首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As one of the important control strategies for highly pathogenic avian influenza (HPAI) in China, vaccination has been implemented compulsively in poultry flocks since 2004. However, the emergence and dominance of the circulating antigenic variants require the update of vaccines periodically. In order to investigate the key molecular sites responsible for the antigenic drift, a total of 13 amino acid positions divergent between clade 2.3.4 H5 viruses and their descendent subclade 2.3.4.4 variants in or around the recognized antigenic epitopes A–E were initially identified through inspecting a comprehensive HA sequence alignment of the H5 subtype HPAI viruses. Subsequently, a panel of single‐site or multi‐site HA mutants was constructed by reverse genetics with two H5N1 viruses of S (clade 2.3.4) and QD1 (subclade 2.3.4.4) as the HA backbone to study their antigenic variations, respectively. The hemagglutination–inhibition assay revealed an evident impact of mutations at sites 88, 156, 205, 208, 239 and 289 to the HA antigenicity and highlighted that the amino acid substitutions located in the antigenic region B, especially the combined mutations at sites 205 and 208, were the major antigenic determinant which was also consistent with results from flow cytometry and antigenic mapping. Our findings provided more insights into the molecular mechanism of antigenic drift of the H5 subtype HPAI virus, which would be helpful for the selection of vaccine candidates and accordingly for the prevention and control of this devastating viral agent.  相似文献   

2.
An outbreak of equine influenza (EI) was reported in Algeria between May and July, 2011. The outbreak started in Tiaret, in west province of Algeria, and spread to the other parts of the country affecting almost 900 horses in many provinces. The population studied was composed of 325 horses from different groups of age. Clinical sign expression was age dependent. Indeed, a morbidity rate of 14.9% was observed in horses under 15 months old and a rate of 4.95% in horses over 8 years old. Interestingly, the morbidity rate raised sharply to reach 100% in horses aged between 18 months and 7 years. The virus (H3N8) was detected in nasopharyngeal swabs (n = 11) from non‐vaccinated horses using a qRT‐PCR targeting a portion of the gene encoding the matrix protein (M). The virus isolates were identified as H3N8 by sequencing the haemagglutinin (HA) and neuraminidase (NA) genes and were named from A/equine/Tiaret/1/2011 to A/equine/Tiaret/10/2011. Alignment of HA1 amino acid sequence confirmed that viruses belong to Clade 2 of the Florida sublineage in the American lineage. Moreover, they are closely related to A/equine/Yokohama/aq13/2010, A/equine/Eyragues/1/2010, A/equine/Bokel/2011 and A/equine/Lichtenfeld/2012. Our data indicate that this strain was also circulating in the European horse population in 2010, 2011 and 2012.  相似文献   

3.
A total of 15 dead or sick birds from 13 clinical outbreaks of avian influenza in ducks, geese, chickens and turkeys in 2017 in Bangladesh were examined. The presence of H5N1 influenza A virus in the affected birds was detected by RT‐PCR. Phylogenetic analysis based on full‐length gene sequences of all eight gene segments revealed that these recent outbreaks were caused by a new reassortant of clade 2.3.2.1a H5N1 virus, which had been detected earlier in 2015 during surveillance in live bird markets (LBMs) and wet lands. This reassortant virus acquired PB2, PB1, PA, NP and NS genes from low pathogenic avian influenza viruses mostly of non‐H9N2 subtypes but retained HA, NA and M genes of the old clade 2.3.2.1a viruses. Nevertheless, the HA gene of these new viruses was 2.7% divergent from that of the old clade 2.3.2.1a viruses circulated in Bangladesh. Interestingly, similar reassortment events could be traced back in four 2.3.2.1a virus isolates of 2013 from backyard ducks. It suggests that this reassortant virus emerged in 2013, which took two years to be detected at a broader scale (i.e. in LBMs), another two years until it became widely spread in poultry and fully replaced the old viruses. Several mutations were detected in the recent Bangladeshi isolates, which are likely to influence possible phenotypic alterations such as increased mammalian adaptation, reduced susceptibility to antiviral agents and reduced host antiviral response.  相似文献   

4.
Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007–2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.  相似文献   

