首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamoxifen, a non-steroidal anti-estrogen widely used against breast cancer, is also useful for treatment of other malignancies, due to its sensitizing effect on other chemotherapeutic agents and radiation. We have investigated the advantages of combining tamoxifen with one of the commonly used cancer chemotherapeutic drug, etoposide (VP-16) in brain tumor cell lines. While tamoxifen (10 microM) increased etoposide cytotoxicity 8.3-fold in the human glioma cell line (HTB-14), it increased etoposide cytotoxicity 47.5- and 40-fold in two primary cell lines established from pediatric medulloblastoma patients (MCH-BT-31 and MCH-BT-39), respectively. Similarly, in the pediatric ependymoma cell lines (MCH-BT-30 and MCH-BT-52), tamoxifen enhanced etoposide cytotoxicity 6- and 2.68-fold, respectively. CalcuSyn analysis of cytotoxicity data showed that tamoxifen and etoposide combinations were synergistic with combination index values ranging from 0.243 to 0.369 at IC50 level among different pediatric brain tumor cell lines. Tamoxifen is also cytotoxic at higher concentrations (> 20 microM) in brain tumor cells. To understand the mechanism underlying the tamoxifen modulation of etoposide cytotoxicity, we analyzed expression of P-glycoprotein (P-gp), insulin-like growth factor-I receptor (IGF-IR), IGF-I, IGF-II and estrogen receptor as well as protein kinase C (PKC) activity. While P-gp, IGF-IR and IGF-I were not affected, enhanced inhibition of PKC, and IGF-II were observed in brain tumor cells treated with tamoxifen and etoposide combination as compared to cells treated with either drug alone. Tamoxifen at 10 microM when combined with etoposide at 0-100 microM concentrations reduced PKC activity 77% compared to only 58% without tamoxifen. IGF-II expression decreased to 48.6% of the untreated control in the combination treatment as compared to 31.2% for etoposide alone and 26.2% for tamoxifen alone treatments. These results suggest that inhibitory effect of tamoxifen on brain tumor cells manifest through different mechanisms involving inhibition of targets such as PKC and IGF-II.  相似文献   

2.
In the preceding report we demonstrated that MCF-7-AdrR cells (adriamycin resistant) were insensitive to ceramide, whereas MCF-7 wild-type cells were sensitive. It was also shown that the drug resistant cells had an increased capacity to convert ceramide to glucosylceramide. Here we demonstrate that blocking the conversion of ceramide to glucosylceramide increases MCF-7-AdrR cell sensitivity to ceramide as well as to antitumor agents. Treatment of MCF-7 cells with adriamycin elicited a 5-fold increase in ceramide, and caused oligonucleosomal fragmentation, characteristic to apoptosis. Under similar treatment conditions, ceramide was not generated in MCF-7-AdrR cells. In MCF-7-AdrR cells neither C6-ceramide nor tamoxifen was cytotoxic; however, the addition of tamoxifen to the C6-ceramide treatment regimen reduced cell viability to 42% and elicited apoptosis. Treatment of MCF-7-AdrR cells with Adriamycin promoted an increase in ceramide only if tamoxifen was present, in which case ceramide increased 7-fold, and cell viability decreased to 50%. The employment of another agent, RU486 (Mifepristone), which blocks ceramide glycosylation, increased MCF-7-AdrR cell sensitivity to adriamycin in a dose-dependent manner. Our data show that agents that block ceramide glycosylation potentiate cellular sensitivity to ceramide and to chemotherapeutic drugs, and suggest that the ceramide metabolic pathway is an important target for anticancer drug development.  相似文献   

