首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ocular drug delivery has become an increasingly important field of research especially when treating posterior segment diseases of the eye, such as age-related macular degeneration, diabetic retinopathy, posterior uveitis and retinitis. These diseases are the leading causes of vision loss in developed countries which require repeated long-term administration of therapeutic agents. New drugs for the medication of the posterior ocular segment have emerged, but most drugs are delivered by repeated intravitreal injections associated with ocular complications. Advances in ocular drug delivery system research are expected to provide new tools for the treatment of the posterior segment diseases, providing improved drug penetration, prolonged action, higher efficacy, improved safety and less invasive administration, resulting in higher patient compliance. This review provides an insight into the recent progress and trends in ocular drug delivery systems for treating posterior eye segment diseases, with an emphasis on transscleral iontophoresis.  相似文献   

2.
Topical eye drop administration is useful only for the treatment of anterior segment diseases. The posterior eye segment is an important therapeutic target with unmet medical needs. The leading causes of visual impairment in the industrial countries are related to the disorders in the posterior eye tissues. New drugs for the medication of the posterior ocular segment have emerged, but most drugs are delivered by repeated intravitreal injections. Effective, safe, and comfortable methods of drug delivery are needed. The emerging methods include polymeric-controlled release injections and implants, nanoparticulates, microencapsulated cells, iontophoresis, and gene medicines. The biggest drug delivery challenge is to develop effective methods for posterior segment therapies that would also be applicable for the out-patient use.  相似文献   

3.
Drug delivery to the posterior segment of the eye is important for potentially treating various disorders in retina, choroid, vitreous humor and optic nerve. Due to anatomic membrane barriers and the lacrimal drainage it can be quite challenging to obtain therapeutic drug concentrations in the posterior parts of the eye after topical drug administration. Since the membrane barriers cannot be altered with non-invasive methods invasive methods such as direct drug injection into the vitreous humor and subconjunctival, subtenons capsule or suprascleral injections are gaining popularity. However, invasive methods can cause discomfort for the patient and can also lead to complications that are even more serious than the disease being treated. Alternatively, novel ophthalmic formulations can be developed that specifically target topical drug delivery to the posterior segment of the eye. Anatomical and physiological barriers in the eye are reviewed as well as the theoretical model of passive drug diffusion from the eye surface into the eye. It is shown that enhanced drug delivery through conjunctiva/sclera to retina can be obtained by formulating lipophilic drugs as hydrophilic drug/cyclodextrin complex solutions. Optimization of the delivery system by formulating the drug as a low-viscosity aqueous drug/cyclodextrin complex suspension results in sustained high concentrations of dissolved drug in the tear fluid which further increases the targeted drug delivery to the posterior segment.  相似文献   

4.
Proliferative vitreoretinopathy (PVR), the most serious complication causing retinal detachment surgery to fail, is one of the leading causes of vision-loss in developed countries. The pharmaceutical treatment of this disease, located in the posterior segment of the eye, is problematic because it is difficult to achieve effective drug levels in the vitreous and the retina through conventional forms of administration (topical or systemic). Intravitreal injections can deliver drugs to the retina without the side-effects associated with systemic administration. However, because PVR is a long-term complication and the half-life of most drugs in the vitreous cavity is short, repeated injections are needed but this can cause complications. Recent advances in ocular drug delivery methods and the development of novel bioactive compounds could lead to new ways for the treatment of PVR. This review will summarize recent literature concerning intraocular drug delivery of biopharmaceutical agents for the treatment and prevention of PVR.  相似文献   

5.
Ocular diseases include various anterior and posterior segment diseases. Due to the unique anatomy and physiology of the eye, efficient ocular drug delivery is a great challenge to researchers and pharmacologists. Although there are conventional noninvasive and invasive treatments, such as eye drops, injections and implants, the current treatments either suffer from low bioavailability or severe adverse ocular effects. Alternatively, the emerging nanoscience and nanotechnology are playing an important role in the development of novel strategies for ocular disease therapy. Various active molecules have been designed to associate with nanocarriers to overcome ocular barriers and intimately interact with specific ocular tissues. In this review, we highlight the recent attempts of nanotechnology-based systems for imaging and treating ocular diseases, such as corneal d iseases, glaucoma, retina diseases, and choroid diseases. Although additional work remains, the progress described herein may pave the way to new, highly effective and important ocular nanomedicines.  相似文献   

