首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The functional role of short-, medium- and long-latency responses for the maintenance of upright posture was investigated in twenty healthy subjects standing on a platform which could be rotated in pitch around the subject's ankle joints. Tilting the platform toe-up evokes a stretch reflex in the triceps surae muscle (TS, latency 55–65 ms) and at higher speeds and amplitudes of platform displacement a medium-latency response (latency 108–123 ms). Both responses functionally destabilize posture, since they enforce the induced backward displacement of the body. Compensation of body displacement in this situation is achieved by a long-latency EMG response in the anterior tibial muscle (TA 130–145 ms). Platform movement toe-down elicits a rather small medium-latency response in TA (103–118 ms), but no short-latency response. A late compensatory response occurs in the triceps surae muscle (latency 139–170 ms). The mean latency of the late antagonistic EMG response was significantly shorter than that of a voluntary movement triggered by a somatosensory stimulus. Integrals of rectified EMG responses from the two muscles were linearly related to the amplitude and to a smaller degree to the velocity of platform displacement. The slope of this function (gain) varied depending on the direction of ankle displacement and the functional importance of the subsequent EMG responses. Destabilizing short- and medium-latency responses of the stretched muscle had a lower gain relative to amplitude than the late stabilizing response of the antagonist. This functionally adaptive modulation of gain was not seen in relation to the rate of platform displacement.Supported by the Deutsche Forschungsgemeinschaft (Di 278/1-1)  相似文献   

2.
Summary In the previous paper regarding the somatosensory control of the human precision grip, we concluded that the elicited automatic grip force adjustments are graded by the amplitude of the imposed loads when restraining an active object subjected to unpredictable pulling forces (Johansson et al. 1992a). Using the same subjects and apparatus, the present study examines the capacity to respond to imposed load forces applied at various rates. Grip and load forces (forces normal and tangential to the grip surfaces) and the position of the object in the pulling direction (distal) were recorded. Trapezoidal load force profiles with plateau amplitudes of 2 N were delivered at the following rates of loading and unloading in an unpredictable sequence: 2 N/s, 4 N/s or 8 N/s. In addition, trials with higher load rate (32 N/s) at a low amplitude (0.7 N) were intermingled. The latencies between the start of the loading and the onset of the grip force response increased with decreasing load force rate. They were 80±9ms, 108 ±13ms, 138 ± 27 ms and 174 ± 39 ms for the 32, 8, 4 and 2 N/s rates, respectively. These data suggested that the grip response was elicited after a given minimum latency once a load amplitude threshold was exceeded. The amplitude of the initial rapid increase of grip force (i.e., the catch-up response) was scaled by the rate of the load force, whereas its time course was similar for all load rates. This response was thus elicited as a unit, but its amplitude was graded by afferent information about the load rate arising very early during the loading. The scaling of the catch-up response was purposeful since it facilitated a rapid reconciliation of the ratio between the grip and load force to prevent slips. In that sense it apparently also compensated for the varying delays between the loading phase and the resultant grip force responses. However, modification of the catch-up response may occur during its course when the loading rate is altered prior to the grip force response or very early during the catch-up response itself. Hence, afferent information may be utilized continuously in updating the response although its motor expression may be confined to certain time contingencies. Moreover, this updating may take place after an extremely short latency (45–50 ms). Our findings support the idea that the initiation as well as ongoing regulation of the motor responses is dependent on supraspinal control, but afferent signals directly processed through fast segmental networks may also contribute in the regulation. The grip force responses to the unloading phases, they were also graded by the load force rate and the response latencies increased with decreasing load force rate. However, the latencies were longer and more variable, and no catch-up responses were observed. Rather, the grip force decline was programmed for the inter-trial grip force level.  相似文献   