3.
We studied the subcellular and subnuclear distributions of the partially cross-resistant anthracycline Annamycin (Ann) in KB-3-1 and multi-drug resistant KB-V1 cells. Subcellular drug localization was assessed qualitatively by fluorescence microscopy and quantitatively by cell fractionation and fluorescence measurements. Doxorubicin (Dox) localized predominantly in the nucleus in KB-3-1 cells and in the membranes in KB-V1 cells. In contrast, the subcellular distribution of Ann was identical in both cell lines, with preferential drug localization in the perinuclear region, Golgi apparatus, endoplasmic reticulum and endosomes. Dox rate of efflux from the nucleus was negligible in KB-3-1 cells but markedly enhanced in KB-V1 cells, whereas Ann was lost at a similar rate from the nucleus in both cell lines. In KB-3-1 cells Dox levels in the nuclear non-matrix were about 2-fold higher than those of Ann, while in the matrix the inverse relationship was observed. In spite of these differences, Dox and Ann had a similar inhibitory effect on new DNA synthesis in the nuclear matrix and non-matrix of KB-3-1 cells. Dox levels were reduced by 10-fold in the nuclear non-matrix and 2-fold in the matrix in KB-V1 cells compared with KB-3-1 cells, whereas Ann levels were reduced by about 2- to 3-fold in the non-matrix and were unchanged in the matrix. In correlation with these findings, Dox did not cause inhibition of new DNA synthesis in either nuclear fraction in KB-V1 cells, whereas inhibition of new DNA synthesis in the matrix by Ann was similar in both cell lines. Our results indicate that Ann's partial circumvention of multi-drug resistance is associated with its ability to cause comparable new DNA synthesis inhibition in the nuclear matrix of sensitive and resistant cells. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Purpose Multidrug resistance (MDR) is known as a problem limiting the success of therapy in patients treated long term with chemotherapeutic drugs. The drug resistance is mainly due to the overexpression of the 170 kDa P-glycoprotein (Pgp), which causes a reduction in drug accumulation in the cancer cells. In this study, novel chemical modulator(s) from bitter melon (Momordica charantia L.) extracts obtained from leaves, fruits and tendrils were tested for their abilities to modulate the function of Pgp and the MDR phenotype in the multidrug-resistant human cervical carcinoma KB-V1 cells (high Pgp expression) in comparison with wildtype drug-sensitive KB-3-1 cells (lacking Pgp).Methods The KB-V1 and KB-3-1 cells were exposed to bitter melon extracts in the presence of various concentrations of vinblastine, and cytotoxicity was assessed by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Relative resistance was calculated as the ratio of the IC50 value of the KB-V1 cells to the IC50 value of the KB-3-1 cells. Accumulation and efflux of vinblastine in KB-V1 and KB-3-1 cells were measured using a [3H]-vinblastine incorporation assay.Results The leaf extracts increased the intracellular accumulation of [3H]-vinblastine in KB-V1 cells in a dose-dependent manner, but extracts from the fruits and tendrils had no effect. By modulating Pgp-mediated vinblastine efflux, the leaf extracts decreased the [3H]-vinblastine efflux in KB-V1 cells in a dose-dependent manner, but not in KB-3-1 cells. Treatment of drug-resistant KB-V1 cells with bitter melon leaf extracts increased their sensitivity to vinblastine, but similar treatment of KB-3-1 cells showed no modulating effect. The fruit and tendril extracts did not affect the MDR phenotype in either cell line.Conclusion The leaf extracts from bitter melon were able to reverse the MDR phenotype, which is consistent with an increase in intracellular accumulation of the drug. The exact nature of the active components of bitter melon leaf extracts remains to be identified.  相似文献   

5.
Overexpression of glucosylceramide synthase (GCS), a pivotal enzyme in glycolipid biosynthesis, contributes to cancer cell resistance to chemotherapy. We previously showed that transfection of doxorubicin-resistant MCF-7-AdrR cells with GCS antisense restored cell sensitivity to doxorubicin and greatly enhanced sensitivity to vinblastine and paclitaxel. In that study, doxorubicin promoted generation of ceramide in MCF-7-AdrR/GCS antisense cells; the present study implicates factors in addition to ceramide that augment sensitivity to chemotherapy. Although GCS antisense cells showed enhanced ceramide formation compared with MCF-7-AdrR when challenged with paclitaxel, GCS antisense cells also showed a 10-fold increase in levels of intracellular drug (paclitaxel and vinblastine). In addition, transfected cells had dramatically decreased expression (80%) of P-glycoprotein and a 4-fold decrease in the level of cellular gangliosides. Chemical inhibition of GCS produced the same effects as antisense transfection: exposure of MCF-7-AdrR cells to the GCS inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP, 5.0 micromol/L, 4 days) decreased ganglioside levels, restored sensitivity to vinblastine, enhanced vinblastine uptake 3-fold, and diminished expression of MDR1 by 58%, compared with untreated controls. A similar effect was shown in vinblastin-resistant KB-V0.01 cells; after 7 days with PPMP (10 micromol/L), MDR1 expression fell by 84% and P-glycoprotein protein levels decreased by 50%. MCF-7-AdrR cells treated with small interfering RNAs to specifically block GCS also showed a dramatic decrease in MDR1 expression. This work shows that limiting GCS activity down-regulates the expression of MDR1, a phenomenon that may drive the chemosensitization associated with blocking ceramide metabolism. The data suggest that lipids play a role in the expression of multidrug resistance.  相似文献   

