首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The conductance properties of the luminal membrane of cells from the thick ascending limb of Henle's loop of rat kidney (TAL) are dominated by K+. In excised membrane patches the luminal K+ channel is regulated by pH changes on the cytosolic side. To examine this pH regulation in intact cells of freshly isolated TAL segments we measured the membrane voltage (V m) in slow-whole-cell (SWC) recordings and the open probability (P o) of K+ channels in the cell-attached nystatin (CAN) configuration, where channel activity and part of V m can be recorded. The pipette solution contained K+ 125 mmol/l and Cl 32 mmol/l. Intracellular pH was determined by 2,7 bis(2-carboxyethyl)-5,(6)-carboxyfluorescein (BCECF) fluorescence. pH changes were induced by the addition of 10 mmol/l NH4 +/NH3 to the bath. In the presence of NH4 +/NH3 intracellular pH acidified by 0.53±0.11 units (n=7). Inhibition of the Na+2Cl K+ cotransporter by furosemide (0.1 mmol/l) reversed this effect and led to a transient alkalinisation by 0.62±0.14 units (n=7). In SWC experiments V m of TAL cells was -72±1 mV (n=70). NH4 +/NH3 depolarised V m by 22±2 mV (n=25). In 11 SWC experiments furosemide (0.1 mmol/l) attenuated the depolarising effect of NH4 + from 24±3 mV to 7±3 mV. Under control conditions the single-channel conductance of TAL K+ channels in CAN experiments was 66±5 pS and the reversal voltage for K+ currents was 70±2 mV (n=35). The P o of K+ channels in CAN patches was reduced by NH4 +/NH3 from 0.45±0.15 to 0.09±0.07 (n=7). NH4 +/NH3 exposure depolarised the zero current voltage of the permeabilised patches by-9.7±3.6 mV (n=5). The results show that TAL K+ channels are regulated by cytosolic pH in the intact cell. The cytosolic pH is acidified by NH4 +/NH3 exposure at concentrations which are physiologically relevant because Na+2ClK+(NH4 +) cotransporter-mediated import of NH4 + exceeds the rate of NH3 diffusion into the TAL. K+ channels are inhibited by this acidification and the cells depolarise. In the presence of furosemide TAL cells alkalinise proving that NH4 + uptake occurs by the Na+2ClK+ cotransporter. The findings that, in the presence of NH4 +/NH3 and furosemide, V m is not completely repolarised and that K+ channels are not activated suggest that the respective K+ channels may in addition to their pH regulation be inhibited directly by NH4 +/NH3.  相似文献   

2.
The aim of this study was to characterize ion conductances and carrier mechanisms of isolated in vitro perfused rabbit colonic crypts. Crypts were isolated from rabbit colon mucosa and mounted on a pipette system which allowed controlled perfusion of the lumen. In non-stimulated conditions basolateral membrane voltage (V b1) was –65±1 mV (n=240). Bath Ba2+ (1 mmol/ l) and verapamil (0.1 mmol/l) depolarized V b1 by 21±2 mV (n=7) and 31±1 (n=4), respectively. Lowering of bath Cl concentration hyperpolarized V b1 from –69±3 to –75±3 mV (n=9). Lowering of luminal Cl concentration did not change V b1. Basolateral application of loop diuretics (furosemide, piretanide, bumetanide) had no influence on V b1 in non-stimulated crypts. Forskolin (10–6 mol/l) in the bath depolarized V b1 by 29±2 mV (n=54) and decreased luminal membrane resistance. In one-third of the experiments a spontaneous partial repolarization of V b1 was seen in the presence of forskolin. During forskolin-induced depolarization basolateral application of loop diuretics hyperpolarized V b1 significantly and concentration dependently with a potency sequence of bumetanide > piretanide furosemide. Lowering bath Cl concentration hyperpolarized V b1. Lowering of luminal Cl concentration from 120 to 32 mmol/l during forskolin-induced depolarization led to a further depolarization of Vb1 by 7±2 mV (n=10). We conclude that Vb1 of rabbit colonic crypt cells is dominated by a K+ conductance. Stimulation of the cells by forskolin opens a luminal Cl conductance. Basolateral uptake of Cl occurs via a basolateral Na+ : 2Cl : K+ cotransport system.  相似文献   

3.
The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2-7-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.  相似文献   