3.
It is well known that during volitional sinusoidal tracking the long-latency reflex modulates in parallel with the volitional EMG activity. In this study, a series of experiments are reported demonstrating several conditions in which an uncoupling of reflex from volitional activity occurs. The paradigm consists of a visually guided task in which the subject tracked a sinusoid with the wrist. The movement was perturbed by constant torque or controlled velocity perturbations at 45° intervals of the tracking phase. Volitional and reflex-evoked EMG and wrist displacement as functions of the tracking phase were recorded. The relationship of both short-latency (30–60 ms) and longer-latency (60–100 ms) reflex components to the volitional EMG was evaluated. In reflex tracking, the peak reflex amplitude occurs at phases of tracking which correspond to a maximum of wrist joint angular velocity in the direction of homonymous muscle shortening and a minimum of wrist compliance. Uncoupling of the reflex and volitional EMG was observed in three situations. First, during passive movement of the wrist through the sinusoidal tracking cycle perturbation-evoked long-latency stretch reflex peak is modulated as for normal, volitional tracking. However, with passive joint movement the volitional EMG modulation is undetectable. Second, a subset of subjects demonstrate a normally modulated and positioned long-latency reflex with a single peak. However, these subjects have distinct bimodal peaks of volitional EMG. Third, the imposition of an anti-elastic load (positive position feedback) shifts the volitional EMG envelope by as much as 180° along the tracking phase when compared with conventional elastic loading. Yet the long-latency reflex peak remains at its usual phase in the tracking cycle, corresponding to the maximal velocity in the direction of muscle shortening. Furthermore, comparison of the results from elastic and anti-elastic loads reveals a dissociation of short- and long-latency reflex activity, with the short-latency reflex shifting with the volitional EMG envelope. Comparable results were also obtained for controlled velocity perturbations used to control for changes in joint compliance. The uncoupling of the reflex and volitional EMG activity in the present series of experiments points to a flexible relationship between reflex and volitional control systems, altered by peripheral input and external load.  相似文献   

4.
In manipulating 'passive' objects, for which the physical properties are stable and therefore predictable, information essential for the adaptation of the motor output to the properties of the current object is principally based on 'anticipatory parameter control' using sensorimotor memories, i.e., an internal representation of the object's properties based on previous manipulative experiences. Somatosensory afferent signals only intervene intermittently according to an 'event driven' control policy. The present study is the first in a series concerning the control of precision grip when manipulating 'active' objects that exert unpredictable forces which cannot be adequately represented in a sensorimotor memory. Consequently, the manipulation may be more reliant on a moment-to-moment sensory control. Subjects who were prevented from seeing the hand used the precision grip to restrain a manipulandum with two parallel grip surfaces attached to a force motor which produced distally directed (pulling) loads tangential to the finger tips. The trapezoidal load profiles consisted of a loading phase (4 N/s), plateau phase and an unloading phase (4 N/s) returning the load force to zero. Three force amplitudes were delivered in an unpredictable sequence; 1 N, 2 N and 4 N. In addition, trials with higher load rate (32 N/s) at a low amplitude (0.7 N), were superimposed on various background loads. The movement of the manipulandum, the load forces and grip forces (normal to the grip surfaces) were recorded at each finger. The grip force automatically changed with the load force during the loading and unloading phases. However, the grip responses were initiated after a brief delay. The response to the loading phase was characterized by an initial fast force increase termed the 'catch-up' response, which apparently compensated for the response delay--the grip force adequately matched the current load demands by the end of the catch-up response. In ramps with longer lasting loading phases (amplitude greater than or equal to 2 N) the catch-up response was followed by a 'tracking' response, during which the grip force increased in parallel with load force and maintained an approximately constant force ratio that prevented frictional slips. The grip force during the hold phase was linearly related to the load force, with an intercept close to the grip force used prior to the loading. Likewise, the grip force responses evoked by the fast loadings superimposed on existing loads followed the same linear relationship.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We investigated the effects of old age on the fingertip force responses that occurred when a grasped handle was pulled unexpectedly to increase the tangential load at the fingertip. These automatic responses, directed normal to the handle surface, help prevent slips between the handle and finger. Old adults (average age 78 years) responded with large peak fingertip forces compared to young adults (average age 30 years), even though the two subject groups showed similar skin slipperiness. For step-shaped loads the average response latency was the same for young and old subjects (about 80 ms). Thus, these automatic responses are not susceptible to the age-related central delays known for simple reaction-time tasks. For ramp-shaped loads the average response latency was inversely related to load rate. Response latency was 25 ms longer for the Old group versus the Young group for loads of 8 N/s, and this difference increased exponentially to a 110-ms difference for 2-N/s loads. A twofold difference in the tangential force required to evoke a response was predicted from linear regressions and can account for the latency difference (0.2 N vs 0.4 N threshold for young and old, respectively, r=0.93 for both groups). This theoretical elevation in load force threshold is consistent with degraded central information processing in old age, and the deterioration of cutaneous mechanoreceptors.  相似文献   

