首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal degeneration was induced by a single intraperitoneal injection of N-methyl-N-nitrosourea in female Sprague-Dawley albino rats at 50 days of age by two dose regimens, which were observed sequentially at 24, 48, and 72 hours and 7, 21, and 35 days after the treatment. After a dose of 75 mg/kg, methylnitrosourea evoked progressive retinal degeneration in all treated rats whereas a dose of 50 mg/kg was less effective. The 75-mg/kg-treated rats showed selective destruction of the photoreceptor cells by an apoptotic mechanism, as confirmed morphologically and by the terminal dUTP nick end labeling method. Apoptosis had already started at 24 hours after the treatment and was completed by day 7. During the photoreceptor degeneration, proliferation of glial fibrillary acidic protein and vimentin-positive Müller cells as detected by proliferating cell nuclear antigen labeling appeared at 48 hours and was prominent 72 hours after the treatment, and macrophage infiltration within the retina as recognized by ED1 positivity was maximal 7 and 21 days after the treatment. Retinal degeneration was also induced in female Brown-Norway colored rats in a similar dose-dependent manner. Pigment epithelium was discontinuous above Bruch's membrane, and migration of the swollen pigment epithelium toward the inner nuclear layer was seen 7 days after the treatment. Therefore, as also confirmed electron microscopically, the most striking change was the destruction of photoreceptor cells by the apoptotic process, followed by Müller cell proliferation, pigment epithelium migration, and macrophage infiltration for cell debris phagocytosis, resulting in a thin remnant of retina with attenuated inner nuclear cells in direct contact with Bruch's membrane or with the pigment epithelium and/or with the Müller cells 35 days after the treatment.  相似文献   

2.
Morphologic characteristics of retinal degeneration induced by a single systemic administration of Methyl-Knitro-sourea (MNU) in mice was Investigated. The aim was to characterize the MNU-Induced retinal lesions In mice and compare them with human retinitis pigmentosa. A dose of 60 mg/kg body weight MNU, Injected intraperttoneally into male and female C57BL mice, evoked progressive retinal degeneration in all treated mice, while control mice re mined normal. An early change was photoreceptor apoptosis followed by Infiltration of macrophages and swelling of the pigment epithellal cells with phagosomal inclusions for apoptotic photoreceptor cell removal. Loss of the majority of photoreceptor cells occurred within a week Then, Feulgenpositive corpuscies, indicative of an aggregation of degenerative photoreceptor elements, vitread the outer limiting membrane were surrounded by Müller cell processes, and the duplication of the pigment epithelial cells sciurid the outer limiting membrane were seen 2 and 3 weeks after the treatment. Finally, the Feulgen-positive corpuscles disappeared and Müller cell processes were in direct contact with the continuous lining of the single layer of pigment epithellal cells. As in retinitis pigmentosa in humans, the primary event was loss of photoreceptor cells by apoptosis, but the migration of the pigment epithellal cells within the retina was not seen in the present model.  相似文献   

3.
Excessive light causes damage to photoreceptor and pigment epithelial cells, and a local edema in the outer retina. Since Müller glial cells normally mediate the osmohomeostasis in the inner retina (mainly via channel-mediated transport of potassium and water), we determined whether retinal light injury causes an alteration in the retinal localization of glial water (aquaporin-4) and potassium (Kir4.1) channels, and in the potassium conductance of Müller cells. Mice were treated with bright white light (intensity, 15,000lx) for 2h. Light treatment results in Müller cell gliosis as indicated by the enhanced staining of the glial fibrillary acidic protein and an increase in the cell membrane area reflecting cellular hypertrophy. In light-injured retinas, the immunostaining of the photoreceptor water channel aquaporin-1 disappeared along with the degeneration of the outer retina, and the outer nuclear layer contained large spherical bodies representing photoreceptor nuclei which were fused together. The immunostainings of the aquaporin-4 and Kir4.1 proteins were increased in the outer retina after light treatment. Since the amplitude of the potassium currents of Müller cells remained largely unaltered, the increase in the Kir4.1 immunostaining is supposed to be caused by a redistribution of the channel protein. The data indicate that Müller glial cells respond to excessive light with an alteration in the localization of Kir4.1 and aquaporin-4 proteins; this alteration is thought to be a response to the edema in the outer retina and may support the resolution of edema.  相似文献   