6.
Intravitreal implantable device technology utilizes engineered materials or devices that could revolutionize the treatment of posterior segment eye diseases by affording localized drug delivery, responding to and interacting with target sites to induce physiological responses while minimizing side‐effects. Conventional ophthalmic drug delivery systems such as topical eye‐drops, systemic drug administration or direct intravitreal injections do not provide adequate therapeutic drug concentrations that are essential for efficient recovery in posterior segment eye disease, due to limitations posed by the restrictive blood‐ocular barriers. This review focuses on various aspects of intravitreal drug delivery such as the impediment of the blood‐ocular barriers, the potential sites or intraocular drug delivery device implantation, the various approaches employed for ophthalmic drug delivery and includes a concise critical incursion into specialized intravitreal implantable technologies for the treatment of anterior and posterior segment eye disease. In addition, pertinent future challenges and opportunities in the development of intravitreal implantable devices is discussed and explores their application in clinical ophthalmic science to develop innovative therapeutic modalities for the treatment of various posterior segment eye diseases. The inherent structural and functional properties, the potential for providing rate‐modulated drug delivery to the posterior segment of the eye and specific development issues relating to various intravitreal implantable drug delivery devices are also expressed in this review. © 2009 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2219–2239, 2010  相似文献   

7.
ABSTRACT

Introduction: Although eye drops are widely used as drug delivery systems for the anterior segment of the eye, they are also associated with poor drug bioavailability due to transient contact time and rapid washout by tearing. Moreover, effective drug delivery to the posterior segment of the eye is challenging, and alternative routes of administration (periocular and intravitreal) are generally needed, the blood–retinal barrier being the major obstacle to systemic drug delivery.

Areas covered: Nanotechnology, and especially lipid nanoparticles, can improve the therapeutic efficiency, compliance and safety of ocular drugs, administered via different routes, to both the anterior and posterior segment of the eye. This review highlights the main ocular barriers to drug delivery, as well as the most common eye diseases suitable for pharmacological treatment in which lipid nanoparticles have proved efficacious as alternative delivery systems.

Expert opinion: Lipid-based nanocarriers are among the most biocompatible and versatile means for ocular delivery. Mucoadhesion with consequent increase in pre-corneal retention time, and enhanced permeation due to cellular uptake by corneal epithelial cells, are the essential goals for topical lipid nanoparticle delivery. Gene delivery to the retina has shown very promising results after intravitreal administration of lipid nanoparticles as non-viral vectors.  相似文献   

8.
To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.  相似文献   

9.
Our knowledge in the field of ocular drug delivery is rapidly expanding. An increase in the understanding of ocular drug absorption and disposition vis-à-vis developments in nanotechnology has led to the emergence of many of the nanotechnology-based ocular drug delivery systems including nanoparticles, microemulsions, liposomes, solid lipid nanoparticles, light-sensitive nanocarrier systems, etc. The need to develop effective treatments for posterior eye segment diseases is more important than surface delivery. Treatment of blinding diseases of the eye, such as proliferative retinopathy or macular degeneration, requires effective and safe delivery of drugs to posterior eye segment tissues, and recent advances in nanotechnology have demonstrated successful outcomes. Nanoscientists should focus their efforts on nano-ophthalmology. This review describes the current status and progress made so far, and the course that needs to be pursued in the future.  相似文献   

10.
Intravitreal administration has been widely used since 20 years and has been shown to improve the treatment of diseases of the posterior segment of the eye with infectious origin or in edematous maculopathies. This route of administration allows to achieve high concentration of drug in the vitreous and avoids the problems resulting from systemic administration. However, two basic problems limit the use of intravitreal therapy. Many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy repeated injections are necessary. Repeated intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. In this context, the development and the use of new drug delivery systems for intravitreal administration are necessary to treat chronic ocular diseases. Among them, particulate systems such as liposomes have been widely studied. Liposomes are easily injectable and permit to reduce the toxicity and to increase the residence time of several drugs in the eye. They are also able to protect in vivo poorly-stable molecules from degradation such as peptides and nucleic acids. Some promising results have been obtained for the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in animal. Finally, the fate of liposomes in ocular tissues and fluids after their injection into the vitreous and their elimination routes begin to be more known.  相似文献   

11.
The posterior segments of the eye are exquisitely protected from the external environment. This poses unique and fairly challenging hurdles for drug delivery. It is somewhat dogmatic that topical ocular delivery is insufficient to achieve therapeutic drug levels in the posterior segments. However, some drugs are currently challenging this dogma. In this review we investigate the constraints and challenges of drug delivery to the posterior segment. Additionally, we outline several potential absorption pathways that may potentially be exploited to deliver drug to the back of the eye. Data on several compounds that achieve therapeutic posterior segment concentrations after topical dosing is presented. Finally, the issues surrounding systemic delivery to the posterior segment are reviewed.  相似文献   