6.
A long-latency stretch reflex (LLSR) has been described in the human masseter muscle, but its pathway remains uncertain. To investigate this, the excitability of corticomotoneuronal (CM) cells projecting to masseter motoneurons during the LLSR was assessed with transcranial magnetic stimulation (TMS). A facilitated response to TMS would be evidence of a LLSR pathway that traverses the motor cortex. Surface electromyogram electrodes were placed over the left or right masseter, and subjects (n=10) bit on bars with their incisor teeth at 10% of maximal electromyographic activity (EMG). Servo-controlled displacements were imposed on the lower jaw to evoke a short- and long-latency stretch reflex in masseter. TMS intensity was just suprathreshold for a response in contralateral masseter. Trials consisted of: (1) stretch alone, (2) TMS alone, and (3) TMS with a preceding conditioning stretch at varied conditioning-testing (C-T) intervals chosen to combine TMS with the short-latency stretch reflex (3 ms, 5 ms) and the LLSR (23–41 ms). Masseter EMG was rectified and averaged. With TMS alone, mean (± SE) MEP area above baseline was 56±9%. The area of masseter MEPs above baseline in the C-T trials was calculated from each EMG average following subtraction of the response to stretch alone. Conditioning muscle stretch had no significant effect on masseter MEPs evoked by TMS with any C-T interval (ANOVA; P=0.90). In addition, subjects were unable to modify the SLSR or LLSR by voluntary command. It is concluded that the long-latency stretch reflex in the masseter does not involve the motor cortex and is not influenced by "motor set". Electronic Publication  相似文献   

7.
 Stretch reflex responses in three elbow flexor muscles – the brachioradialis and the short and long heads of the biceps brachii – were studied during different motor tasks. The motor tasks were iso-velocity (8 deg/s) elbow flexion movements in which the muscles performed shortening or lengthening contractions, or were isometric contractions. Care was taken to maintain constant background electromyographic (EMG) activity in the brachoradialis muscle at a 50-deg elbow angle across the tasks by changing the magnitude of the initial load. During each task, mechanical perturbations (duration 170 ms) were applied at pseudorandom intervals when the elbow angle was 50 deg. The magnitude of the perturbation was varied across tasks in order to induce an elbow extension velocity of 80 deg/s over the first 50 ms after the onset of perturbation. The stretch reflex EMG responses in all muscles varied across the three tasks, despite a constant EMG level and similar perturbation-induced angular velocity in the direction of elbow extension. In particular, both the short- and long-latency reflex EMG components were reduced during the lengthening contractions. Further, the task-dependent variations in the early (M2) and the late (M3) components of the long-latency reflex were different, i.e., the magnitude of M3 was considerably enhanced during the shortening task as compared with that of M2. These findings suggest that central modification was responsible for the task-dependent modulation of late EMG responses. Received: 24 April 1996 / Accepted: 24 January 1997  相似文献   