4.
The morphologic response of neonatal mouse retina to the alkylating agent N -methyl- N -nitrosourea (MNU) was examined at different periods of retinal development. A dose of 60 mg/kg N -methyl- N -nitrosourea was injected intraperitoneally to neonatal C57BL mice at 0, 3, 5, 8, 11, 14, 17, and 20 days of age and to C3H mice at 0 days of age, and the retinas were examined sequentially. In the C67BL mice, MNU evoked a time-dependent occurrence of retinal dysplasia and retinal degeneration. With MNU treatment at day 0 and day 3 (the stage of retinal cell proliferation), retinal dysplasia characterized by the progressive disorganization of neuroblasts, which led to the formation of rosettes, was found in the outer neuroblastic/nuclear layer above the normal pigment epithelial cells during days 8–20, but decreased at day 50. The rosettes were surrounded by photoreceptor segments and Muller cell processes, and by photoreceptor nuclei. The MNU response was related to retinal differentiation; following MNU treatment at day 5 or 8 (the stage of retinal cell differentiation) the cells were much less sensitive (i.e. no retinal response was found). However, with MNU treatment at days 11, 14, 17, and 20 (after cellular differentiation), retinal degeneration characterized by selective photoreceptor apoptosis was seen. These results suggest that there is a critical period for the time of MNU administration in the development of mouse retinal lesions. In C3H ( rd/rd ) mice, MNU treatment at day 0 resulted in retinal degeneration with only slight rosette formation at the peripheral retina.  相似文献   

5.
Seven-week-old female BALB/c mice received a single intraperitoneal injection of N-ethyl-N-nitrosourea (ENU) (50, 100, 200, 400, or 600 mg/kg), and retinal damage was evaluated after 7 days. Sequential morphological features of the retina and retinal apoptosis, as determined by the TUNEL assay, were analyzed 6, 12, 24, and 72 hr and 7 days after treatment with 600 mg/kg of ENU. Moreover, older mice (25 to 34 weeks of age) received an intraperitoneal injection of 600 mg/kg ENU and were sacrificed 7 days later. All animals were necropsied, and both eyes were examined histopathologically. Two of the 5 mice that received 600 mg/kg ENU died during the experimental period. Histopathologically, all mice that received 600 mg/kg of ENU experienced retinal degeneration characterized by the loss of photoreceptor cells (disappearance of the outer nuclear layer and photoreceptor layer) in both the central and peripheral retina within 7 days. One of 5 mice treated with 400 mg/kg ENU exhibited retinal damage that was restricted to the central retina. Older mice treated with 600 mg/kg ENU exhibited retinal damage that was similar to the retinal damage in younger mice. In the 600 mg/kg ENU-treated mice, TUNEL-positive photoreceptor cells peaked 72 hr after ENU treatment. Retinal thickness and the photoreceptor cell ratio in the central and peripheral retina were significantly decreased, and the retinal damage ratio was significantly increased 7 days after treatment. In conclusion, ENU induces retinal degeneration in adult mice that is characterized by photoreceptor cell apoptosis.  相似文献   

6.
Retinal degeneration in experimental Creutzfeldt-Jakob disease   总被引:1,自引:0,他引:1  
Mice with experimental Creutzfeldt-Jakob disease (CJD) develop a progressive retinal degeneration after a prolonged incubation period. Sections of the eyes stained with hematoxylin and eosin revealed pathologic changes in the optic nerve and a marked degeneration of photoreceptor cell inner and outer segment areas. Both peripheral and central retina, normally 10 cells thick, were reduced to one photoreceptor cell or less in thickness. Ultrastructural analysis revealed total loss of outer segment and most inner segment elements. Only Müller cell microvilli and macrophages remained in the subretinal space. Macrophages were also visible in the remnant photoreceptor cell layer. The inner nuclear layer and pigment epithelial cell layers appeared normal. Müller cell hypertrophy was evident but was not accompanied by spongiform vacuolation. Several of the degenerative changes of the eye in mice with experimental Creutzfeldt-Jakob disease differ from those observed for scrapie in rodents. The pathologic similarities between the retinal degenerations occurring in mice with experimental Creutzfeldt-Jakob disease and those found in some forms of human retinal degeneration are provocative. These similarities raise the question whether or not other retinal degenerative diseases might be caused by infectious agents such as prions or slow viruses.  相似文献   