5.
Low pathogenic avian influenza virus (LPAIV) is an important zoonotic pathogen. Migratory birds are the natural reservoir for all 16 haemagglutinin (HA) and nine neuraminidase (NA) subtypes of LPAIV. Surveillance of LPAIV in migratory waterfowl and poultry is important for animal and public health. An understanding of the ecology and epidemiology of LPAI viruses in their reservoirs is beneficial for routine surveillance projects. Here, we report the isolation of an H13N8 LPAIV from black‐tailed gulls in eastern China. Full genome sequences of this isolate were determined. Genetic analysis of the HA and NA segments of this isolate showed that this H13N8 LPAIV was derived from the Eurasian lineage. Additionally, we speculate that this H13N8 LPAIV was a reassortant between the North American and Eurasian lineages. Interestingly, we identified amino acid motifs responsible for increased virulence or transmission of influenza viruses in mammals. We also found weak but measurable haemagglutination inhibition antibody titers against H13N8 virus in serum samples collected from chickens. These results suggest that continued surveillance for LPAI viruses in migratory birds and poultry is required.  相似文献   

6.
For several years, poultry production in Egypt has been suffering from co‐circulation of multiple respiratory viruses including highly pathogenic avian influenza virus (HPAIV) H5N1 (clade 2.2.1.2) and low pathogenic H9N2 (clade G1‐B). Incursion of HPAIV H5N8 (clade 2.3.4.4b) to Egypt in November 2016 via wild birds followed by spread into commercial poultry flocks further complicated the situation. Current analyses focussed on 39 poultry farms suffering from respiratory manifestation and high mortality in six Egyptian governorates during 2017–2018. Real‐time RT‐PCR (RT‐qPCR) substantiated the co‐presence of at least two respiratory virus species in more than 80% of the investigated flocks. The percentage of HPAIV H5N1‐positive holdings was fairly stable in 2017 (12.8%) and 2018 (10.2%), while the percentage of HPAIV H5N8‐positive holdings increased from 23% in 2017 to 66.6% during 2018. The proportion of H9N2‐positive samples was constantly high (2017:100% and 2018:63%), and H9N2 co‐circulated with HPAIV H5N8 in 22 out of 39 (56.8%) flocks. Analyses of 26 H5, 18 H9 and 4 N2 new sequences confirmed continuous genetic diversification. In silico analysis revealed numerous amino acid substitutions in the HA and NA proteins suggestive of increased adaptation to mammalian hosts and putative antigenic variation. For sensitive detection of H9N2 viruses by RT‐qPCR, an update of primers and probe sequences was crucial. Reasons for the relative increase of HPAIV H5N8 infections versus H5N1 remained unclear, but lack of suitable vaccines against clade 2.3.4.4b cannot be excluded. A reconsideration of surveillance and control measures should include updating of diagnostic tools and vaccination strategies.  相似文献   

7.
The Southern African Territories (SAT)‐type foot‐and‐mouth disease viruses (FMDV) are endemic to the greater Kruger National Park (KNP) area in South Africa, where they are maintained through persistent infections in African buffalo. The occurrence of FMDV within the Greater KNP area constitutes a continual threat to the livestock industry. To expand on knowledge of FMDV diversity, the genetic and antigenic relatedness of SAT2‐type viruses isolated from cattle during a FMD outbreak in Mpumalanga Province in 2013 and 2014 were investigated. Cattle from twelve diptanks tested positive on polymerase chain reaction (PCR), and molecular epidemiological relationships of the viruses were determined by VP1 sequencing. Phylogenetic analysis of the SAT2 viruses from the FMD outbreak in Mpumalanga in 2013/2014 revealed their genetic relatedness to other SAT2 isolates from topotype I (South Africa, Zimbabwe and Mozambique), albeit genetically distinct from previous South African outbreak viruses (2011 and 2012) from the same topotype. The fifteen SAT2 field isolates clustered into a novel genotype with ≥98.7% nucleotide identity. High neutralization antibody titres were observed for four 2013/2014 outbreak viruses tested against the SAT2 reference antisera representative of viruses isolated from cattle and buffalo from South Africa (topotype I) and Zimbabwe (topotype II). Comparison of the antigenic relationship (r1 values) of the outbreak viruses with reference antisera indicated a good vaccine match with 90% of r1 values > 0.3. The r1 values for the 2013/2014 outbreak viruses were 0.4 and above for the three South African vaccine/reference strains. These results confirm the presence of genetic and antigenic variability in SAT2 viruses and suggest the emergence of new variants at the wildlife–livestock interface in South Africa. Continuous characterization of field viruses should be performed to identify new virus strains as epidemiological surveillance to improve vaccination efforts.  相似文献   