8.
Application of a small (around 1 mA), constant electric current between the mastoid processes (galvanic stimulation) of a standing subject produces enhanced body sway in the approximate direction of the ear behind which the anode is placed. We examined the electromyographic (EMG) responses evoked by such stimulation in the soleus and in the triceps brachii muscles. For soleus, subjects stood erect, with their eyes closed, leaning slightly forward. The head was turned approximately 90° to the right or left relative to the feet. In averaged records (n=40), current pulses of 25 ms or longer modulated the EMG in a biphasic manner: a small early component (latency 62±2.4 ms, mean ± SEM) was followed by a larger late component (latency 115±5.2ms) of opposite sign, which was appropriate to produce the observed body sway. The early component produced no measurable body movement. Lengthening the duration of the stimulus pulse from 25 to 400 ms prolonged the late component of the response but had little effect on the early component. Short- and long-latency EMG responses were also evoked in the triceps brachii muscle if subjects stood on a transversely pivoted platform and had to use the muscle to maintain their balance in the anteroposterior plane by holding a fixed handle placed by the side of their hip. The latency of the early component was 41±2.6 ms; the latency of the late component was 138±4.3 ms and was again of appropriate sign for producing the observed body sway. Galvanic stimulation evoked no comparable responses in either triceps brachii or soleus muscles if these muscles were not being used posturally. The responses were most prominent if vestibular input provided the dominant source of information about postural stability, and were much smaller if subjects lightly touched a fixed support or opened their eyes. The difference in latency between the onset of the early component of the response in arm and leg muscles suggests that this part of the response uses a descending pathway which conducts impulses down the spinal cord with a velocity comparable with that of the fast conducting component of the corticospinal tract. The late component of the EMG response occurs earlier in the leg than the arm. We suggest that it forms part of a patterned, functional response which is computed independently of the early component.  相似文献   

9.
The aim of the present study was to find out whether haloperidol-induced rigidity was similar to that seen in parkinsonism. Simultaneous measurements of the muscle resistance (mechanomyogram, MMG) of the hind foot to passive flexion and extension in the ankle joint, as well as determination of the electromyographic (EMG) activity of the gastrocnemius and tibialis anterior muscles of rats were carried out. Haloperidol was injected in doses of 0.5–10 mg/kg 1 h before the start of measurements. Haloperidol increased, in a dose-dependent manner, the muscle resistance of the rat's hind leg to passive movements. Muscle rigidity was accompanied with an increase resting, as well as in the stretch-induced long-latency EMG activity (in which supraspinal reflexes are most probably involved) in both those muscles, whereas the short-latency EMG activity (first large bursts of EMG activity, beginning ca. 9 ms after the start of a movement, probably of a spinal origin) was significantly decreased. The obtained results suggest that the haloperidol-increased MMG/EMG activity might be a good model of parkinsonian rigidity.  相似文献   

10.
Summary The cerebral evoked potential produced by rapid extension of the wrist was recorded from scalp electrodes in normal subjects while they exerted a small background flexor torque (0.24 Nm) against an electric motor. The initial part of the response consisted of a negative deflection (N1) with an average latency of 24.7 ms. This was followed by a biphasic P1/P2 (32 ms) response and a large later negative wave (N2) (76 ms). Passive wrist extension also evoked reflex EMG responses in the forearm flexor muscles which could be resolved into a short latency (25 ms) and long-latency (52 ms) component. The cerebral responses persisted almost unchanged during complete ischaemic anaesthesia of the hand produced by a pressure cuff around the wrist, and were reduced if the stretch was given during voluntary wrist flexion. The primary component (N1-P1/ P2) of the cerebral response probably represents the arrival at the cortex of the muscle afferent volley. However, the significance of the secondary component (P1/P2-N2) is unknown. Under certain conditions, its size was related to the size of the long latency stretch reflex evoked by stretch of the flexor muscles. Thus, increasing the velocity of stretch or decreasing the repetition rate (from 1.0 to 0.15 Hz) at which stretches were applied, increased the size of both the muscle reflex and the cerebral response. The secondary component also could be changed by voluntary reaction to wrist stretch. Changes in the size of the secondary component of the evoked response may represent the earliest cortical sign of interaction between sensory input and motor output.  相似文献   