12.
Delivery of drugs to the posterior eye is challenging, owing to anatomical and physiological constrains of the eye. There is an increasing need for managing rapidly progressing posterior eye diseases, such as age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. Drug delivery to the posterior segment of the eye is therefore compounded by the increasing number of new therapeutic entities (e.g. oligonucleotides, aptamers and antibodies) and the need for chronic therapy. Currently, the intravitreal route is widely used to deliver therapeutic entities to the retina. However, frequent administration of drugs via this route can lead to retinal detachment, endophthalmitis and increased intraocular pressure. Various controlled delivery systems, such as biodegradable and non-biodegradable implants, liposomes and nanoparticles, have been developed to overcome such adverse effects, with some success. The periocular route is a promising alternative, owing to the large surface area and the relatively high permeability of the sclera. Yet, the blood-retinal barrier and efflux transporters hamper the transport of therapeutic entities to the retina. As such, the efficient delivery of drugs to the posterior eye remains a major challenge facing the pharmaceutical scientist. In this review, we discuss the barriers of the posterior eye drug delivery and the various drug-delivery strategies used to overcome these barriers.  相似文献   

13.
Drug delivery systems are required to be safe, minimally invasive and effectively delivery drug to the target tissues. But delivery drugs to the eye has not yet satisfied this need. Here, we focused on examining the distribution of dexamethasone (DEX) in ocular and plasmic samples following controllable continuous sub-Tenon drug delivery (CCSDD) of dexamethasone disodium phosphate (DEXP) in rabbit, and to compare that with two traditional routes: subconjunctival injection and intravenous injection. The DEX concentration was analyzed by Shimadzu LC–MS 2010 system. In CCSDD group, during observed 24?h, the mean DEX level in collected samples from highest to lowest following in order: sclera, cornea, retina/choroid, iris, plasma, aqueous humor, lens and vitreous body. In ocular solid tissue, the DEX level in posterior segment is higher than in anatomic corresponding anterior segment, but it is opposite in ocular fluid tissue. High levels of DEX were maintained at 12?h in the ocular tissue immediately after the administration. Even at 24?h, the mean DEX concentration was 31.72?ng/ml and 22.40?ng/ml in aqueous and vitreous, respectively. In CCSDD group, the ocular DEX exposure (AUC0-24) is much higher and plasma exposure is much less than IV group, and it is also similar in SC group except iris. The amount of DEX levels are markedly increased in ocular tissues but it yield lower plasma levels indicating reduction of systemic absorption by CCSDD. Thus, CCSDD is an effective method of delivering DEX into anterior and posterior segment of the eye.  相似文献   

14.
This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment.  相似文献   

15.
Introduction: The eye is considered as the most privileged organ because of the blood-ocular barrier that acts as a barrier to systemically administered xenobiotics. However, there has been a significant increase in the number of reports on systemic drug-induced ocular complications. If such complications are left untreated, then it may cause permanent damage to vision. Hence, knowledge of most recent updates on ever-increasing reports of such toxicities has become imperative to develop better therapy while minimizing toxicities. Areas covered: The article is mainly divided into anterior and posterior segment manifestations caused by systemically administered drugs. The anterior segment is further elaborated on corneal complications where as the posterior segment is focused on optic nerve, retinal and vitreous complications. Furthermore, this article includes recent updates on acute and chronic ocular predicaments, in addition to discussing various associated symptoms caused by drugs. Expert opinion: Direct correlation of ocular toxicities due to systemic drug therapy is evident from current literature. Therefore, it is necessary to have detailed documentation of these complications to improve understanding and predict toxicities. We made an attempt to ensure that the reader is aware of the characteristic ocular complications, the potential for irreversible drug toxicity and indications for cessation.  相似文献   

16.
ABSTRACT

Introduction: Frequent intravitreal injections are currently the preferred treatment method for diseases affecting the posterior segment of the eye. However, these repeated injections have been associated with pain, risk of infection, hemorrhages, retinal detachment and high treatment costs. To overcome these limitations, light-responsive in situ forming injectable implants (ISFIs) may emerge as novel systems providing site-specific controlled drug delivery to the retinal tissues with great accuracy, safety, minimal invasiveness and high cost efficiency.

Area covered: Complex ocular barriers, routes for drug delivery, types of injectable implants, ocular application of light and benefits of light-responsive systems are discussed with regards to challenges and strategies employed for effective drug delivery to the posterior segment of the eye. In particular, we have highlighted photoresponsive moieties, photopolymerization mechanisms and different development strategies with their limitations as well as recent advancements in the field.

