endochondral ossification that occurs during the rapid transition of cartilage to bone in the regenerate were observed. Histological staining techniques together with immunohistochemistry and nonradioactive in situ mRNA hybridization for cartilage and bone-related molecules have been used to document the presence of an overlapping cartilage-bone phenotype in cells of the cartilage-bone transitional region. In those particular areas, some chondrocytes appeared to be directly transformed into newly formed bone trabeculae which are surrounded by bone matrix. Acid phosphatases were found within the cartilage matrix in some of the cartilage/bone transitional regions and type I collagen mRNA and type II collagen protein were found together in some of the marginal hypertrophic chondrocytes. This study indicates an unusual role of chondrocytes in the process of ossification at a distraction rate of 1.3 mm/day in the rabbit. Further direct evidence is required to prove the hypothesis that the hypertrophic chondrocytes may transdifferentiate into bone cells in this model. Received: 13 March 1997 / Accepted: 22 September 1998  相似文献   

14.
15.
16.
17.
18.
Localization and expression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) during fracture healing in mouse ribs were investigated. In situ hybridization demonstrated that CTGF/Hcs24 mRNA was remarkably expressed, especially in hypertrophic chondrocytes and proliferating chondrocytes, in the regions of regenerating cartilage on days 8 and 14 after fracture. CTGF/Hcs24 mRNA was also expressed in proliferating periosteal cells in the vicinity of the fracture sites on days 2 and 8, and in cells in fibrous tissue around the callus on day 8. Northern blot analysis showed that expression of CTGF/Hcs24 mRNA was 3.9 times higher on day 2 of fracture healing than that on day 0. On day 8, it reached a peak of 8.6 times higher than that on day 0. It then declined to a lower level. Immunostaining showed that CTGF/Hcs24 was localized in hypertrophic chondrocytes and proliferating chondrocytes in the regions of regenerating cartilage, and in active osteoblasts in the regions of intramembranous ossification. Although CTGF/Hcs24 was abundant in the proliferating and differentiating cells (on days 8 and 14), immunostaining decreased as the cells differentiated to form bone (on day 20). CTGF/Hcs24 was also detected in cells in fibrous tissue, vascular endothelial cells in the callus, and periosteal cells around the fracture sites. These results suggest that CTGF/Hcs24 plays some role in fracture healing.  相似文献   

19.
R Sakai  K Miwa  Y Eto 《BONE》1999,25(2):191-196
Osteogenic activities of activin, a member of the transforming growth factor (TGF)-beta superfamily, have been demonstrated in both in vitro and in vivo studies. The present study investigates the effects of topical application of activin on fracture healing using rat fibula fracture models. Activin (0.4-10 microg/day) was injected locally to the fracture once a day for 2 weeks. Activin promoted callus formation in a dose-dependent manner and both callus volume and callus weight were significantly increased with doses of 2-10 microg/day activin. Also, 3 weeks of activin treatment increased the mechanical strength of the healing bone in addition to the callus mass. Histological study 2 weeks after the fracture revealed that activin promoted endochondral bone formation. Immunohistochemical examination of the fractured tibia revealed that activin was localized to osteoblasts and chondrocytes in the region ossified both endochondrally and intramembranously. These findings suggest that activin expressed during fracture healing promotes the healing process through an autocrine/paracrine mode of action.  相似文献   

20.
Osteocalcin (OC), which is a marker of the mature osteoblasts, can also be found in posthypertrophic chondrocytes of the epiphyseal growth plate, but not in chondrocytes of the resting zone or in adult cartilage. In human osteoarthritis (OA), chondrocytes can differentiate to a hypertrophic phenotype characterized by type X collagen. The protein- and mRNA-expression pattern of OC was systematically analyzed in decalcified cartilage and bone sections and nondecalcified cartilage sections of human osteoarthritic knee joints with different stages of OA to investigate the differentiation of chondrocytes in OA. In severe OA, we found an enhanced expression of the OC mRNA in the subchondral bone plate, demonstrating an increased osteoblast activity. Interestingly, the OC protein and OC mRNA were also detected in osteoarthritic chondrocytes, whereas in chondrocytes of normal adult cartilage, both the protein staining and the specific mRNA signal were negative. The OC mRNA signal increased with the severity of OA and chondrocytes from the deep cartilage layer, and proliferating chondrocytes from clusters showed the strongest signal for OC mRNA. In this late stage of OA, chondrocytes also stained for alkaline phosphatase and type X collagen. Our results clearly show that the expression of OC in chondrocytes correlates with chondrocyte hypertrophy in OA. Although the factors including this phenotypic shift in OA are still unknown, it can be assumed that the altered microenvironment around osteoarthritic chondrocytes and systemic mediators could be potential inducers of this differentiation. Received: 20 May 1999 / Accepted: 10 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号