6.
We investigated the possibility of the proapoptotic lipid ceramide as an indicator of chemoresistance in leukemia. Doxorubicin (DOX) increased the ceramide level and apoptosis in drug-sensitive HL-60 cells but not in drug-resistant HL-60/ADR cells, under the condition that the uptake of DOX was not different between the two cell lines. In addition, exogenous N-acetylsphingosine (C2-ceramide) enhanced DOX-induced apoptosis in HL-60/ADR cells without affecting the expression of multidrug resistant-1 protein (MDR 1) and the uptake of DOX. A lower level of ceramide with higher activities of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) was detected in HL-60/ADR cells than in HL-60 cells. In contrast, HL-60/GCS cells, overexpressing GCS, significantly inhibited DOX-induced ceramide increase and apoptosis. These observations suggest the involvement of ceramide regulation in drug resistance of leukemia cells. In vivo, the level of ceramide was lower in chemoresistant leukemia patients (6.4 +/- 1.8 pmol/nmol phosphate; n = 14) than in chemosensitive patients (9.5 +/- 2.7 pmol/nmol phosphate; n = 9), and the activities of GCS and SMS were more than 2-fold higher in chemoresistant leukemia cells than in chemosensitive cells. MDR-1 protein was faintly expressed in one of four chemoresistant patients, but Bcl-2 were clearly detected in four patients. Therefore, it is suggested that a decrease of the ceramide level via activation of GCS and SMS is associated with the chemoresistant condition in leukemia, probably in relation to Bcl-2 but not to MDR-1 expression.  相似文献   

7.
The 170 kDa plasma membrane P-glycoprotein (Pgp) causes the efflux of chemotherapeutic drugs from cells and is believed to be an important mechanism in multidrug resistance (MDR) in human cancer. This study demonstrates that some putative flavonoids, i.e., flavonols (quercetin and kaempferol) and isoflavones (genistein and daidzein) markedly increase the sensitivity of the multidrug-resistant human cervical carcinoma KB-V1 cells (high Pgp expression) to vinblastine and paclitaxel dose-dependently, and also decrease the relative resistance of these anti-cancer-drugs in KB-V1 cells. None of the flavonoids had a significant effect on vinblastine and paclitaxel cytotoxicity in wildtype drug-sensitive KB-3-1 cells (lacking Pgp). These flavonoids also caused an increase in intracellular accumulation, and reduced the efflux of Rh123 and 3[H]vinblastine in KB-V1 cells, but not in KB-3-1 cells. The flavonols increased the inhibitory effectiveness of Pgp activity in MDR KB-V1 cells more than isoflavones. Only treatment with flavonols up to 48 h was able to significantly decrease the Pgp expression in a dose-dependent manner in KB-V1 cells. These findings provide evidence that flavonols reduced Pgp expression and function resulting in the inhibition of Pgp activity, but isoflavones modulated intracellular drug levels by inhibiting Pgp function with no effect on Pgp expression. Among the flavonoids tested, flavonols, particularly kaempferol, exhibit the most potent MDR reversing property in KB-V1 cells.  相似文献   

8.