4.
Whole-cell patch-clamp studies in base cells of isolated colonic crypts of rats pretreated with dexamethasone were performed to examine the effects of stimulation by forskolin (10 mol/1). The experiments were designed in order to distinguish between two postulated effector mechanisms: the activation of a non-selective cation channel and the activation of Cl channels. As shown in an accompanying report, forskolin depolarizes the membrane voltage (V m) by some 40–50 mV and enhances the whole-cell membrane conductance (G m) substantially in these cells. In this report all experiments were performed in the presence of forskolin. A reduction of the bath Na+ concentration from 145 to 2 mmol/1 led to a hyperpolarization ofV m by some 20–30 mV This hyperpolarization occurred very slowly suggesting that the hyperpolarization produced by the low-Na+ solution was caused indirectly and not by a change in the equilibrium potential for Na+,E Na +. A complete kinetic analysis of the effect on voltage of bath Na+ revealed a saturation-type relation with a high apparent affinity for Na+ of around 5–10 mmol/1. A reduction in bath Cl concentration from 145 to 32 mmol/1 caused a depolarization ofV m from –34 ± 3 to –20 ± 4 mV (n = 13) in the presence of a high bath Na+ concentration, but had the opposite effect at low (5 mmol/1) Na+ concentrations:V m was hyperpolarized from –46 ± 4 to –62 ± 6 mV (n = 13). If the effect of Na+ onV m was caused by a non-selective cation channel the opposite would have been expected. To test directly whether the Na+2ClK+ cotransporter was responsible for the effects of changes in bath Na+ onV m, the effects of increasing concentrations of several loop diuretics were examined. Furosemide, piretanide, torasemide and burnetanide (up to 0.1–0.5 mmol/1) all hyperpolarizedV m, albeit only by less than 10 mV. Another subclass of loop diuretics containing a tetrazolate in position 1 [e.g. azosemide, no. 19A and no. 20A from Schlatter E, Greger R, Weidtke C (1983) Pflüger Arch 396: 210–217] were much more effective. Azosemide hyperpolarizedV m from –46 ± 3 to –74 ± 2 mV (n = 18) and reducedG m from 11 ± 1 to 4 ± 1 nS (n = 14). These data indicate that forskolin stimulates Cl secretion in these cells by a mechanism fully compatible with the current scheme for exocrine secretion involving the Na+2ClK+ cotransporter.  相似文献   

5.
LLC-PK1 cells serve as a widely used model for the renal proximal tubule. Until now, little has been found out about their membrane voltage (V m) and ionic conductances (g). Several studies have shown changes in cell properties during differentiation and ageing. The aim of this study was to examine the relationship between V m or g and the age of these cells. Therefore, we investigated single cells, subconfluent and confluent monolayers of LLC-PK1 cells aged 1–8 days with the slow-whole-cell patch-clamp technique. The V m of all cells was-34±2 mV (n=75) and the membrane conductance (g m) was 2.3±0.3 nS (n=30). V m in cells aged up to 2 days was-24±3 mV (n=22) whereas V m in cells aged 5–8 days was -50±3 mV (n=15). An increase of extracellular K+ from 3.6 to 18.6 mmol/l led to a depolarization in all cells of 4±1 mV (n=31) and an increase of g m by 17±13% (n=15). Complete replacement of extracellular Na+ by N-methyl-D-glucamine (NMDG) led to a hyperpolarization of 19±2 mV (n=38) and gm was lowered by 27±14% (n=17). A reduction in extracellular Cl from 147 to 32 mmol/l showed no significant effect on V m (n=16) or g m (n=11). Amiloride (10 mol/l) had no significant effect on V m (n=13) or g m (n=7). The reduction of the extracellular osmolarity from 290 to 160 mosmol/l led to a hyperpolarization of 11±1 mV (n=18) and an increase in g m by 326±117% (n=12). There was no significant correlation between g m and cell age. LLC-PK1 cells used in this study have a K+ conductance and a non-selective cation conductance in parallel. With increasing age, LLC-PK1 cells became more and more conductive for K+ and lost their nonselective cation conductance. There is no evidence for a significant amiloride-sensitive Na+ or Cl conductance in these cells. The K+ conductance could be activated by osmotically induced cell swelling.  相似文献   

6.
The colonic carcinoma cell line HT29 was used to examine the influence of agonists increasing cytosolic cAMP and Ca2+ activity on the conductances and the cell membrane voltage (V m). HT29 cells were grown on glass cover-slips. Cells were impaled by microelectrodes 4–10 days after seeding, when they had formed large plaques. In 181 impalements V m was –51±1 mV. An increase in bath K+ concentration from 3.6 mmol/l to 18.6 mmol/l or 0.5 mmol/l Ba2+ depolarized the cells by 10±1 mV (n=49) or by 9±2 mV (n=3), respectively. A decrease of bath Cl concentration from 145 to 30 mmol/l depolarized the cells by 11±1 mV (n=24). Agents increasing intracellular cAMP such as isobutylmethylxanthine (0.1 mmol/l), forskolin (10 mol/l) or isoprenaline (10 mol/l) depolarized the cells by 6±1 (n=13), 15±3 (n=5) and 6±2 (n=3) mV, respectively. In hypoosmolar solutions (225 mosmol/l) cells depolarized by 9±1 mV (n=6). Purine and pyrimidine nucleotides depolarized the cells dose-dependently with the following potency sequence: UTP > ATP > ITP > GTP > TIP > CTP = 0. The depolarization by ATP was stronger than that by ADP and adenosine. The muscarinic agonist carbachol led to a sustained depolarization by 27±6 mV (n=5) at 0.1 mmol/l, and to a transient depolarization by 12±4 mV (n=5) at 10 mol/l. Neurotensin depolarized with a half-maximal effect at around 5 nmol/l. The depolarization induced by nucleotides and neurotensin was transient and followed by a hyperpolarization. We confirm that HT29 cells possess Cl- and K+-conductive pathways. The Cl conductance is regulated by intracellular cAMP level, cytosolic Ca2+ activity, and cell swelling. The K+ conductance in HT29 cells is regulated by intracellular Ca2+ activity.Supported by DFG Gre 480/10 and GIF Proj. no. I-86-100.10/ 88  相似文献   

