首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The endocannabinoids are lipid signaling molecules that bind to cannabinoid CB(1) and CB(2) receptors and other metabotropic and ionotropic receptors. Anandamide and 2-arachidonoyl glycerol, the two best-characterized examples, are released on demand in a stimulus-dependent manner by cleavage of membrane phospholipid precursors. Together with their receptors and metabolic enzymes, the endocannabinoids play a key role in modulating neurotransmission and synaptic plasticity in the basal ganglia and other brain areas involved in the control of motor functions and motivational aspects of behavior. This mini-review provides an update on the contribution of the endocannabinoid system to the regulation of psychomotor behaviors and its possible involvement in the pathophysiology of Parkinson's disease and schizophrenia.  相似文献   

2.
Endocannabinoids are fatty acid derivatives that have a variety of biological actions, most notably via activation of the cannabinoid receptors. These receptors are also targets for drugs derived from Cannabis sativa. In the nervous system, endocannabinoids act as neuromodulators that depress neurotransmitter release at the presynaptic terminal. In most instances of neural endocannabinoid signaling, the compounds appear to be released from the postsynaptic neuron to act on the presynaptic terminal in a “retrograde” manner. Several common mechanisms involved in postsynaptic endocannabinoid production and presynaptic depression produced via activation of the CB1 cannabinoid receptor have been identified. However, significant problems remain in defining the mechanisms underlying endocannabinoid production, release, and movement across the membrane. These issues are discussed in the present review.  相似文献   

3.
During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB1 cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB1 receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB1 receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.  相似文献   

4.
The regulation of Purkinje cell activity is important for motor behavior and motor learning. As the sole output cell of the cerebellar cortex, Purkinje cell firing is controlled by parallel fibers and climbing fiber synapses, and by inhibitory interneurons. Depolarization of Purkinje cells evokes endocannabinoid release that activates cannabinoid CB1 receptors expressed on boutons of its synaptic inputs to transiently decrease neurotransmitter release. In addition, associative activation of the excitatory inputs can liberate endocannabinoids to decrease synaptic strength for a prolonged duration. Here we review the different mechanisms of evoking endocannabinoid release and discuss the physiological role of endocannabinoids in mediating global modulation of synaptic strength, localized short-term associative plasticity and cerebellar long term depression.  相似文献   

5.
Endogenous cannabinoids (endocannabinoids) act as retrograde inhibitory messengers in various regions of the brain. We have recently reported that endocannabinoids mediate short-term retrograde suppression of excitatory synaptic transmission from the neocortex to medium spiny (MS) neurons, the major projection neurons from the striatum. However, it remains unclear whether endocannabinoids modulate inhibitory transmission in the striatum. Here we show that depolarization of MS neurons induces transient suppression of inhibition that is mediated by retrograde endocannabinoid signalling. By paired recording from a fast-spiking (FS) interneuron and an MS neuron, we demonstrated that FS-MS inhibitory synapses undergo endocannabinoid-mediated retrograde suppression. We verified that GABAergic inhibitory terminals immunopositive for parvalbumin (PV), a marker for FS interneurons, expressed CB1 receptors. These PV-CB1 double-positive terminals surrounded dopamine D1 receptor-positive and D2 receptor-positive MS neurons; these constitute direct and indirect pathways, respectively. These results suggest that endocannabinoid-mediated retrograde suppression of inhibition influences information flow along both direct and indirect pathways, depending on the activity of MS neurons.  相似文献   

6.
The final motor output underlying behavior arises from an appropriate balance between excitation and inhibition within neural networks. Retrograde signaling by endocannabinoids adapts synaptic strengths and the global activity of neural networks. In the spinal cord, endocannabinoids are mobilized postsynaptically from network neurons and act retrogradely on presynaptic cannabinoid receptors to potentiate the locomotor frequency. However, it is still unclear whether mechanisms exist within the locomotor networks that determine the sign of the modulation by cannabinoid receptors to differentially regulate excitation and inhibition. In this study, using the lamprey spinal cord in vitro, we first report that 2-AG (2-arachidonyl glycerol) is mobilized by network neurons and underlies a form of modulation that is embedded within the locomotor networks. We then show that the polarity of the endocannabinoid modulation is gated by nitric oxide to enable simultaneously potentiation of excitation and depression of inhibition within the spinal locomotor networks. Our results suggest that endocannabinoid and nitric oxide systems interact to mediate inversion of the polarity of synaptic plasticity within the locomotor networks. Thus, endocannabinoid and nitric oxide shift in the excitation-inhibition balance to set the excitability of the spinal locomotor network.  相似文献   