11.
The main objective of this study was to characterize the stretch reflex response of the human thigh muscles to an unexpected knee flexion at the transition from stance to swing during walking. Eleven healthy subjects walked on a treadmill at their preferred speed. Reliable and constant knee flexions (6–12° amplitude, 230–350°/s velocity, 220 ms duration) were applied during the late swing and early stance phase of human walking by rotating the knee joint with a specifically designed portable stretch apparatus affixed to the left knee. Responses from rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), medial hamstrings (MH) and medial gastrocnemius (GM) were recorded via bipolar surface electromyograms (EMG). The onset of the response in the RF, VL and VM, remained stable and independent of the time in the step cycle when the stretch was applied. Across all subjects the response onset (mean ± SD) occurred at 23±1, 24±1 and 23±1 ms for RF, VL and VM, respectively. The duration of the initial response was 90–110 ms, at which time the EMG signal returned towards baseline levels. Three reflex response windows, labelled the short latency reflex (SLR), the medium latency reflex (MLR) and the late latency reflex response (LLR), were analysed. The medium and late reflex responses of all knee extensors increased significantly (p=0.008) as the gait cycle progressed from swing to stance. This was not related to the background EMG activity. In contrast, during standing at extensor EMG levels similar to those attained during walking the reflex responses were dependent on background EMG. During walking, LLR amplitudes expressed as a function of the background activity were on average two to three times greater than SLR and MLR reflex amplitudes. Distinct differences in SLR and LLR amplitude were observed for RF, VL and VM but not in the MLR amplitude. This may be related to the different pathways mediating the SLR, MLR and LLR components of the stretch response. As for the knee extensor antagonists, they exhibited a response to the stretch of the quadriceps at latencies short enough to be monosynaptic. This is in agreement with the suggestion by Eccles and Lundberg (1958) that there may be functional excitatory connections between the knee extensors and flexors in mammals.  相似文献   

12.
Single motor unit and gross surface electromyographic responses to torque motor-produced wrist extensions were studied in human flexor carpi radialis muscle. Surface EMG typically showed two "periods" of reflex activity, at a short and long latency following stretch, but both periods occurring before a subject's voluntary reaction to the stretch. The amplitude of EMG activity in both reflex periods increased monotonically with an increase in the torque load. The amplitude of the short-latency reflex response was very dependent on the motoneuron pool excitability, or preload. The amplitude of the long-latency reflex response also varied with the preload, but could, in addition, be modulated by the subject's preparatory set for a voluntary response to the imposed displacement. When a single motor unit that was not tonically active began to fire during the stretch reflex, it did so primarily during the long-latency period. When caused to fire repetitively by voluntary facilitation of the motoneuron pool, that same unit now showed activity during both periods of the stretch reflex. Further increases in either motoneuron pool facilitation or in perturbation strength resulted in a monotonic increase in response probability of a single motor unit during the short-latency period. However, the response probability of a single unit during the long-latency reflex period did not always vary in a monotonic way with increases in either torque load or motoneuron pool facilitation. For an additional series of experiments, the subject was instructed on how to respond voluntarily to the upcoming wrist perturbation. The three instructions to the subject had no effect on the response probability of a single motor unit during either the background or short-latency periods of the stretch reflex. However, prior instruction clearly affected a unit's response probability during the long-latency reflex period. Changes in the firing rate of motor units, and in the recruitment or derecruitment of nontonic units, contributed to this modulation of reflex activity during the long-latency period.  相似文献   