7.
The purpose of this study was to characterize the ion conductances, in particular those for Cl and K+, of human sweat duct cells grown in primary culture. Sweat duct cells from healthy individuals were grown to confluence on a dialysis membrane, which was then mounted in a mini-Ussing chamber and transepithelial and intracellular potentials were measured under open-circuit conditions. Under control conditions the epithelia developed mucosa-negative transepithelial potentials, V te, of about –10mV. The apical membrane potential, V a, was –25 mV to –30 mV (n=97) in most cells, but several cells had a higher potential of about –55 mV (n=29). Mucosal amiloride (10 mol/l) hyperpolarized V a from –31±1 mV to a new sustained level of –46±2 mV (n=36). These changes were accompanied by increase in the fractional resistance of the apical membrane, fR a, and decreases of V te and the equivalent short-circuit current, I sc. In amiloride-treated tissues an increase in mucosal K+ concentration (5 mmol/l to 25 mmol/l) depolarized V a by 5±1 mV (n=8), while the same step on the serosal side depolarized V a by 20±2 mV (n=8). A Cl channel blocker 3,5-dichloro-diphenylamine-2-carboxylate DCl-DPC; 10 mol/l) depolarized V a by 5±1 mV (n=6), an effect that was lost after amiloride application. The blocker had no effect from the serosal side. Reduction of mucosal Cl (from 120 to 30 or 10 mmol/l) depolarized V a by 9–11 mV (n=35), an effect that was often followed by a secondary hyperpolarization of 10–30 mV (n=27). Isoproterenol (5 mol/l) increased the V a responses to low Cl such that the depolarizing response was increased from 10±1 mV to 19±2 mV (n=8); the hyperpolarizing response seemed to be reduced. With changes in Cl concentration on the serosal side, V a remained relatively constant at –25 mV, while V te decreased from –8 mV to–3 mV; hence, V bl depolarized by about 5 mV. Taken together, our results show that the human sweat duct epithelium possesses Na+, K+ and Cl conductances on the luminal membrane and Cl and K+ conductances on the basolateral membrane. The Cl conductances on the luminal membrane is sensitive to DCl-DPC, and can be activated by isoproterenol. The small K+ conductance on the luminal membrane could account for some K+ secretion in sweat glands.  相似文献   

8.
The dependence of intracellular pH (pHi) and transepithelial H+ secretion on the cell membrane potential (V m) was tested applying pH-sensitive and conventional microelectrodes in giant cells fused from single epithelial cells of the diluting segment and in intact tubules of the frog kidney. An increase of extracellular K+ concentration from 3 to 15 mmol/l decreasedV m from –49±4 to –29±1 mV while pHi increased from 7.44±0.04 to 7.61±0.06. Addition of 1 mmol/l Ba2+ depolarizedV m from –45±3 to –32±2 mV, paralleled by an increase of pHi from 7.46±0.04 to 7.58±0.03. Application of 0.05 mmol/l furosemide hyperpolarizedV m from –48±3 to –53±3 mV and decreased pHi from 7.47±0.05 to 7.42±0.05. In the intact diluting segment of the isolated-perfused frog kidney an increase of peritubular K+ concentration from 3 to 15 mmol/l increased the luminal pH from 7.23±0.08 to 7.41±0.08. Addition of Ba2+ to the peritubular perfusate also increased luminal pH from 7.35±0.07 to 7.46±0.07. Addition of furosemide decreased luminal pH from 7.32±0.03 to 7.24±0.05. We conclude: cell depolarization reduces the driving force for the rheogenic HCO 3 exit step across the basolateral cell membrane. HCO 3 accumulates in the cytoplasm and pHi increases. An alkaline pHi inactivates the luminal Na+/H+ exchanger. This diminishes transepithelial H+ secretion. Cell hyperpolarization leads to the opposite phenomenon. Thus, pHi serves as signal transducer between cell voltage and Na+/H+ exchange.  相似文献   