7.
Retinal neuroinflammation, mediated by activated microglia, plays a key role in the pathogenesis of photoreceptor and retinal pigment epithelial cell loss in age-related macular degeneration and retinitis pigmentosa. Targeted drug therapy for attenuation of neuroinflammation in the retina was explored using hydroxyl-terminated polyamidoamine (PAMAM) dendrimer-drug conjugate nanodevices. We show that, upon intravitreal administration, PAMAM dendrimers selectively localize within activated outer retinal microglia in two rat models of retinal degeneration, but not in the retina of healthy controls. This pathology-dependent biodistribution was exploited for drug delivery, by covalently conjugating fluocinolone acetonide to the dendrimer. The conjugate released the drug in a sustained manner over 90 days. In vivo efficacy was assessed using the Royal College of Surgeons (RCS) rat retinal degeneration model over a four-week period when peak retinal degeneration occurs. One intravitreal injection of 1 μg of FA conjugated to 7 μg of the dendrimer was able to arrest retinal degeneration, preserve photoreceptor outer nuclear cell counts, and attenuate activated microglia, for an entire month. These studies suggest that PAMAM dendrimers (with no targeting ligands) have an intrinsic ability to selectively localize in activated microglia, and can deliver drugs inside these cells for a sustained period for the treatment of retinal neuroinflammation.  相似文献   

8.
Aquaporin water channels play a crucial role in the maintenance of ionic and osmotic homeostasis in the neural tissue. In the sensory retina, aquaporin-4 is expressed by Müller glial cells, predominantly in the inner retina, while aquaporin-1 is expressed mainly in the outer retina. However, it is unknown whether aquaporin-1 expression occurs in Müller cells or photoreceptor cells. By using immunohistochemical staining of retinal slices from rds mice, we show that the immunoreactivity for aquaporin-1 disappears along with the photoreceptor cell degeneration. In suspensions of dissociated retinal cells from control mice, photoreceptor cells expressed aquaporin-1 immunoreactivity while Müller cells were largely devoid of staining. The data suggest that photoreceptor cells, but not Müller cells, express aquaporin-1 in the murine retina.  相似文献   

9.
Age-related macular degeneration, a neurodegenerative and vascular retinal disease, is the most common cause of blindness in the Western countries. Evidence accumulates that target of rapamycin is involved in aging and age-related diseases, including neurodegeneration. The target of rapamycin inhibitor, rapamycin, suppresses the senescent cell phenotype and extends life span in diverse species, including mice. Rapamycin decreases senescence-associated phenotypes in retinal pigment epithelial cells in culture. Herein, we investigated the effect of rapamycin on spontaneous retinopathy in senescence-accelerated OXYS rats, an animal model of age-related macular degeneration. Rats were treated with either 0.1 or 0.5 mg/kg rapamycin, which was given orally as a food mixture. In a dose-dependent manner, rapamycin decreased the incidence and severity of retinopathy. Rapamycin improved some (but not all) histological abnormalities associated with retinopathy. Thus, in retinal pigment epithelial cell layers, rapamycin decreased nuclei heterogeneity and normalized intervals between nuclei. In photoreceptor cells, associated neurons, and radial glial cells, rapamycin prevented nuclear and cellular pyknosis. More important, rapamycin prevented destruction of ganglionar neurons in the retina. Rapamycin did not exert any adverse effects on the retina in control disease-free Wistar rats. Taken together, our data suggest the therapeutic potential of rapamycin for treatment and prevention of retinopathy.  相似文献   