13.
 The reactive forces and torques associated with moving a hand-held object between two points are potentially destabilising, both for the object’s position in the hand and for body posture. Previous work has demonstrated that there are increases in grip force ahead of arm motion that contribute to object stability in the hand. Other studies have shown that early postural adjustments in the legs and trunk minimise the potential perturbing effects on body posture of rapid voluntary arm movement. This paper documents the concurrent evolution of grip force and postural adjustments in anticipation of dynamic and static loads. Subjects held a manipulandum in precision grasp between thumb and index finger and pulled or pushed either a dynamic or a fixed load horizontally towards or away from the body (the grasp axis was orthogonal to the line of the load force). A force plate measured ground reaction torques, and force transducers in the manipulandum measured the load (tangential) and grip (normal) forces acting on the thumb and finger. In all conditions, increases in grip force and ground reaction torque preceded any detectable rise in load force. Rates of change of grip force and ground reaction torque were correlated, even after partialling out a common dependence on load force rate. Moreover, grip force and ground reaction torque rates at the onset of load force were correlated. These results imply the operation of motor planning processes that include anticipation of the dynamic consequences of voluntary action. Received: 28 June 1996 / Accepted: 4 February 1997  相似文献   

14.
Current models of basal ganglia function suggest that some manifestations of Parkinson disease (PD) arise from abnormal activity and decreased selectivity of neurons in the subthalamic nucleus (STN) and globus pallidus internus (Gpi). Our goal was to examine the timing and direction selectivity of neuronal activity relative to visually guided movements in the STN and Gpi of patients with PD. Recordings were made from 152 neurons in the STN and 33 neurons in the Gpi of awake subjects undergoing surgery for PD. Corresponding EMG data were obtained for half the cells. We employed a structured behavioral task in which the subjects used a joystick to guide a cursor to one of four targets displayed on a monitor. Each direction was tested over multiple trials. Movement-related modulation of STN activity began on average 264±10 ms before movement initiation and 92±13 ms before initial EMG activity, while modulation of Gpi activity began 204±21 ms before overt movement initiation. In the STN, 40% of cells demonstrated perimovement activity, and of these 64% were directionally selective. In Gpi, 45% of cells showed perimovement activity of which 80% were selective. In both nuclei, directionally selective cells had significantly lower baseline firing rates than nonselective cells (41±5 vs 59±4 spikes/s in STN, and 50±9 vs 74±15 spikes/s in Gpi). These results suggest that STN activity occurs earlier than previously reported, and that higher neuronal firing rates maybe associated with decreased direction selectivity in PD patients.  相似文献   