9.
Mesangial cells (MC) are a main target of natriuretic peptides in the kidney and are thought to play a role in regulating glomerular filtration rate. We examined the influence of cGMP-generating (i.e. guanosine 3,5-cyclicmonophosphate) peptides on membrane voltages (Vm) of rat MC by using the fast whole-cell patch-clamp technique. The cGMP-generating peptides were tested at maximal concentrations ranging from 140 to 300 nmol/1. Whereas human CNP (C natriuretic peptide), rat guanylin and human uroguanylin had no significant effect on Vm of these cells, human BNP (brain natriuretic peptide), rat CDD/ANP-99-126 (cardiodilatin/atrial natriuretic peptide) and rat CDD/ANP-95-126 (urodilatin) hyperpolarized Vm significantly by 1.6 ± 0.4 mV (BNP,n = 8), 3.7 ± 0.3 mV (CDD/ANP-99-126,n = 25) and 2.8 ± 0.4 mV (urodilatin,n = 9), respectively. The half-maximally effective concentration (EC50) for the latter two was around 400 pmol/l each. This hyperpolarization could be mimicked with 0.5 mmol/1 8-bromo-guanosine 3,5-cyclic monophosphate (8-Br-cGMP) and was blocked by 5 mmol/1 Ba2+. The K+ channel blocker 293 B (1O)) mol/l) depolarized basal Vm by 4.3 ± 0.4 mV (n = 8), but failed to inhibit the hyperpolarization induced by CDD/ANP-99-126 (160 nmol/1) (n = 8). The K+ channel opener cromakalim (10 mol/1) neither influenced basal Vm nor altered the hyperpolarization induced by 160 nmol/1 CDD/ANP-99-126 (n = 8). Adenosine (100 mol/1) hyperpolarized Vm by 13.4 ± 1.3 mV (n = 16). At 100 mol/1, 293 B did not inhibit the adenosine-induced hyperpolarization (n = 6). At 160 nmol/l, CDD/ANP-99-126 enhanced the adenosine-induced hyperpolarization significantly by 1.5 ± 0.6 mV (n = 10). CDD/ANP-99-126 (160 nmol/1) failed to modulate the value to which Vm depolarized in the presence of 1 nmol/l angiotensin II (n = 10), but accelerated the repolarization to basal Vm, by 49 ± 20% (n = 8). These results indicate that the natriuretic peptides CDD/ANP-99-126, CDD/ANP-95-126 and BNP hyperpolarize rat MC probably due to an increase of a K+ conductance. This effect modulates the voltage response induced by angiotensin II. The natriuretic-peptide-activated conductance can be blocked by Ba2+, but not by 293 B and cannot be activated by cromakalim. This increase in the K+ conductance seems to be additive to that inducable by adenosine, indicating that different K+ channels are activated by these hormones.  相似文献   

10.
Rabbit corneal endothelial cells mounted in vitro were impaled simultaneously with Na+-selective and conventional KCl-filled microelectrodes. The membrane potential (V m) was –30.4±0.8 mV (mean ±SEM, n = 55) and the intracellular [Na+]i (calculated from the Na+-selective electrode potential, VNa) was 13.7 ±1.9 mM (mean±SEM, n = 16). When ouabain was added to the perfusate the cell depolarised, causing both V m and VNa to increase with a very similar time course. Final V m was –6.3±0.6 mV (mean ±SEM, n = 15), and the final [Na+]i was 114±6.9 mM (mean ± SEM, n = 5). The parallel increase in V m and rise in [Na+]i suggest that a component of the ouabain-induced depolarisation of the cell (increase in V m) is due to Na+ entry into the cell down its concentration gradient. The lateral and basal location of the Na+/K+-ATPase in bovine endothelial cells was confirmed (for the first time at the electron-microscopic level) using a monoclonal antibody specific for the 1 subunit of Na+/K+-ATPase. The absence of a net Na+ flux across these cells combined with the basolateral location of the ATPase suggest that Na+ exit from the cell, and its re-entry take place across the same membrane (i. e. the basolateral).  相似文献   

11.
Acetylcholine-controlled exocrine secretion by pancreatic acini has been explained by two hypotheses. One suggests that NaCl secretion occurs by secondary active secretion as has been originally described for the rectal gland of Squalus acanthias. The other is based on a “push-pull” model whereby Cl is extruded luminally and sequentially taken up basolaterally. In the former model Cl uptake is coupled to Na+ and basolateral K+ conductances play a crucial role, in the latter model, Na+ uptake supposedly occurs via basolateral non-selective cation channels. The present whole-cell patch-clamp studies were designed to further explore the conductive properties of rat pancreatic acini. Pilot studies in approximately 300 cells revealed that viable cells usually had a membrane voltage (V m) more hyperpolarized than −30 mV. In all further studies V m had to meet this criterion. Under control conditions V m was −49 ± 1 mV (n = 149). The fractional K+ conductance (f K) was 0.13 ± 0.1 (n = 49). Carbachol (CCH, 0.5 μmol/l) depolarized to −19 ± 1.1 mV (n = 63) and increased the membrane conductance (G m) by a factor of 2–3. In the seeming absence of Na+ [replacement by N-methyl-D-glucamine (NMDG+)] V m hyperpolarized slowly to −59 ± 2 mV (n = 90) and CCH still induced depolarizations to −24 ± 2 mV (n = 34). The hyperpolarization induced by NMDG+ was accompanied by a fall in cytosolic pH by 0.4 units, and a very slow and slight increase in cytosolic Ca2+. f K increased to 0.34. The effect of NMDG+ on V m was mimicked by the acidifying agents propionate and acetate (10 mmol/l) added to the bath. The present study suggests that f K makes a substantial contribution to G m under control conditions. The NMDG+ experiments indicate that the non- selective cation conductance contributes little to V m in the presence of CCH. Hence the present data in rat pancreatic acinar cells do not support the push-pull model. Received: 8 November 1995/Received after revision: 18 December 1995/Accepted: 3 January 1996  相似文献   