8.
目的了解禽流感病毒(AIV)在感染小鼠前后表面蛋白编码基因的特点及变异情况。方法在A/Goose/Guangdong/NH/2003(H5N1)感染小鼠肺组织的第12小时和第9天各分离1株AIV病毒,通过鸡胚增殖后提取RNA,反转录合成cDNA,经PCR扩增和产物纯化构建重组质粒,用双脱氧链终止法进行核苷酸序列测定并进行基因特性分析。结果3株病毒HA基因的核苷酸序列同源性为99.6%~99.8%,推导氨基酸序列的同源性为99.3%~99.6%。3株病毒NA基因的核苷酸序列同源性为99.8%-99.9%,均为同义突变。M基因未发生任何变异。结论AIV感染小鼠后HA基因出现变异,NA和肘基因未出现有意义的突变。  相似文献   

9.
Using data on waterfowl band recoveries, we identified spatially explicit hotspots of concentrated waterfowl movement to predict occurrence and spatial spread of a novel influenza A virus (clade 2.3.4.4) introduced from Asia by waterfowl from an initial outbreak in North America in November 2014. In response to the outbreak, the hotspots of waterfowl movement were used to help guide sampling for clade 2.3.4.4 viruses in waterfowl as an early warning for the US poultry industry during the outbreak . After surveillance sampling of waterfowl, we tested whether there was greater detection of clade 2.3.4.4 viruses inside hotspots. We found that hotspots defined using kernel density estimates of waterfowl band recoveries worked well in predicting areas with higher prevalence of the viruses in waterfowl. This approach exemplifies the value of ecological knowledge in predicting risk to agricultural security.  相似文献   

10.
Since 2014, H5 highly pathogenic avian influenza viruses (HPAIVs) from clade 2.3.4.4 have been persistently circulating in Southern China. This has caused huge losses in the poultry industry. In this study, we analysed the genetic characteristics of seven H5N6 HPAIVs of clade 2.3.4.4 that infected birds in Southern China in 2016. Phylogenetic analysis grouped the HA, PB2, PA, M and NS genes as MIX‐like, and the NA genes grouped into the Eurasian lineage. The PB1 genes of the GS24, GS25, CK46 and GS74 strains belonged to the VN 2014‐like group and the others were grouped as MIX‐like. The NP genes of GS24 and GS25 strains belonged to the ZJ‐like group, but the others were MIX‐like. Thus, these viruses came from different genotypes, and the GS24, GS25, CK46 and GS74 strains displayed genotype recombination. Additionally, our results showed that the mean death time of all chickens inoculated with 105 EID50 of CK46 or GS74 viruses was 3 and 3.38 days, respectively. The viruses replicated at high titers in all tested tissues of the inoculated chickens. They also replicated in all tested tissues of naive contact chickens, but their replication titers in some tissues were significantly different (p < 0.05). Thus, the viruses displayed high pathogenicity and variable transmission in chickens. Therefore, it is necessary to focus on the pathogenic variation and molecular evolution of H5N6 HPAIVs in order to prevent and control avian influenza in China.  相似文献   

11.
Low pathogenic avian influenza viruses circulate in wild birds but are occasionally transmitted to other species, including poultry, mammals and humans. To date, infections with low pathogenic avian influenza viruses of HA subtype 6, HA subtype 7, HA subtype 9 and HA subtype 10 among humans have been reported. However, the epidemiology, genetics and ecology of low pathogenic avian influenza viruses have not been fully understood thus far. Therefore, persistent surveillance of low pathogenic avian influenza virus infections in wild birds and other species is needed. Here, we found a low pathogenic avian influenza virus of the subtype H13N2 (abbreviated as WH42) in black‐tailed gulls in China. All gene sequences of this H13N2 virus were determined and used for subsequent analysis. Phylogenetic analysis of the HA gene and NA gene indicated that WH42 was derived from the Eurasian lineage. We analysed the timing of the reassortment events and found that WH42 was a reassortant whose genes were transferred from avian influenza viruses circulating in Asia, Europe and North America. Additionally, WH42 possessed several molecular markers associated with mammalian virulence and mammalian transmissibility. Interestingly, we also found low but detectable haemagglutination inhibition antibodies against H13N2 low pathogenic avian influenza virus in serum samples collected from chickens. Taken together, our findings show that the H13 virus may have been introduced into poultry and that sustainable surveillance in gulls and poultry is required.  相似文献   