15.
The incremental torque resisting rotation of the foot about the ankle joint was studied in normal seated subjects. Prior to each rotation, subjects were required to activate triceps surae (TS) muscles and maintain a constant plantar flexion torque (range 6-14 N X m) on a platform whose position was controlled by a torque motor. Subjects were instructed to increase torque as rapidly as possible once rotation commenced. Rotations ranged from 0.5 to 14 degrees amplitude and from 20 to 300 degrees/s maximum velocity. The torque in response to rotations stretching TS muscles and releasing tibialis anterior (TA) muscles increased steeply and then rapidly decreased with stretch velocity. At approximately 60 ms from stretch onset, the torque reduction terminated, torque then increased again until it began to level off at approximately 120 ms. A further large increase in torque occurred at 180 ms. A burst of short-latency (SL) electromyographic (EMG) activity in soleus (SOL) commenced at 40 ms, and was followed by a second burst at approximately 68 ms, provided that stretch deceleration started later than 20 ms after stretch onset. A period of sustained EMG activity in SOL commenced at approximately 130 ms (long-latency (LL) activity). Incremental torque in response to stretch of TA and release of TS muscles initially showed a step decrease followed by a reversal of the torque trajectory back toward base line. This change was arrested at 60 ms and torque then remained approximately constant until a large increase in torque at 180 ms. Ischemia was used to reduce SL EMG reflexes without significantly modifying the background EMG activity. A comparison between torque curves under control and ischemic conditions indicated that SL EMG activity in TS muscles recruited the force responsible for terminating the torque reduction coincident with decreasing stretch velocity. The torque response prior to the onset of force recruited by SL activity was attributed to the intrinsic properties of active muscle fibers. Thereafter, until the onset of LL activity, the torque response was attributed to intrinsic and reflex-recruited force. Torque in these two time periods was compared under a variety of stretch conditions in order to test the hypothesis that force recruited by segmental reflexes compensates for the non-linear stretch properties of active TS muscles. The relationships of SL EMG amplitudes and areas to stretch velocity and acceleration were also examined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Control of grasp stability during pronation and supination movements   总被引:5,自引:5,他引:0  
 We analyzed the control of grasp stability during a major manipulative function of the human hand: rotation of a grasped object by pronation and supination movement. We investigated the regulation of grip forces used to stabilize an object held by a precision grip between the thumb and index finger when subjects rotated it around a horizontal axis. Because the center of mass was located distal to the grip axis joining the fingertips, destabilizing torque tangential to the grasp surfaces developed when the grip axis rotated relative to the field of gravity. The torque load was maximal when the grip axis was horizontal and minimal when it was vertical. An instrumented test object, with a mass distribution that resulted in substantial changes in torque load during the rotation task, measured forces and torques applied by the digits. The mass distribution of the object was unpredictably changed between trials. The grip force required to stabilize the object increased directly with increasing torque load. Importantly, the grip force used by the subjects also changed in proportion to the torque load such that subjects always employed adequate safety margins against rotational slips, i.e., some 20–40% of the grip force. Rather than driven by sensory feedback pertaining to the torque load, the changes in grip force were generated as an integral part of the motor commands that accounted for the rotation movement. Subjects changed the grip force in parallel with, or even slightly ahead of, the rotation movement, whereas grip force responses elicited by externally imposed torque load changes were markedly delayed. Moreover, blocking sensory information from the digits did not appreciably change the coordination between movement and grip force. We thus conclude that the grip force was controlled by feedforward rather than by feedback mechanisms. These feedforward mechanisms would thus predict the consequences of the rotation movement in terms of changes in fingertip loads when the orientation of the grip axis changed in the field of gravity. Changes in the object’s center of mass between trials resulted in a parametric scaling of the motor commands prior to their execution. This finding suggests that the sensorimotor memories used in manipulation to adapt the motor output for the physical properties of environmental objects also encompass information related to an object’s center of mass. This information was obtained by somatosensory cues when subjects initially grasped the object with the grip axis vertical, i.e., during minimum tangential torque load. Received: 16 October 1998 / Accepted: 1 February 1999  相似文献   

17.
The paraspinal muscle responses for unexpected and expected upper limb loading were investigated by surface EMG of 20 healthy volunteers. The simultaneous trunk and hand accelerations with paraspinal, biceps brachii and soleus muscles EMG were measured in four subjects. A short-latency response of ~50 ms was observed in paraspinal muscles. The latency was ~3 ms shorter (P=0.017) during "expected" trials on average and the latency shortened during the first three expected trials (P=0.02). Anticipation also decreased the magnitude of the response (P<0.05). Trunk movement initiated ~35 ms and ~50 ms after the impact of the load at T6 and T12 levels, respectively. In conclusion, visual expectation shortens the latency and decreases the magnitude of the paraspinal muscle response to sudden upper limb loading. Also, the trial repetition has an effect on reflex latency if visual information is available. These results indicate that anticipation modulates the reflex control of paraspinal muscles, which may be significant in understanding spinal function. Electronic Publication  相似文献   