12.
The membrane potential V m the cytosolic pH (pHi), the transference numbers (t) for K+, Cl and Na+/ non-selective cation (NSC) and the pH-sensitivity of V m were investigated in transitional cells from the vestibular labyrinth of the gerbil. V m, pHi, , and the pHi sensitivity of V m were under control conditions were –92±1 mV (n=89 cells), pHi 7.13±0.07 (n=11 epithelia), 0.87±0.02 (n=22), 0.02±0.01 (n=19), 0.01±0.01 (n=24) and –5 mV/pH unit (n=13 cells/n=11 epithelia), respectively. In the presence of 100 mol/l Ba2+ the corresponding values were: –70±1 mV (n=32), pHi 7.16±0.08 (n=6), 0.31±0.05 (n=4), 0.06±0.01 (n=6), 0.20±0.03 (n=10) and -16 mV/pH-unit (n=15/n=6). In the presence of 500 mol/l amiloride the corresponding values were: –72±2mV (n=34), pHi 7.00±0.07 (n=5), 0.50±0.04 (n=6), 0.04±0.01 (n=11), 0.28±0.04 (n=9) and –26 mV/pH-unit (n=20/n=5). In the presence of 20 mmol/l propionate plus amiloride the corresponding values were: –61±2 mV (n=27), pHi 6.72±0.06 (n=5), 0.30±0.02 (n=6), 0.06±0.01 (n=5) and 0.40±0.02 (n=8), respectively. V m was depolarized and and pHi decreased due to (a) addition of 1 mmol/l amiloride in 150 mmol/l Na+ by 38±1 mV (n=8), from 0.82±0.02 to 0.17±0.02 (n=8) and by 0.13±0.01 pH unit (n=6), respectively; (b) reduction of [Na+] from 150 to 1.5 mmol/l by 3.3±0.5 mV (n=30), from 0.83±0.02 to 0.75±0.04 (n=9) and by 0.33±0.07 pH unit (n=4), respectively and (c) addition of 1 mmol/l amiloride in 1.5 mmol/l Na+ by 20±1 mV (n=11) and from 0.83±0.03 to 0.53±0.02 (n=5), respectively. These data suggest that the K+ conductance is directly inhibited by amiloride and Ba2+ and that Ba2+ and amiloride uncover or induce a pH-sensitive and a Na+/NSC conductance which may or may not be the same entity.Some of the data have been presented at various meetings and appear in abstract form in [31, 35, 37]  相似文献   

13.
The effects of bradykinin (BK) and histamine (Hist) on the membrane voltage (V m), ion conductances and ion channels of cultured human glomerular epithelial cells (hGEC) were examined with the nystatin patch clamp technique. Cells were studied between passage 3 and 20 in a bath rinsed with Ringer-like solution at 37°C. The mean value of V m was –41±0.5 mV (n=189). BK (10–6 mol/l, n=29) and Hist (10–5 mol/l, n= 55) induced a rapid transient hyperpolarization by 15±1 mV and 18±1 mV, respectively. The hyperpolarization was followed by a long lasting depolarization by 6±1 mV (BK 10–6 mol/l) and 7±1 mV (Hist 10–5 mol/l). The ED50 was about 5×10–8 mol/l for BK and 5×10–7 mol/l for Hist. In the presence of both agonists, increases of outward and inward currents were observed. A change in the extracellular K+ concentration from 3.6 to 30 mmol/l depolarized V m by 8±1 mV and completely inhibited the hyperpolarizing effect of both agents (n=11). Reduction of extracellular Cl concentration from 145 to 30 mmol/l led to a depolarization by 2 ±1 mV (n=25). In 30 mmol/l Cl the depolarizations induced by BK (10–7 mol/l) and Hist (10–6 mol/l) were augmented to 9±2 mV (n=14) and to 10±2 mV (n=11), respectively. Ba2+ (5 mmol/l) depolarized V m by 19±5 mV (n=6) and completely inhibited the hyperpolarization induced by BK (10–6 mol/l, n=3) and reduced that of Hist (10–5 mol/l) markedly (n=3). Preincubation with the K+ channel blocker charybdotoxin (1–10 nmol/l) for 3 min had no significant effect on V m, but reduced markedly the BK(10–6 mol/l, n=11) and Hist-(10–5 mol/l, n=6) induced hyperpolarizations. In 10 out of 31 experiments in the cell attached nystatin patch configuration big K+ channels with a conductance of 247±17 pS were found. The open probability of these K+ channels was increased 3- to 5-fold during the hyperpolarization induced by BK (10–7 mol/l) or Hist (10–5 mol/l, both n= 4). In excised inside/out patches this K+ channel had a mean conductance of 136±8.5 pS (n=10, clamp voltage 0 mV). The channel was outwardly rectifying and its open probability was increased when Ca2+ on the cytosolic side was greater than 0.1 mol/l. The data indicate that BK and Hist activate a and a in hGEC. The hyperpolarization is induced by the activation of a Ca2+-dependent maxi K+ channel.  相似文献   