Purpose

Ceramide is glycosylated to glucosylceramide or lactosylceramide, and this glycosylation is a novel multidrug-resistance (MDR) mechanism. In this work, a short-chain ceramide (C6), lactosylceramide (LacCer), and an inhibitor of ceramide glycosylation (d-threo-1-phenyl-2-decanoylamino-3-1-propanol, PDMP) were evaluated on the proliferation of cervical cancer cells. The participation of glucosylceramide synthase (GCS), P-glycoprotein (P-gp), and multidrug-resistance gene-1 (MDR-1) in the resistance to the antiproliferative effect induced by C6 was also evaluated.

Methods

Cell proliferation was determined by crystal violet staining. GCS and MDR-1 mRNA expression was evaluated by real-time RT-PCR assay. GCS and P-gp protein expressions, as well as Rhodamine 123 uptake, which is a functional test for P-gp efflux activity, were determined by flow cytometry.

Results

C6 inhibited proliferation of CaLo and CasKi cells with an IC50 of 2.5 μM; however, 50 % proliferation of ViBo cells was inhibited with 10 μM. LacCer increased the proliferation of all cells. When cells were treated with PDMP plus C6, no additional effect on antiproliferation induced by C6 was observed in CaLo and CasKi cells; however, proliferation diminished in comparison with C6 alone in ViBo cells. C6 increased GCS and MDR-1 expression in all cells, as well as P-gp expression in CasKi cells.

Conclusions

Cells that have more capacity to glycosylate ceramide and express a higher level of GCS, MDR-1, and P-gp, are more resistant to the antiproliferative effect induced by C6.  相似文献   

9.
Tumor suppressor p53 plays an essential role in protecting cells from malignant transformation by inducing cell-cycle arrest and apoptosis. Mutant p53 that is detected in more than 50% of cases of cancers loses its role in suppression of tumors but gains in oncogenic function. Strategies to convert mutant p53 into wild-type p53 have been suggested for cancer prevention and treatment, but they face a variety of challenges. Here, we report an alternative approach that involves suppression of glucosylceramide synthase (GCS), an enzyme that glycosylates ceramide and blunts its proapoptotic activity in cancer cells. Human ovarian cancer cells expressing mutant p53 displayed resistance to apoptosis induced by DNA damage. We found that GCS silencing sensitized these mutant p53 cells to doxorubicin but did not affect the sensitivity of cells with wild-type p53. GCS silencing increased the levels of phosphorylated p53 and p53-responsive genes, including p21(Waf1/Cip1), Bax, and Puma, consistent with a redirection of the mutant p53 cells to apoptosis. Reactivated p53-dependent apoptosis was similarly verified in p53-mutant tumors where GCS was silenced. Inhibition of ceramide synthase with fumonisin B1 prevented p53 reactivation induced by GCS silencing, whereas addition of exogenous C6-ceramide reactivated p53 function in p53-mutant cells. Our findings indicate that restoring active ceramide to cells can resuscitate wild-type p53 function in p53-mutant cells, offering preclinical support for a novel type of mechanism-based therapy in the many human cancers harboring p53 mutations.  相似文献   

10.
Abstract

The 170 kDa plasma membrane P-glycoprotein (Pgp) causes the efflux of chemotherapeutic drugs from cells and is believed to be an important mechanism in multidrug resistance (MDR) in human cancer. This study demonstrates that some putative flavonoids, i.e., flavonols (quercetin and kaempferol) and isoflavones (genistein and daidzein) markedly increase the sensitivity of the multidrug-resistant human cervical carcinoma KB-V1 cells (high Pgp expression) to vinblastine and paclitaxel dose-dependently, and also decrease the relative resistance of these anticancer- drugs in KB-V1 cells. None of the flavonoids had a significant effect on vinblastine and paclitaxel cytotoxicity in wildtype drug-sensitive KB-3-1 cells (lacking Pgp). These flavonoids also caused an increase in intracellular accumulation, and reduced the efflux of Rh123 and 3[H]vinblastine in KB-V1 cells, but not in KB-3-1 cells. The flavonols increased the inhibitory effectiveness of Pgp activity in MDR KB-V1 cells more than isoflavones. Only treatment with flavonols up to 48 h was able to significantly decrease the Pgp expression in a dose-dependent manner in KB-V1 cells. These findings provide evidence that flavonols reduced Pgp expression and function resulting in the inhibition of Pgp activity, but isoflavones modulated intracellular drug levels by inhibiting Pgp function with no effect on Pgp expression. Among the flavonoids tested, flavonols, particularly kaempferol, exhibit the most potent MDR reversing property in KB-V1 cells.  相似文献   