10.
《Neuroscience》1999,95(1):9-21
Topographically localized over-expression of the human Bcl-2 protein in retinal glial Müller cells of a transgenic mice (line 71) leads to early postnatal apoptotic Müller cell death and retinal degeneration. Morphological, immunohistological and confocal laser microscopic examination of transgenic and wild-type retinas were achieved on paraffin retinal sections, postnatally. Apoptosis occurs two to three days earlier in the internal nuclear layer of transgenic retinae, than in wild-type littermates. In parallel there was a progressive disappearance of transgenic Hu-Bcl-2 over-expression, as well as of the Müller cell markers, cellular retinaldehyde-binding protein and glutamine synthetase. This phenomenon led to retinal dysplasia, photoreceptor apoptosis and then retinal degeneration and proliferation of the retinal pigment epithelium. The optic nerve, however, remains intact. Two complementary observations confirm the pro-apoptotic action of Bcl-2 over-expression in Müller cells: (i) in the peri-papillary and peripheral regions where the transgene Bcl-2 is not expressed, cellular retinaldehyde-binding protein or glutamine synthetase immunostaining persist and Müller glia do not die; and (ii) the retina conserves a normal organisation in these two regions inspite of total retinal degeneration elsewhere.We conclude that retinal dysplasia and degeneration are linked to primary Müller cell disruption. Besides its generally accepted anti-apoptotic function, over-expression of Bcl-2 also exerts a pro-apoptotic action, at least in immature Müller glia. One may suppose that Bcl-2 translocation resulting in its over-expression in retinal Müller cells could be a putative mechanism for early retinal degeneration.  相似文献   

11.
Topographically localized over-expression of the human Bcl-2 protein in retinal glial Müller cells of a transgenic mice (line 71) leads to early postnatal apoptotic Müller cell death and retinal degeneration. Morphological, immunohistological and confocal laser microscopic examination of transgenic and wild-type retinas were achieved on paraffin retinal sections, postnatally. Apoptosis occurs two to three days earlier in the internal nuclear layer of transgenic retinae, than in wild-type littermates. In parallel there was a progressive disappearance of transgenic Hu-Bcl-2 over-expression, as well as of the Müller cell markers, cellular retinaldehyde-binding protein and glutamine synthetase. This phenomenon led to retinal dysplasia, photoreceptor apoptosis and then retinal degeneration and proliferation of the retinal pigment epithelium. The optic nerve, however, remains intact. Two complementary observations confirm the pro-apoptotic action of Bcl-2 over-expression in Müller cells: (i) in the peri-papillary and peripheral regions where the transgene Bcl-2 is not expressed, cellular retinaldehyde-binding protein or glutamine synthetase immunostaining persist and Müller glia do not die; and (ii) the retina conserves a normal organisation in these two regions in spite of total retinal degeneration elsewhere. We conclude that retinal dysplasia and degeneration are linked to primary Müller cell disruption. Besides its generally accepted anti-apoptotic function, over-expression of Bcl-2 also exerts a pro-apoptotic action, at least in immature Müller glia. One may suppose that Bcl-2 translocation resulting in its over-expression in retinal Müller cells could be a putative mechanism for early retinal degeneration.  相似文献   

12.
Summary.  Neuron-glia interactions in the Borna disease virus (BDV)-infected rat retina were investigated with emphasis on the ultrastructural characterization of degenerative alterations in the ganglion cell and photoreceptor layer. Immuno- and cytochemical techniques were applied to label microglia, macrophages and Müller (macroglial) cells. Four weeks after intracerebral infection of adult rats, the total thickness of the retina was considerably diminished, primarily due to the loss of photoreceptor segments and ganglion cells. A gradual reduction of both plexiform layers was also observed. There was a remarkable increase in the number of microglial cells, predominantly in the ganglion cell and the inner plexiform layers. Ultrastructural analysis confirmed that microglia, but also macrophages, were involved in phagocytosis accompanying severe neuronal degeneration in the ganglion cell and the photoreceptor layer. In contrast, Müller cells showed moderate morphological and cytochemical alterations, indicating that Müller cells play only a minor role in early stages of BDV-induced retinitis. Monitoring neuron-glia interactions in BDV-induced retinopathy, combined with the application of different protocols of immunosuppression effecting the BDV virus and/or the microglia, might help to establish specific strategies to suppress BDV-induced neuronal degeneration. Received October 21, 1998/Accepted June 23, 1999  相似文献   