14.
Vascular smooth muscle cells were obtained from rabbit aorta and were studied in primary culture on days 1–7 after seeding with electrophysiological techniques. In impalement experiments a mean membrane potential difference (PD) of –50±0.3 mV (n=387) was obtained with Ringer-type solution in the bath. PD was depolarized by 6±0.3 mV (n=45) and 16±2 mV (n= 5) when the bath K+ concentration was increased from the control value of 3.6 mmol/l to 13.6 and 23.6 mmol/l, respectively. Ba2+ (0.1–1 mmol/l) depolarized PD. Tetraethylammonium (TEA, 10 mmol/l) depolarized PD only slightly but significantly. Verapamil (0.1 mmol/l) and charybdotoxin (10 nmol/l) had no effect on PD. The conductance properties of these cells were further examined with the patch-clamp technique. K+ channels were spontaneously present in cell-attached patches. When the pipette was filled with 145 mmol/l KCl, a mean conductance (g K) of 209.6±4.6 mV (n=17) was read from the current/voltage curves at a clamp voltage (V c) of 0 mV. After excision K+ channels were found in 129 patches with inside-out and in 50 with outside-out configuration. With KCl on one and NaCl on the other side the mean g K at a V c of 0 mV was 134.6±3.9 pS (n=179). The mean permeability was 0.89±0.03×10–12 cm3/s. With symmetrical KCl solution the mean g K was 227±6 pS (n=17). The conductance sequence was g K g Rb= g Cs=g Na=0. TEA blocked dose-dependently only from the outside.(1–10 mmol/l). Lidocaine (5 mmol/l) quinidine (0.01–1 mmol/l) and quinine (0.01–1 mmol/l) blocked from both sides. Charybdotoxin (0.5–5 nmol/l) blocked only from the extracellular side. Ba2+ blocked from the cytosolic side and the inhibition was increased by depolarization and reduced by hyperpolarization. At a V c of 0 mV a half-maximal inhibition (IC50) of 2 mol/l was obtained. Verapamil and diltiazem blocked from both sides, verapamil with an IC50 of 2 mol/l and diltiazem with an IC50 of 10 mol/l. The open probability of this channel was increased by Ca2+ on the cytosolic side at activities > 0.1 mol/l. Half-maximal activation occurred at Ca2+ activities exceeding 1 mol/l. The present data indicate that the vascular smooth muscle cells of rabbit aorta in primary culture possess a K+ conductance. In excised patches only a maxi K+ channel was detected. This channel has properties different from the macroscopic K+ conductance. Hence, it is likely that the K+ conductance of the intact cell is dominated by yet another and thus far not detected K+ channel.Supported by DFG Gr 480/10  相似文献   

15.
Cellular heterogeneity was examined in the hamster medullary thick ascending limb (MAL) perfused in vitro by electrophysiological measurements with an intracellular microelectrode. Random measurements of fractional resistance of basolateral membrane (Rf B) revealed two cell populations, high basolateral conductance (HBC) cells havingRf B of 0.05±0.01 (n=24) and low basolateral conductance (LBC) cells havingRf B of 0.80±0.03 (n=32). Basolateral membrane potentials (V B) were not different between HBC cells and LBC cells (–72.6±1.2,n=43 vs. –70.0±1.2,n=35). Addition of 2 mmol/l Ba2+ to the bath depolarized the basolateral membrane in the HBC cells from –70.4±3.2 to –20.9±5.9 mV (n=8) but not in the LBC cells (from –74.4±1.9 to –72.0±2.1 mV). Increasing K+ or decreasing Cl in the bathing solution caused marked positive deflection ofV B in the HBC cells but little or no change inV B in the LBC cells. Elimination of Cl from the lumen or addition of furosemide to the lumen enhanced the potential response of the HBC cells to basolateral application of Ba2+. Accordingly, with Ba2+ present in the bath, the potential response of the HBC cells to a decrease in bath Cl concentration was enhanced. These observations suggest that a K+ conductance exists in the basolateral membrane of HBC cells in paralled with a Cl conductance. The basolateral cell membrane of LBC cells also contains a Cl conductance. In these cells, but not in HBC cells, the potential response to decreasing bath Cl concentration increased when bath pH was decreased from 7.4 to 6.0 Apparent K+ transference numbers of the luminal membrane were higher in LBC cells (0.74±0.05,n=7) than in HBC cells (0.20±0.02,n=5). From these data, we conclude: (1) there are two distinct cell types in the hamster medullary thick ascending limb; (2) there is a low Cl conductance in basolateral membrane of LBC cells which is stimulated by low pH.  相似文献   