7.
The endocannabinoid system (ECS) exerts important modulatory functions in the central nervous system (CNS), particularly the retrograde control of excitatory or inhibitory synapses, which enables this system to participate in the control of important neurobiological processes in healthy conditions. However, this physiological relevance acquires a maximal interest in neuropathological conditions affecting either the function or the structures of specific areas of the brain, conditions that have been associated with important changes in the activity of this modulatory system (e.g. losses of CB1 receptors (CB1R), up-regulation of CB2 receptors (CB2R), generation of endocannabinoids) that are susceptible to pharmacological adaptation. Among the group of brain disorders that have been associated with the endocannabinoid system, a special interest has been concentrated in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and ischemia. These three disorders will be reviewed here from the perspective of the types of changes experienced by the cannabinoid signalling in humans and cellular or animal models, and from a possible usefulness of certain cannabinoid compounds to alleviate symptoms and/or to delay their progression.  相似文献   

8.
Stimulation of the postsynaptic metabotropic glutamate receptor mGluR5 triggers retrograde signaling of endocannabinoids that activate presynaptic cannabinoid CB1 receptors on juxtaposing axon terminals. To better understand the synaptic structure that supports mGluR5 mediation of CB1 activation in the prefrontal cortex (PFC) and basolateral amygdala (BLA), we examined electron microscopic dual immunolabeling of these receptors in the prelimbic PFC (prPFC) and BLA of adult male rats. CB1 immunoreactivity was detected in axon terminals that were typically large, complex, and contained dense-core and clear synaptic vesicles. Of terminals forming discernible synaptic specializations, 95% were symmetric inhibitory-type in the prPFC and 90% were inhibitory in the BLA. CB1-immunoreactive terminals frequently contacted dendrites containing mGluR5 adjacent to unlabeled terminals forming excitatory-type synapses. Because most CB1-containing terminals form inhibitory-type synapses, the unlabeled axon terminals forming asymmetric synapses are the likely source of the mGluR5 ligand glutamate. In the prPFC, serial section analysis revealed that GABAergic CB1-containing axon terminals targeted dendrites adjacent to glutamatergic axon terminals, often near dendritic bifurcations. These observations provide ultrastructural evidence that cortical CB1 receptors are strategically positioned for integration of synaptic signaling in response to stimulation of postsynaptic mGluR5 receptors and facilitation of heterosynaptic communication between multiple neurons.  相似文献   

9.
10.
Endocannabinoids are thought to function as retrograde messengers, which modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Anandamide and 2-arachidonoylglycerol (2-AG) are the two best studied endogenous lipids which can act as endocannabinoids. Together with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been demonstrated that the endocannabinoid system can protect neurons against glutamate excitotoxicity and acute neuronal damage in both in vitro and in vivo models. In this paper we review the data concerning the involvement of the endocannabinoid system in neurodegenerative diseases in which neuronal cell death may be elicited by excitotoxicity. We focus on the biosynthesis of endocannabinoids and on their modes of action in animal models of these neurodegenerative diseases.  相似文献   

11.
Research into the endocannabinoid 'system' has grown exponentially in recent years, with the discovery of cannabinoid receptors and their endogenous ligands, such as anandamide and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of endocannabinoid transduction mechanisms, their metabolic pathways, and of the biological processes in which they are implicated. A decade of endocannabinoid studies has promoted new insights into neural regulation and mammalian physiology that are as revolutionary as those arising from the discovery of the endogenous opioid peptides in the 1970s. Thus, endocannabinoids have been found to act as retrograde signals: released by postsynaptic neurons, they bind to presynaptic heteroceptors to modulate the release of inhibitory and excitatory neurotransmitters through multiple G-protein-coupled receptor (GPCR)-linked effector mechanisms. The metabolic pathways of anandamide and 2-AG have now been been characterised in great detail, and we can anticipate that these pathways -- together with endocannabinoid uptake mechanisms -- will complement cannabinoid receptors as targets for the pharmacological analysis of the physiological functions of these substances. Specific insights into the potential role of endocannabinoid-CB1 receptor systems in central appetite control, peripheral metabolism and body weight regulation herald the clinical application of CB1 receptor antagonists in the management of obesity and its associated disorders.  相似文献   