13.
In the retina, neurotransmission from photoreceptors to ON-cone and rod bipolar cells is sign reversing and mediated by the metabotropic glutamate receptor mGluR6, which converts the light-evoked hyperpolarization of the photoreceptors into depolarization of ON bipolar cells. The Royal College of Surgeons (RCS) rat retina undergoes progressive photoreceptor loss due to a genetic defect in the pigment epithelium cells. The consequences of photoreceptor loss and the concomitant loss of glutamatergic input to second-order retinal neurons on the expression of the metabotropic glutamate receptor was investigated in the RCS rat retina from early stages of photoreceptor degeneration (P17) up to several months after complete rod and cone degeneration (P120). The expression of the gene encoding mGluR6 was studied by in situ hybridization in the retina, using an [(35)S]dATP-labeled oligonucleotide probe. In congenic control and RCS retina, we found mRNA expression of mGluR6 receptor only in the outer half of the inner nuclear layer (INL) on emulsion-coated retinal sections. Quantitative analysis of the hybridization signal obtained from the autoradiographic films revealed decreased expression levels of the mGluR6 mRNA at early stages of photoreceptor degeneration (P17). On the contrary, increased expression levels were observed at late stages of degeneration (P60 and P120) in RCS compared to congenic control retina. In conclusion, our data demonstrate that the metabotropic glutamate receptor-6 mRNA levels are altered in the young and adult RCS rat retina and suggest that the genetically induced degeneration of photoreceptors affects the expression of this receptor by the INL retinal neurons.  相似文献   

14.
《Journal of anatomy》2017,231(4):471-483
Müller cells are the predominant glial cell type in the retina of vertebrates. They play a wide variety of roles in both the developing and the mature retina that have been widely reported in the literature. However, less attention has been paid to their role in phagocytosis of cell debris under physiological, pathological or experimental conditions. Müller glia have been shown to phagocytose apoptotic cell bodies originated during development of the visual system. They also engulf foreign molecules that are injected into the eye, cone outer segments and injured photoreceptors. Phagocytosis of photoreceptor cell debris in the light‐damaged teleost retina is primarily carried out by Müller cells. Once the microglial cells become activated and migrate to the photoreceptor cell layer, the phagocytic activity of Müller cells progressively decreases, suggesting a possible mechanism of communication between Müller cells and neighbouring microglia and photoreceptors. Additionally, it has been shown that phagocytic Müller cells acquire proliferating activity in the damaged teleost retina, suggesting that engulfment of apoptotic photoreceptor debris might stimulate the Müller glia to proliferate during the regenerative response. These findings highlight Müller glia phagocytosis as an underlying mechanism contributing to degeneration and regeneration under pathological conditions.  相似文献   

15.
Murine coronavirus induces an acute and long-lasting disease of the retina   总被引:1,自引:0,他引:1  
The ability of the coronavirus mouse hepatitis virus, strain JHM, to grow in the retinas of BALB/c mice was examined. Inoculation into the vitreous chamber produced significant changes. Immunoperoxidase staining of frozen sections with either monoclonal or polyclonal antiserum revealed coronaviral antigens in the iris, ciliary body, and a few ganglion cells on day 1. The retinal pigment epithelial cells began expressing viral antigen on day 2 and large amounts of antigen were present in these cells on day 3. Viral antigens were detected in all layers of the neural retina by day 6 and were absent after day 7. Infectious virus was recovered from retinas harvested at 5 days. The drop in viral antigen expression was correlated with an elevation in virus-specific antibody; the latter began to rise on day 5 and plateaued after day 8. In hematoxylin and eosin- or periodic acid -Schiff-stained sections of virus-inoculated left eyes, but not mock-inoculated right eyes, lesions spanning all layers of the neural retina were detected by day 3. Subsequently abnormalities in retinal pigment epithelial cells appeared, sometimes around the entire circumference of the retina. Significant retinal abnormalities, notably photoreceptor degeneration, persisted through 6 weeks. These results demonstrate that coronaviruses can cause acute infection of the posterior pole of the eye, resulting in only a mild inflammatory response and long-lasting disease. This murine disease may be considered a model for degenerative diseases of the pigment epithelium and photoreceptors in man.  相似文献   