18.
Humans preserve grasp stability by automatically regulating the grip forces when loads are applied tangentially to the grip surfaces of a manipulandum held in a precision grip. The effects of the direction of the load force in relation to the palm, trunk, and gravity were investigated in blindfolded subjects. Controlled, tangential load-forces were delivered in an unpredictable manner to the grip surface in contact with the index finger either in the distal and proximal directions (away from and toward the palm) or in the ulnar and radial directions (transverse to the palm). The hand was oriented in: (1) a standard position, with the forearm extended horizontally and anteriorly in intermediate pronosupination; (2) an inverted position, reversing the direction of radial and ulnar loads in relation to gravity; and (3) a horizontally rotated position, in which distal loads were directed toward the trunk. The amplitude of the grip-force responses (perpendicular to the grip surface) varied with the direction of load in a manner reflecting frictional anisotropies at the digit-object interface; that is, the subjects automatically scaled the grip responses to provide similar safety margins against frictional slips. For all hand positions, the time from onset of load increase to start of the gripforce increase was shorter for distal loads, which tended to pull the object out of the hand, than for proximal loads. Furthermore, this latency was shorter for loads in the direction of gravity, regardless of hand position. Thus, shorter latencies were observed when frictional forces alone opposed the load, while longer latencies occurred when gravity also opposed the load or when the more proximal parts of the digits and palm were positioned in the path of the load. These latency effects were due to different processing delays in the central nervous system and may reflect the preparation of a default response in certain critical directions. The response to loads in other directions would incur delays required to implement a new frictional scaling and a different muscle activation pattern to counteract the load forces. We conclude that load direction, referenced to gravity and to the hand's geometry, represents intrinsic task variables in the automatic processes that maintain a stable grasp on objects subjected to unpredictable load forces. In contrast, the grip-force safety margin against frictional slips did not vary systematically with respect to these task variables. Instead, the magnitude of the grip-force responses varied across load direction and hand orientation according to frictional differences providing similar safety margins supporting grasp stability.  相似文献   

19.
This study addresses the question of the origin of the long-latency responses evoked in flexors in the forearm by afferents from human hand muscles. The effects of electrical stimuli to the ulnar nerve at wrist level were assessed in healthy subjects using post-stimulus time histograms for flexor digitorum superficialis and flexor carpi radialis (FCR) single motor units (eight subjects) and the modulation of the ongoing rectified FCR EMG (19 subjects). Ulnar stimulation evoked four successive peaks of heteronymous excitation that were not produced by purely cutaneous stimuli: a monosynaptic Ia excitation, a second group I excitation attributable to a propriospinally mediated effect, and two late peaks. The first long-latency excitation occurred 8–13 ms after monosynaptic latency and had a high-threshold (1.2–1.5 × motor threshold). When the conditioning stimulation was applied at a more distal site and when the ulnar nerve was cooled, the latency of this late excitation increased more than the latency of monosynaptic Ia excitation. This late response was not evoked in the contralateral FCR of one patient with bilateral corticospinal projections to FCR motoneurones. Finally, oral tizanidine suppressed the long-latency high-threshold excitation but not the early low-threshold group I responses. These results suggest that the late high-threshold response is mediated through a spinal pathway fed by muscle spindle group II afferents. The second long-latency excitation, less frequently observed (but probably underestimated), occurred 16–18 ms after monosynaptic latency, had a low threshold indicating a group I effect, and was not suppressed by tizanidine. It is suggested that this latest excitation involves a transcortical pathway.  相似文献   

20.
An object held in precision grip creates predictable load forces on the hand during voluntary hand movement and these are associated with anticipatory modulation of grip force. Conflicting results have been obtained over whether predictable external load perturbations result in anticipatory grip force responses (e.g. Blakemore et al. in J Neurosci 18(18):7511–7518, 1998; Weeks et al. in Exp Brain Res 132:404–410, 2000). This paper investigated whether the discrepancies reflect differences in the methods used in estimating the time delay. Subjects held a manipulandum that delivered load force perturbations in the form of pulses of variable duration and interval or periodic 0.5 and 1 Hz square waves or sinusoids. The grip forces exerted by the subjects were measured. Two methods were used to assess the time delay of the grip force in relation to the load force: (1) cross-spectral analysis, (2) a single threshold method applied on time-locked averaged data. Despite a phase lag shown by the cross-spectral analysis, the threshold method revealed grip force increased 264.8±40.2 ms before the onset of the load force when 0.5 Hz square waves were used as the load force perturbation and 70.2±17.0 ms before the load force when 1 Hz square waves were used. Computer simulations indicated that the single threshold method gives a more sensitive estimate of the onset time than the cross-spectral analysis. We conclude that discrepancies in previous studies reflect differences in the methods used to assess the time-delay and that there is an anticipatory component in the grip force response to predictable external load perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号