16.
The study of ion conductances in the intact cortical collecting duct (CCD) with the patch-clamp method is rather difficult. An optimized method to isolate CCD cells from rat kidneys using an in vivo followed by an in vitro enzyme digestion is described. Individual CCD segments were collected after this digestion and incubated in EGTA-buffered medium. This procedure resulted in single cells or cell clusters. These freshly isolated CCD cells were studied with different modifications of the patch-clamp method. Membrane voltages measured in the cell-attached-nystatin configuration were –74 ±1mV (n=13) and –68±3 mV (n=22) in cells isolated from normal and mineralocorticoid-treated rats respectively. These values and those measured with the nystatin-perforated slow-whole-cell configuration (–79 ±1mV, n=23) are comparable to those measured in principal cells of isolated CCD segments. The cells hyperpolarized after the addition of amiloride and depolarized with the addition of adiuretin to the bath. The amiloride effect was enhanced when cells were isolated from deoxycorticosterone-acetate-treated rats. The cells were strongly depolarized upon elevation of the extracellular K+-concentration and did not demonstrate a measurable Cl conductance. A large-conductance K+ channel (174 pS, n=5, cell-attached, 145 mmol/l K+ in the pipette; 140 pS, n=12, cell-free, 3.6 mmol/l K+ in the bath) was seen. It had a very low activity on the cell, but a high open probability when excised into a solution with 1 mmol/l Ca2+ on the cytosolic side. More often a small-conductance K+ channel (36–52 pS, n=19, cell-attached; 30 pS, n=5, cell-free) with a high open probability was found on the cell. These freshly isolated cells seem to be a powerful preparation to study the properties and regulation of ion conductances of rat CCD with several electrophysiological methods. These freshly isolated CCD cells maintain the conductance properties known from principal cells of the intact CCD.  相似文献   

17.
Whole-cell patch-clamp studies were performed in isolated colonic crypts of rats pretreated with dexamethasone (6 mg/kg subcutaneously on 3 days consecutively prior to the experiment). The cells were divided into three categories according to their position along the crypt axis: surface cells (s.c.); mid-crypt cells (m.c.) and crypt base cells (b.c.). The zero-current membrane voltage (V m) was –56 ± 2 mV in s.c (n = 34); –76 ± 2 mV in M.C. (n = 47); and –87 ± 1 mV in b.c. (n = 87). The whole-cell conductance (G m) was similar (8–12 nS) in all three types of cells. A fractional K+ conductance accounting for 29–67% ofG m was present in all cell types. A Na+conductance was demonstrable in s.c. by the hyperpolarizing effect onV m of a low-Na+ (5 mmol/1) solution. In m.c. and b.c. the hyperpolarizing effect was much smaller, albeit significant. Amiloride had a concentration-dependent hyperpolarizing effect onV m in m.c. and even more so in s.c.. It reducedG m by approximately 12%. The dissociation constant (K D) was around 0.2 mol/l. Triamterene had a comparable but not additive effect (K D = 30 mol/l,n = 14). Forskolin (10 mol/l, in order to enhance cytosolic adenosine 3, 5-cyclic monophosphate or CAMP) depolarizedV m in all three types of cells. The strongest effect was seen in b. c..G m was enhanced significantly in b.c. by 83% (forskolin) to 121% [8-(4-chlorophenylthio)cAMP]. The depolarization ofV m and increase inG m was caused to large extent by an increase in Cl conductance as shown by the effect of a reduction in bath Cl concentration from 145 to 32 mmol/1. This manocuvre hyperpolarizedV m under control conditions significantly by 6–9 mV in all three types of cells, whilst it depolarizedV m in the presence of forskolin in m.c. and in b.c.. These data indicate that s.c. of dexamethasone-treated rats possess mostly a K+ conductance and an amiloride- and Tramterene-inhibitable Na+ conductance. m.c. and b.c. possess little or no Na+ conductance; theirV m is largely determined by a K+ conductance. Forskolin (via cAMP) augments the Cl conductance of m.c. and b.c. but has only a slight effect on s.c.  相似文献   