12.
Activation of CB(1) receptors on axon terminals by exogenous cannabinoids (eg, Δ(9)-tetrahydrocannabinol) and by endogenous cannabinoids (endocannabinoids) released by postsynaptic neurons leads to presynaptic inhibition of neurotransmission. The aim of this study was to characterize the effect of cannabinoids on GABAergic synaptic transmission in the human neocortex. Brain slices were prepared from neocortical tissues surgically removed to eliminate epileptogenic foci. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in putative pyramidal neurons using patch-clamp techniques. To enhance the activity of cannabinoid-sensitive presynaptic axons, muscarinic receptors were continuously stimulated by carbachol. The synthetic cannabinoid receptor agonist WIN55212-2 decreased the cumulative amplitude of sIPSCs. The CB(1) antagonist rimonabant prevented this effect, verifying the involvement of CB(1) receptors. WIN55212-2 decreased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin, but did not change their amplitude, indicating that the neurotransmission was inhibited presynaptically. Depolarization of postsynaptic pyramidal neurons induced a suppression of sIPSCs. As rimonabant prevented this suppression, it is very likely that it was due to endocannabinods acting on CB(1) receptors. This is the first demonstration that an exogenous cannabinoid inhibits synaptic transmission in the human neocortex and that endocannabinoids released by postsynaptic neurons suppress synaptic transmission in the human brain. Interferences of cannabinoid agonists and antagonists with synaptic transmission in the cortex may explain the cognitive and memory deficits elicited by these drugs.  相似文献   

13.
Abstract  Cannabinoid signalling is an important mechanism of synaptic modulation in the nervous system. Endogenous cannabinoids (anandamide and 2-arachidonyl-glycerol) are synthesized and released via calcium-activated biosynthetic pathways. Exogenous cannabinoids and endocannabinoids act on CB1 and CB2 receptors. CB1 receptors are neuronal receptors which couple via G-proteins to inhibition of adenylate cyclase or to activation or inhibition of ion channels. CB2 receptors are expressed by immune cells and cannabinoids can suppress immune function. In the central nervous system, the endocannabinoids may function as retrograde signals released by the postsynaptic neuron to inhibit neurotransmitter release from presynaptic nerve terminals. Enteric neurons also express CB receptors. Exogenously applied CB receptor agonists inhibit enteric neuronal activity but it is not clear if endocannabinoids released by enteric neurons can produce similar responses in the enteric nervous system (ENS). In this issue of Neurogastroenterology and Motility , Boesmans et al . show that CB1 receptor activation on myenteric neurons maintained in primary culture can suppress neuronal activity, inhibit synaptic transmission and mitochondrial transport along axons. They also provide initial evidence that myenteric neurons (or other cell types present in the cultures) release endocannabinoids and which activate CB1 receptors constitutively. These data provide new information about targets for cannabinoid signalling in the ENS and highlight the potential importance of CB receptors as drug targets. It is necessary that future work extends these interesting findings to intact tissues and ideally to the in vivo setting.  相似文献   

14.
Activation of postsynaptic group 1 metabotropic glutamate receptors (mGluRs) by the agonist DHPG causes a long-term depression (DHPG-LTD) of excitatory transmission in the CA1 region of the hippocampus, as well as causing the release of endocannabinoids from pyramidal cells. As cannabinoid agonists cause a presynaptic inhibition at these synapses and DHPG-LTD is thought to be expressed, at least in part, by a presynaptic mechanism, we examined the possibility that endocannabinoids mediated DHPG-LTD. We find that antagonists of cannabinoid receptors reduce the acute depression induced by DHPG, but have no effect on the lasting depression. Furthermore, both the acute and the lasting effects of DHPG were unaffected in the CB1 knockout mouse. These findings suggest that endocannabinoids, acting on a non-CB1 cannabinoid receptor, contribute to the acute depression but not to DHPG-LTD. Presumably some other retrograde signalling mechanism is responsible for DHPG-LTD.  相似文献   