Expert opinion: Biodegradable light-responsive ISFIs are promising drug delivery systems that have shown a high degree of biocompatibility with sustained drug release in a number of applications. However, their use in intravitreal drug delivery is still in the very early stages. Issues related to the biocompatibility of the photoinitiator and the elimination of photo-degraded by-products from the ocular tissues need careful consideration, not only from a chemistry standpoint, but also from a biological perspective to improve the suitability of these systems for clinical applications.  相似文献   

17.
Anti-mRNA and particularly antisense oligonucleotides are molecules able to inhibit gene expression after intracellular penetration being potentially very interesting for the treatment of ocular diseases where growth factors are involved such as ocular scarring diseases or for the inhibition of viral multiplication. In most cases, the site of action of oligonucleotides has shown to be the posterior segment of the eye and these molecules are injected mainly by the intravitreal route. However, oligonucleotides are poorly stable in biological fluids, have a low intracellular penetration and are quickly eliminated form the vitreous. These issues request repeated administration of oligonucleotides which are able to induce severe damages to the retina. This is the reason why drug delivery systems were developed to improve the stability and intracellular penetration of oligonucleotides and, by sustained release, to increase their long term activity in the treatment of ocular diseases.  相似文献   

18.
The objectives of the study were to evaluate the distribution of brimonidine (alpha2-adrenergic agonist) into anterior and posterior ocular tissues. Single or multiple doses of a 0.2 or 0.5% brimonidine tartrate solution were administered to one or both eyes of monkeys or to one eye of rabbits. Brimonidine was administered intraperitoneally to rats. After topical administration, [14C]brimonidine was rapidly absorbed into the cornea and conjunctiva and distributed throughout the eye. [14C]Radioactivity was higher and cleared more slowly in pigmented tissues (iris/ciliary body, choroid/retina, and optic nerve) than in nonpigmented tissues. Single and multiple dosing led to a similar drug distribution, with higher levels of brimonidine measured in pigmented tissues after multiple dosing. Most of the radioactivity extracted from ocular tissues represented unchanged brimonidine. In the rabbits and the monkey treated in only one eye, levels of radioactivity in the untreated eye were low, consistent with the low systemic levels and rapid drug clearance. Posterior ocular tissue concentrations of radioactivity exceeded systemic blood concentrations. The vitreous humor brimonidine concentrations in monkeys treated topically with 0.2% brimonidine tartrate was 82 +/- 45 nM. Vitreous levels in rabbits confirmed the penetration of brimonidine to the posterior segment. Similar concentrations of brimonidine (22 to 390 nM) were measured in the vitreous and retina of rats injected intraperitoneally with brimonidine. Both topically applied and systemically administered brimonidine reach the back of the eye at nanomolar concentrations sufficient to activate alpha2-adrenergic receptors. The brimonidine levels achieved at the retina are relevant for neuroprotection models.  相似文献   

19.
Introduction: Anterior and posterior segment eye diseases are highly challenging to treat, due to the barrier properties and relative inaccessibility of the ocular tissues. Topical eye drops and systemically delivered treatments result in low bioavailability. Alternatively, direct injection of medication into the ocular tissues is clinically employed to overcome the barrier properties, but injections cause significant tissue damage and are associated with a number of untoward side effects and poor patient compliance. Microneedles (MNs) has been recently introduced as a minimally invasive means for localizing drug formulation within the target ocular tissues with greater precision and accuracy than the hypodermic needles.

Areas covered: This review article seeks to provide an overview of a range of challenges that are often faced to achieve efficient ocular drug levels within targeted tissue(s) of the eye. It also describes the problems encountered using conventional hypodermic needle-based ocular injections for anterior and posterior segment drug delivery. It discusses research carried out in the field of MNs, to date.

Expert opinion: MNs can aid in localization of drug delivery systems within the selected ocular tissue. And, hold the potential to revolutionize the way drug formulations are administered to the eye. However, the current limitations and challenges of MNs application warrant further research in this field to enable its widespread clinical application.  相似文献   


20.
Boddu SH  Gunda S  Earla R  Mitra AK 《Bioanalysis》2010,2(3):487-507
The unique anatomy and physiology of the eye present many challenges to the successful development and delivery of ophthalmic drugs. Any therapeutic strategy developed to control the progression of anterior and posterior segment diseases requires continuous monitoring of effective drug concentrations in the relevant ocular tissues and fluids. Ocular microdialysis has gained popularity in recent years due to its ability to continuously monitor drug concentrations and substantially reduce the number of animals needed. The intrusive nature of ocular microdialysis experimentation has restricted these studies to animal models. This review article intends to highlight various aspects of ocular microdialysis and its relevance in examining the disposition of drugs in the anterior and posterior segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号