11.
Tamoxifen is an anti-oestrogen which is currently being assessed as a prophylactic for women at high risk of breast cancer. Taxoxifen has also been shown to reverse multidrug resistance in P-glycoprotein (P-gp)-expressing cells, although the mechanism of action is unknown. In this study we demonstrate that tamoxifen interacts directly with P-gp. Plasma membranes from P-gp-expressing cells bound [3H]tamoxifen in a specific and saturable fashion. A 180 kDa membrane protein in these membranes, labelled by the affinity analogue tamoxifen aziridine and azidopine, was shown to be P-gp. Tamoxifen reduced the binding of vinblastine and azidopine to P-gp, and tamoxifen increased [3H]vinblastine accumulation in P-gp-expressing cells to levels approaching those in non-P-gp-expressing cells. However, the cellular accumulation of [3H]tamoxifen itself was not influenced by the presence of P-gp. Thus, tamoxifen appears to reverse multidrug resistance by binding to P-gp and inhibiting the transport of cytotoxic drugs, but does not itself appear to be transported by the protein.  相似文献   

12.
Glucosylceramide synthase (GCS) is a key enzyme engaged in the biosynthesis of glycosphingolipids and in regulating ceramide metabolism. Studies exploring alterations in GCS activity suggest that the glycolase may have a role in chemosensitizing tumor cells to various cancer drugs. The chemosensitizing effect of inhibitors of GCS (e.g. PDMP and selected analogues) has been observed with a variety of tumor cells leading to the proposal that the sensitizing activity of GCS inhibitors is primarily through increases in intracellular ceramide leading to induction of apoptosis. The current study examined the chemosensitizing activity of the novel GCS inhibitor, Genz-123346 in cell culture. Exposure of cells to Genz-123346 and to other GCS inhibitors at non-toxic concentrations can enhance the killing of tumor cells by cytotoxic anti-cancer agents. This activity was unrelated to lowering intracellular glycosphingolipid levels. Genz-123346 and a few other GCS inhibitors are substrates for multi-drug resistance efflux pumps such as P-gp (ABCB1, gP-170). In cell lines selected to over-express P-gp or which endogenously express P-gp, chemosensitization by Genz-123346 was primarily due to the effects on P-gp function. RNA interference studies using siRNA or shRNA confirmed that lowering GCS expression in tumor cells did not affect their responsiveness to commonly used cytotoxic drugs.  相似文献   

13.
Previously we demonstrated that multidrug-resistant (MDR) cancer cells have elevated levels of a glycosylated form of ceramide, glucosylceramide. Here we compared ceramide metabolism and ceramide toxicity in MCF-7 and in adriamycin-resistant (MCF-7-AdrR) human breast cancer cells. MCF-7-AdrR cells were resistant to C6-ceramide (1-10 microM); however, in MCF-7 cells treated with C6-ceramide, viability dropped sharply. Ceramide, when supplemented, was not metabolized by MCF-7 cells. In contrast, ceramide was efficiently converted to glucosylceramide by MCF-7-AdrR cells. Analysis of extracellular [3H]ceramide in radiolabeled cells showed that MCF-7-AdrR cells do not have an enhanced capacity to efflux ceramide compared with MCF-7 cells. Triphenylethylene anti-estrogens, known modulators of drug resistance, were effective inhibitors of ceramide conversion to glucosylceramide, suggesting that blocking ceramide metabolism plays a role in chemosensitization. The anti-progestine, RU486, also blocked glucosylceramide synthesis in cells; however, LY117018, a raloxifene analog, was without influence. We propose that an enhanced capacity to glycosylate ceramide as evidenced in MCF-7-AdrR cells, is a molecular determinant of drug resistance, particularly as regards resistance to ceramide-enhancing agents such as anthracyclines, ionizing radiation, and tumor necrosis factor-alpha.  相似文献   

14.
15.