15.
Stemming from the centuries‐old and well known effects of Cannabis on intestinal motility and secretion, research on the role of the endocannabinoid system in gut function and dysfunction has received ever increasing attention since the discovery of the cannabinoid receptors and their endogenous ligands, the endocannabinoids. In this article, some of the most recent developments in this field are discussed, with particular emphasis on new data, most of which are published in Neurogastroenterology & Motility, on the potential tonic endocannabinoid control of intestinal motility, the function of cannabinoid type‐1 (CB1) receptors in gastric function, visceral pain, inflammation and sepsis, the emerging role of cannabinoid type‐2 (CB2) receptors in the gut, and the pharmacology of endocannabinoid‐related molecules and plant cannabinoids not necessarily acting via cannabinoid CB1 and CB2 receptors. These novel data highlight the multi‐faceted aspects of endocannabinoid function in the GI tract, support the feasibility of the future therapeutic exploitation of this signaling system for the treatment of GI disorders, and leave space for some intriguing new hypotheses on the role of endocannabinoids in the gut.  相似文献   

16.
The cholinergic system in the CNS plays important roles in higher brain functions, primarily through muscarinic acetylcholine receptors. At cellular levels, muscarinic activation produces various effects including modulation of synaptic transmission. Here we report that muscarinic activation suppresses hippocampal inhibitory transmission through two distinct mechanisms, namely a cannabinoid-dependent and cannabinoid-independent mechanism. We made paired whole-cell recordings from cultured hippocampal neurons of rats and mice, and monitored inhibitory postsynaptic currents (IPSCs). When cannabinoid receptor type 1 (CB1) was blocked, oxotremorine M (oxo-M), a muscarinic agonist, suppressed IPSCs in a subset of neuron pairs. This suppression was associated with an increase in paired-pulse ratio, blocked by the M(2)-preferring antagonist gallamine, and was totally absent in neuron pairs from M(2)-knockout mice. When CB1 receptors were not blocked, oxo-M suppressed IPSCs in a gallamine-resistant manner in cannabinoid-sensitive pairs. This suppression was associated with an increase in paired-pulse ratio, blocked by the CB1 antagonist AM281, and was completely eliminated in neuron pairs from M(1)/M(3)-compound-knockout mice. Our immunohistochemical examination showed that M(2) and CB1 receptors were present at inhibitory presynaptic terminals of mostly different origins. These results indicate that two distinct mechanisms mediate the muscarinic suppression. In a subset of synapses, activation of M(2) receptors at presynaptic terminals suppresses GABA release directly. In contrast, in a different subset of synapses, activation of M(1)/M(3) receptors causes endocannabinoid production and subsequent suppression of GABA release by activating presynaptic CB1 receptors. Thus, the muscarinic system can influence hippocampal functions by controlling different subsets of inhibitory synapses through the two distinct mechanisms.  相似文献   

17.
Endocannabinoids are retrograde messengers that are released from central neurons by depolarization-induced elevation of intracellular Ca2+ concentration [Ca2+]I or by activation of a group I metabotropic glutamate receptor (mGluR). We studied the interaction between these two pathways for endocannabinoid production in rat hippocampal neurons. We made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. Activation of group I mGluRs, mainly mGluR5, by the specific agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), suppressed inhibitory postsynaptic currents (IPSCs) in about half of the neuron pairs. A cannabinoid agonist, WIN55,212-2, suppressed IPSCs in all DHPG-sensitive pairs but not in most of DHPG-insensitive pairs. The effects of both DHPG and WIN55,212-2 were abolished by the cannabinoid antagonists, AM281 and SR141716A, indicating that activation of group I mGluR releases endocannabinoids and suppress inhibitory neurotransmitter release through activation of presynaptic cannabinoid receptors. Depolarization of the postsynaptic neurons caused a transient suppression of IPSCs, a phemomenon termed depolarization-induced suppression of inhibition (DSI) that was also abolished by cannabinoid antagonists. Importantly, DSI was enhanced significantly when group I mGluRs were activated simultaneously by DHPG. This enhancement was much more prominent than expected from the simple summation of depolarization-induced and group I mGluR-induced endocannabinoid release. DHPG caused no change in depolarization-induced Ca2+ transients, indicating that the enhanced DSI by DHPG was not due to the augmentation of Ca2+ influx. Enhancement of DSI by DHPG was also observed in hippocampal slices. These results suggest that two pathways work in a cooperative manner to release endocannabinoids via a common intracellular cascade.  相似文献   