12.
Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)‐, 2.3.2.1c (H5N1)‐ and 2.3.4.4 (H5N6)‐infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a “mixing vessel” for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian–human influenza virus reassortment if they are also co‐infected with human influenza viruses.  相似文献   

13.
Porcine Pegivirus (PPgV) and Atypical Porcine Pestivirus (APPV) are two recently identified porcine viruses. In this study, the identification of two viruses by metagenomic sequencing, and a duplex semi‐quantitative RT‐PCR was developed to detect these pathogens simultaneously. The PPgV strain Minnesota‐1/2016 had a 95.5%–96.3% nucleotide identity and clustered with the recently identified US PPgV strains, which is a distant clade from the German PPgV strains. The APPV strain Minnesota‐1/2016 shared an 87.3%–92.0% nucleotide identity with the other global APPV strains identity but only shared an 82.8%–83.0% nucleotide identity with clade II consisting of strain identified in China. Detection of both PPgV and APPV was 9.0% of the diagnostic cases. Co‐infection of PPgV and APPV was identified in 7.5% of the diagnostic cases. The occurrence and genetic characterization of PPgV and APPV further enhance our knowledge regarding these new pathogens in the United States.  相似文献   

14.
In July 2016, an avian influenza outbreak in duck farms in Yogyakarta province was reported to Disease Investigation Center (DIC), Wates, Indonesia, with approximately 1,000 ducks died or culled. In this study, two avian influenza (AI) virus subtypes, A/duck/Bantul/04161291‐OR/2016 (H5N1) and A/duck/Bantul/04161291‐OP/2016 (H9N2) isolated from ducks in the same farm during an AI outbreak in Bantul district, Yogyakarta province, were sequenced and characterized. Our results showed that H5N1 virus was closely related to the highly pathogenic AI (HPAI) H5N1 of clade 2.3.2.1c, while the H9N2 virus was clustered with LPAI viruses from China, Vietnam and Indonesia H9N2 (CVI lineage). Genetic analysis revealed virulence characteristics for both in avian and in mammalian species. In summary, co‐circulation of HPAI‐H5N1 of clade 2.3.2.1c and LPAI‐H9N2 was identified in a duck farm during an AI outbreak in Yogyakarta province, Indonesia. Our findings raise a concern of the potential risk of the viruses, which could increase viral transmission and/or threat to human health. Routine surveillance of avian influenza viruses should be continuously conducted to understand the dynamic and diversity of the viruses for influenza prevention and control in Indonesia and SEA region.  相似文献   

15.
This Practice Point commentary discusses Scharpé et al.'s single-center, nonrandomized, prospective trial of influenza vaccination in renal transplant recipients. In total, 165 transplant recipients and 41 healthy volunteers were vaccinated with a standard inactivated trivalent influenza vaccine (containing strains of the A/H1N1, A/H3N2 and B viruses). No rejection episodes or other adverse events were reported in either group. Influenza-specific antibody titers increased in renal transplant recipients following vaccination, as measured by comparison of pre-vaccination and post-vaccination seroprotection and seroresponse rates. This commentary discusses the limitations of the trial, and urges caution in extending the conclusions drawn by Scharpé et al. regarding the safety of the trivalent, non-adjuvant-containing influenza vaccine to newer adjuvant-assisted vaccines. Annual vaccination for influenza by use of the trivalent vaccine strategy without adjuvant should, however, be standard of care for all stable renal transplant recipients who do not have clinical contraindications.  相似文献   