Purpose

The proteasome inhibitor bortezomib (PS-341) has displayed significant efficiency against pancreatic cancer cells. However, the underlying mechanisms are not fully understood. Here, we tested if ceramide production was involved in the bortezomib’s effect.

Methods

Two transformed pancreatic cancer cell lines (PANC-1 and Mia) and the primary pancreatic cancer cells were used. Cell death was analyzed by MTT viability assay and trypan blue staining. Cell apoptosis was analyzed by Histone DNA-ELISA assay and Annexin V FACS. Western blots were used to test signal protein changes. The cellular ceramide level after bortezomib treatment was also determined.

Results

In cultured pancreatic cancer cells, bortezomib increased cellular ceramide production to promote cell apoptosis. The ceramide de novo synthase inhibitor fumonisin B1 (F-B1) suppressed bortezomib-induced ceramide production and apoptosis, while exogenously added C6-ceramide facilitated bortezomib-induced pancreatic cancer cell death. Meanwhile, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), the inhibitor of glucosylceramide synthetase as well as the sphingosine kinase 1 inhibitors (SKI-II and SKI-IV), facilitated bortezomib-induced ceramide production and subsequent cell apoptosis. Further, bortezomib-induced pro-apoptotic c-Jun N-terminal kinase (JNK) activation was also associated with ceramide production. JNK activation by bortezomib was suppressed by F-B1, but was enhanced by SKI-II and PDMP in pancreatic cancer cells. Finally, C6-ceramide, SKI-II, and PDMP dramatically enhanced bortezomib-induced cytotoxicity in primary cultured pancreatic cancer cells.

Conclusions

We found that bortezomib-induced apoptosis was associated with ceramide production in primary and transformed pancreatic cancer cells.  相似文献   

16.
SDZ PSC 833 (PSC 833) is a new multidrug resistance modulator. Recent studies have shown that the principal mechanism of action of PSC 833 is to bind P-glycoprotein (P-gp) and prevent cellular efflux of chemotherapeutic drugs. We previously reported that PSC 833 increases cellular ceramide levels. The present study was conducted to determine whether the impact of PSC 833 on ceramide generation is dependent on P-gp. Work was carried out using the drug-sensitive P-gp-deficient human breast adenocarcinoma cell line, MCF-7, and drug resistant MCF-7/MDR1 clone 10.3 cells (MCF-7/MDR1), which show a stable MDR1 P-gp phenotype. Overexpression of P-gp in MCF-7/MDR1 cells did not increase the levels of glucosylceramide, a characteristic which has been associated with multidrug resistant cells. Treatment of MCF-7 and MCF-7/MDR1 cells with PSC 833 caused similar ceramide elevation, in a dose-responsive manner. At 5.0 microM, PSC 833 increased ceramide levels 4- to 5-fold. The increase in ceramide levels correlated with a decrease in survival in both cell lines. The EC50 (concentration of drug that kills 50% of cells) for PSC 833 in MCF-7 and MCF-7/MDR1 cells was 7.2 +/- 0.6 and 11.0 +/- 1.0 microM, respectively. C6-Ceramide exposure diminished survival of MCF-7 cells; whereas, MCF-7/MDR1 cells were resistant to this short chain ceramide analog. Preincubation of cells with cyclosporine A, which has high affinity for P-gp, did not diminish the levels of ceramide generated upon exposure to PSC 833. These results demonstrate that PSC 833-induced cellular ceramide formation occurs independently of P-gp. As such, these data indicate that reversal of drug resistance by classical P-gp blockers may be modulated by factors unrelated to drug efflux parameters.  相似文献   