18.
The macula densa cells of the juxtaglomerular apparatus probably serve as the sensor cells for the signal which leads to the appropriate tubuloglomerular feedback response. The present study reports basolateral membrane voltage (PDbl) measurements in macula densa cells. We isolated and perfused in vitro thick ascending limb segments with the glomerulus, and therefore the macula densa cells, and the early distal tubule still attached. Macula densa cells were impaled with microelectrodes under visual control. PDbl was recorded in order to examine how these cells sense changes in luminal NaCl concentrations. The addition of furosemide, a specific inhibitor of the Na+2ClK+ cotransporter in the thick ascending limb, to the lumen of the perfused thick ascending limb hyperpolarized PDbl from –55±5 mV to –79±4 mV (n=7). Reduction of NaCl in the lumen perfusate from 150 mmol/l to 30 mmol/l also hyperpolarized PDbl from –48±3 mV to –66±5 mV (n=4). A Cl concentration step in the bath from 150 mmol/l to 30 mmol/l resulted in a 24±4 mV (n=4) depolarization of PDbl. This depolarization of PDbl was absent when furosemide was present during the Cl concentration step. These data suggest that the macula densa cells sense changes in luminal NaCl concentration via coupled uptake of Na+ and Cl. The transport pathways for NaCl transport in macula densa cells are probably identical to those in the thick ascending limb: the (Na++K+)-ATPase in the basolateral membrane drives Na+ and Cl uptake via the luminal Na+2ClK+ cotransport, Cl leaves the cell via basolateral Cl channels and K+ recycles across the apical membrane via K+ channels. Changes in intracellular Cl activity as a result of altered luminal NaCl uptake, and thus voltage changes of the basolateral membrane are probably the first signal in the tubuloglomerular feedback regulation.This study was supported by Deutsche Forschungsgemeinschaft Gr. 480/9  相似文献   

19.
The present study was performed to examine the conductance properties in the colon carcinoma cell line HT29 and the activation of Cl channels by cAMP. A modified cell-attached nystatin patch-clamp technique was used, allowing for the simultaneous recording of the cell membrane potential (PD) and the conductance properties of the cell-attached membrane. In resting cells, PD was –56±0.4 mV (n=294). Changing the respective ion concentrations in the bath indicate that these cells possess a dominating K+ conductance and a smaller Cl conductance. A significant non-selective cation conductance, which could not be inhibited by amiloride, was only observed in cells examined early after plating. The K+ conductance was reversibly inhibited by 1–5 mmol/l Ba2+. Stimulation of the cells by the secretagogues isoproterenol and vasointestinal polypeptide (VIP) depolarized PD and induced a Cl conductance. Similar results were obtained with compounds increasing cytosolic cAMP: forskolin, 3-isobutyl-1-methylxanthine, cholera toxin and 8-bromoadenosine cyclic 3,5-monophosphate (8-Br-cAMP). VIP (1 nmol/l, n=10) and isoproterenol (1 umol/l, n=12) depolarized the cells dose-dependently and reversibly by 12±2 mV and 13±2 mV. The maximal depolarization was reached after some 20 s. The depolarization was due to increases in the fractional Cl conductance. Simultaneously the conductance of the cellattached membrane increased from 155±31 pS to 253±40 pS (VIP, n=4) and from 170±43 pS to 268±56 pS (isoproterenol, n=11), reflecting the gating of Cl channels in the cell-attached membrane. 5-Nitro-2-(3-phenylpropylamino)-benzoate (1 mol/l) was without significant effects in resting and in forskolin-stimulated HT29 cells. The agonist-induced conductance increase of the cell-attached nystatin patches was not paralleled by the appearance of detectable single-channel events in these membranes. These data suggest activation of small, non-resolvable Cl channels by cAMP.Supported by DFG Gr 480/10 and BMFT 01 GA 88/6  相似文献   

20.
Diadenosine polyphosphates have been shown to influence renal perfusion pressure. As mesangial cells may contribute to these effects we investigated the effects of diadenosine triphosphate (Ap3A), diadenosine tetraphosphate (Ap4A), diadenosine pentaphosphate (Ap5A) and diadenosine hexaphosphate (Ap6A) on membrane voltage (V m) and membrane conductance (g m) in mesangial cells (MC) of normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats in primary and long-term culture. We applied the patch-clamp technique in the fast-whole-cell configuration to measure V m and g m. To compare the effects of diadenosine polyphosphates with hitherto known agonists we also tested adenosine 5-triphosphate (ATP) and angiotensin II (Ang II). As there was no significant difference in the V m values in MC of WKY (–42±1 mV, n=70) and SHR rats (–45±2 mV, n=99) as well as in the agonist-induced changes of V m, all data were pooled. The V m of all the cells was –44±1 mV (n=169) and g m was 15.9±1.8 nS (n=141). Ion-exchange experiments showed the presence of a K+ and a non-selective cation conductance in resting MC whereas a Cl conductance or a Na+selective conductance could not be observed. Ap3A, Ap4A, Ap5A, AP6A and ATP each at a concentration of 5 mol/l, led to a significant depolarization of V m by 5±2 mV (n=14), 7±1 mV (n=25), 3±1 mV (n=23), 2±1 mV (n=16), and 14±2 mV (n=23), respectively. For Ap4A, the most potent diadenosine polyphosphate, we determined the half-maximally effective concentration (EC 50) as 6 mol/l (n=5–25), for ATP as 2 mol/l (n=9–37), and for Ang II as 8 nmol/l (n=6–18). Ap4A 100 mol/l increased g m significantly by 55±20% (n=16), 100 mol/l ATP by 135±60% (n=18). The diadenosine polyphosphates examined were able to depolarize V m (Ang II >ATP> Ap4A>Ap3A>Ap5A>Ap6A) by activation of a Cl conductance and a non-selective cation conductance, as do ATP or Ang II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号