16.
Newcastle disease (ND) is an economically important, contagious poultry viral disease reported across the globe. In India, ND is endemic and episodes of ND outbreaks despite strict vaccinations are not uncommon. We isolated and characterized seven ND viruses from vaccinated commercial poultry farms during severe disease outbreaks in Tamil Nadu, in Southern India, between April 2015 and June 2016. All the seven isolates were categorized as virulent by mean death time (48–54 hr) in embryonated chicken eggs. Also, their sequences carried the virulence signature of multi‐basic amino acid residues in their fusion protein cleavage site (RRQ/RR/KRF). Phylogenetic and evolutionary distance analyses revealed circulation of a novel sub‐genotype of genotype XIII, class II ND viruses, herein proposed as sub‐genotype XIIIe. The genetic divergence between the circulating virulent strains and the vaccine strains could possibly explain the disease outbreak in the vaccinated flocks. Further, our study signifies the need to implement routine epidemiological surveillance and to revisit the current vaccination program.  相似文献   

17.
Since the first outbreak of highly pathogenic H5N1 avian inafluenza (HPAI) in Bangladesh in February 2007, a total of 519 disease events have been reported till 22 October 2011. Partial HA gene sequences of 11 selected H5N1 HPAI isolates of 2007 to 2011 were determined and subjected to phylogenetic analysis. The study revealed a recent introduction of clade 2.3.2 and 2.3.4 viruses into Bangladesh in 2011 in addition to clade 2.2 viruses that had been in circulation since 2007. Clade 2.3.2 virus isolates from Bangladesh are phylogenetically related to the newly designated clade 2.3.2.1 viruses, reported recently from Asia and Eastern Europe.  相似文献   

18.
19.
A particularly severe outbreak of influenza occurred on the Witwatersrand from May to August 1984, caused sequentially by influenza A (H3N2), B/influenza and influenza A (H1N1) viruses. Although the precise extent of the infection was impossible to determine, valuable anecdotal information was provided by a network of sentinel sampling stations in private practices, clinics and hospitals, representing a cross-section of population groups on the Witwatersrand. This active surveillance programme was invaluable in providing some 85% of all the specimens, the remainder being routine clinical specimens; in addition, isolation was approximately twice as efficient for the actively acquired specimens than for the routine ones. The epidemic affected all individuals approximately equally, regardless of age, race or socio-economic status. Infection with H1N1 virus tended to predominate in the younger age group, 78% of isolates being from subjects under 30 years of age, whereas 71% of H3N2 isolates came from subjects over 30 years of age. The B/influenza isolates tended to be more evenly dispersed. Novel strains of B/influenza and H1N1 viruses were introduced into the country and possibly contributed to the greater than usual severity of the epidemic. An active surveillance programme is essential to monitor the extent of influenza virus activity and to alert virologists to the introduction of new strains, although at present forecasting of future influenza epidemics is not possible with any significant degree of reliability.  相似文献   

20.
In the Netherlands, three commercial poultry farms and two hobby holdings were infected with highly pathogenic avian influenza (HPAI) H5N6 virus in the winter of 2017–2018. This H5N6 virus is a reassortant of HPAI H5N8 clade 2.3.4.4 group B viruses detected in Eurasia in 2016. H5N6 viruses were also detected in several dead wild birds during the winter. However, wild bird mortality was limited compared to the caused by the H5N8 group B virus in 2016–2017. H5N6 virus was not detected in wild birds after March, but in late summer infected wild birds were found again. In this study, the complete genome sequences of poultry and wild bird viruses were determined to study their genetic relationship. Genetic analysis showed that the outbreaks in poultry were not the result of farm‐to‐farm transmissions, but rather resulted from separate introductions from wild birds. Wild birds infected with viruses related to the first outbreak in poultry were found at short distances from the farm, within a short time frame. However, no wild bird viruses related to outbreaks 2 and 3 were detected. The H5N6 virus isolated in summer shares a common ancestor with the virus detected in outbreak 1. This suggests long‐term circulation of H5N6 virus in the local wild bird population. In addition, the pathogenicity of H5N6 virus in ducks was determined, and compared to that of H5N8 viruses detected in 2014 and 2016. A similar high pathogenicity was measured for H5N6 and H5N8 group B viruses, suggesting that biological or ecological factors in the wild bird population may have affected the mortality rates during the H5N6 epidemic. These observations suggest different infection dynamics for the H5N6 and H5N8 group B viruses in the wild bird population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号