17.
目的:探讨经多次化疗的非小细胞肺癌(NSCLC)肿瘤细胞与外周血淋巴细胞(PBL)多药耐药基因(mdrl)表达蛋白P-gp含量及其相关性;临床观察三苯氧胺对已产生多药耐药的NSCLC患者耐药性的逆转作用.方法:应用流式细胞免疫学方法,对57例多次接受过化疗的NSCLC肿瘤组织细胞及PBL的P-gp含量进行定量研究,对PBL中P-gp表达阳性的48例患者均采用EMP方案化疗,其25例在化疗过程中同时予三苯氧胺口服,观察其临床治疗效果.结果:肿瘤细胞P-gp含量与其对应的PBL的P-gp含量呈正相关,PBL的P-gp含量可间接反应NSCLC细胞对化疗药物的耐受程度;三苯氧胺可部分逆转NSCLC细胞的耐药性,显著提高EMP方案对耐药的NSCLC患者的疗效.结论:通过检测NSCLC患者PBL P-gp的含量可间接反应肿瘤细胞的耐药程度,对已耐药的患者在化疗的同时合用三苯氧胺可明显提高化疗方案的有效率.  相似文献   

18.
殷莉 《国际肿瘤学杂志》2008,35(10):732-735
葡萄糖神经酰胺合成酶(GCS)参与神经酰胺(Cer)糖基化代谢途径,能阻断Cer对细胞凋亡信号的转导.研究表明在多种肿瘤多药耐药细胞株中GCS含量增加且与耐药表型相关,GCS和P-糖蛋白(P-gP)在细胞耐药的生物学机制中有相关性.通过化学抑制剂以及RNA干扰技术下调GCS的水平和活性能增强肿瘤细胞对药物的敏感性.因此,抑制GCS是逆转肿瘤多药耐药的一种新机制.  相似文献   

19.
Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces caspase-dependent apoptosis in human leukemia and carcinoma cell lines. Ceramide is a second messenger in apoptosis signaling that has been shown to increase the cytotoxicity of various anti-cancer drugs. In this study, we determined whether manipulation of intracellular ceramide levels enhanced LfcinB-induced apoptosis of estrogen-nonresponsive MDA-MB-435 breast carcinoma cells. LfcinB caused DNA fragmentation and morphological changes consistent with apoptosis in MDA-MB-435 breast cancer cell cultures, but did not affect the viability of untransformed mammary epithelial cells. MDA-MB-435 breast cancer cells also exhibited DNA fragmentation and morphological changes consistent with apoptosis following exposure to the cell-permeable ceramide analog C6. An additive increase in DNA fragmentation was observed when both LfcinB and C6 ceramide were added to MDA-MB-435 breast cancer cell cultures. A greater than additive increase in DNA fragmentation was seen when LfcinB was used in combination with tamoxifen, which prevents the metabolism of endogenous ceramide to glucosylceramide by glucosylceramide synthase, as well as blocking estrogen receptor signaling. However, a selective inhibitor of glucosylceramide synthase,1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, failed to further increase DNA fragmentation by LfcinB, suggesting that tamoxifen enhanced LfcinB-induced apoptosis in breast cancer cells via a mechanism that did not involve glucosylceramide synthase inhibition. We conclude that combination therapy with LfcinB and tamoxifen warrants further investigation for possible use in the treatment of breast cancer.  相似文献   

20.
The purpose of the present study was to investigate the effects of an exogenously administered cell-permeable synthetic ceramide analogue, C(2)-ceramide (N-acetyl-sphingosine) on the growth, cell cycle, and death of Ishikawa human endometrial carcinoma cells. We investigated the effects of C(2)-ceramide on Ishikawa endometrial cancer cell lines in vitro. The cells were treated with C(2)-ceramide, and its effects on cell growth, cell cycle, apoptosis, and related measurements were investigated. MTT assays showed that C(2)-ceramide, a cell-permeable analogue of ceramide, significantly induced dose- and time-dependent death in human endometrial carcinoma Ishikawa cells. Cell-cycle analysis indicated that their exposure to C(2)-ceramide decreased the proportion of cells in S phase and increased the proportion in G0/G1 and/or G2/M phases of the cell cycle. Induction of apoptosis was confirmed by annexin V staining of externalized phosphatidylserine and loss of the transmembrane potential of mitochondria. This induction occurred in concert with the altered expression of genes related to cell growth, malignant phenotype, and apoptosis, including cleavage of poly-ADP ribose polymerase. Furthermore, we demonstrated that the amount of phosphorylated Akt was decreased by C(2)-ceramide. These results raise the possibility that C(2)-ceramide may prove particularly effective in the treatment of endometrial cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号