18.
Basal forebrain cholinergic neurons project to diverse cortical and hippocampal areas and receive reciprocal projections therefrom. Maintenance of a fine-tuned synaptic communication between pre- and postsynaptic cells in neuronal circuitries also requires feedback mechanisms to control the probability of neurotransmitter release from the presynaptic terminal. Release of endocannabinoids or glutamate from a postsynaptic neuron has been identified as a means of retrograde synaptic signalling. Presynaptic action of endocannabinoids is largely mediated by type 1 cannabinoid (CB1) receptors, while fatty-acid amide hydrolase (FAAH) is involved in inactivating some endocannabinoids postsynaptically. Alternatively, vesicular glutamate transporter 3 (VGLUT3) controls release of glutamate from postsynaptic cells. Here, we studied the distribution of CB1 receptors, FAAH and VGLUT3 in cholinergic basal forebrain nuclei of mouse and rat. Cholinergic neurons were devoid of CB1 receptor immunoreactivity. A fine CB1 receptor-immunoreactive (ir) fibre meshwork was present in medial septum, diagonal bands and nucleus basalis. In contrast, the ventral pallidum and substantia innominata received dense CB1 receptor-ir innervation and cholinergic neurons received CB1 receptor-ir presumed synaptic contacts. Consistent with CB1 receptor distribution, FAAH-ir somata were abundant in basal forebrain and appeared in contact with CB1 receptor-containing terminals. Virtually all cholinergic neurons were immunoreactive for FAAH. A significant proportion of cholinergic cells exhibited VGLUT3 immunoreactivity in medial septum, diagonal bands and nucleus basalis, and were in close apposition to VGLUT3-ir terminals. VGLUT3 immunoreactivity was largely absent in ventral pallidum and substantia innominata. We propose that specific subsets of cholinergic neurons may utilize endocannabinoids or glutamate for retrograde control of the efficacy of input synapses, and the mutually exclusive complementary distribution pattern of CB1 receptor-ir and VGLUT3-ir fibres in basal forebrain suggests segregated input-specific signalling mechanisms by cholinergic neurons.  相似文献   

19.
Neurons in many brain regions release endocannabinoids from their dendrites that act as retrograde signals to transiently suppress neurotransmitter release from presynaptic terminals. Little is known, however, about the physiological mechanisms of short-term endocannabinoid-mediated plasticity under physiological conditions. Here we investigate calcium-dependent endocannabinoid release from cartwheel cells (CWCs) of the mouse dorsal cochlear nucleus (DCN) in the auditory brainstem that provide feedforward inhibition onto DCN principal neurons. We report that sustained action potential firing by CWCs evokes endocannabinoid release in response to submicromolar elevation of dendritic calcium that transiently suppresses their parallel fiber (PF) inputs by >70%. Basal spontaneous CWC firing rates are insufficient to evoke tonic suppression of PF synapses. However, elevating CWC firing rates by stimulating PFs triggers the release of endocannabinoids and heterosynaptic suppression of PF inputs. Spike-evoked suppression by endocannabinoids selectively suppresses excitatory synapses, but glycinergic/GABAergic inputs onto CWCs are not affected. Our findings demonstrate a mechanism of transient plasticity mediated by endocannabinoids that heterosynaptically suppresses subsets of excitatory presynaptic inputs to CWCs that regulates feedforward inhibition of DCN principal neurons and may influence the output of the DCN.  相似文献   

20.
Until recently, endocannabinoid (eCB) signalling was largely studied in the context of synaptic plasticity in the postnatal brain in the absence of detailed knowledge of the nature of the enzyme(s) responsible for the synthesis of the eCBs. However, the identification of two diacylglycerol lipases (DAGLα and DAGLβ) responsible for the synthesis of 2-arachidonoylglycerol (2-AG) has increased the understanding of where this eCB is synthesised in relationship to the expression of cannabinoid receptor (CB)1 and CB2. Furthermore, the generation of knockout animals for each enzyme has allowed for the direct testing of their importance for established and emerging eCB functions. Based on this, we now know that DAGLα is enriched in dendritic spines that appose CB1-positive synaptic terminals, and that 2-AG functions as a retrograde signal controlling synaptic strength throughout the nervous system. Consequently, we have built on the principle that expression of eCB components dictates function to identify additional physiological functions of this signalling cassette. A number of studies have now provided support for DAGL-dependent eCB signalling playing important roles in brain development and in cellular plasticity in the adult nervous system. In this article, we will review evidence based on the localisation of the enzymes, as well as from genetic and pharmacological studies, that show DAGL-dependent eCB signalling to play an important role in axonal growth and guidance during development, in retrograde synaptic signalling at mature synapses, and in the control of adult neurogenesis in the hippocampus and subventricular zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号