16.
RCS大鼠视网膜感光细胞的凋亡   总被引:3,自引:1,他引:3  
刘斌  唐军民  朱秀安  唐岩 《解剖学报》1998,29(4):410-413,I011
为研究遗传性视网膜变性中感光细胞组织结构的时程变化及调亡,对RCS大鼠脑SD大鼠视网膜进行光镜观察和凋亡细胞TUNEL检测。结果表明,与同龄SD大鼠相比,RCS大鼠视网膜感光细胞从出生后15d开始,出现外节膜盘堆积;20d时,内节排列紊乱,消失,30d,细胞核固缩,细胞消失,到出生后60d,仅少许感光细胞保留;100d,几乎所有感光细胞消失。TUNEL检测,从出生后25d开始,RCS大鼠视网膜有T  相似文献   

17.
The mechanism of retinal cell death was studied in mutant zebrafish (Danio rerio) which undergo inherited degeneration of the retina and the brain. The shrunken head (shr(m33)) mutation was isolated as part of a large scale mutagenesis screen. The yellow head (yhd) mutation arose spontaneously among inbred wild type zebrafish. Although the mutants share many morphological features, including small eyes, a small brain and an enlarged pericardial sac, crossing shr(m33) and yhd heterozygotes results in phenotypically normal fish. The retinae of both mutant lines of fish begin to develop normally and then undergo massive degenerative changes. Pyknotic cells first appear in the retina of the shr(m33) fish by 3 days post-fertilization and in the yhd fish by 1.5 days post-fertilization. By 5 days post-fertilization the outer nuclear layer containing the photoreceptor cells has largely disappeared in both mutants. The inner nuclear layer and ganglion cell layer are also severely affected. By 6-7 days post-fertilization, the retina has been largely cleared of pyknotic cells by retinal pigment epithelial cells and by rare macrophage-like cells. Both mutations are lethal by 7-8 days post-fertilization. Two independent measures, TdT-mediated dUTP-biotin nick end label (TUNEL) and transmission electron microscopy, indicate that the pyknotic cells in the mutant retinae are apoptotic. Apoptosis is very rarely observed during normal development of the teleost retina and was not observed in age-matched wild type zebrafish retinae examined for comparison. Our results indicate that a genetic defect can induce massive apoptosis in cell populations that do not normally undergo apoptosis during development.  相似文献   

18.
Using light microscopy and immunocytochemistry, we investigated the morphological changes of retinal tissues and the reaction of Müller cells in the ischemic rat retina induced by increasing intraocular pressure. At early stages (from 1 h to 24 h after reperfusion), cells in the ganglion cell layer and in the inner nuclear layer showed some degenerative changes, but at later stages (from 72 h to 4 weeks) marked degenerative changes occurred in the outer nuclear layer (ONL). At 4 weeks after reperfusion, the ONL was reduced to 1 or 2 cell layers. Immunoreactivity for glial fibrillary acidic protein (GFAP) appeared in the endfeet and distal processes of Müller cells as of 1 h after reperfusion. GFAP immunoreactivity in Müller cells increased up to 2 weeks and then decreased at 4 weeks after reperfusion. Our findings suggest that Müller cells are involved in the pathophysiology of retinal ischemia through the expression of GFAP. The degree of GFAP expression in Müller cells closely correlated with that of the degeneration of retinal neurons.  相似文献   

19.
Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive deaf-blinding disorders. Pathophysiology leading to the blinding retinal degeneration in USH is uncertain. There is evidence for involvement of the photoreceptor cilium, photoreceptor synapse, the adjacent retinal pigment epithelium (RPE) cells, and the Crumbs protein complex, the latter implying developmental abnormalities in the retina. Testing hypotheses has been difficult in murine USH models because most do not show a retinal degeneration phenotype. We defined the retinal disease expression in vivo in human USH using optical imaging of the retina and visual function. In MYO7A (USH1B), results from young individuals or those at early stages indicated the photoreceptor was the first detectable site of disease. Later stages showed photoreceptor and RPE cell pathology. Mosaic retinas in Myo7a-deficient shaker1 mice supported the notion that the mutant photoreceptor phenotype was cell autonomous and not secondary to mutant RPE. Humans with PCDH15 (USH1F), USH2A or GPR98 (USH2C) had a similar retinal phenotype to MYO7A (USH1B). There was no evidence of photoreceptor synaptic dysfunction and no dysplastic phenotype as in CRB1 (Crumbs homologue1) retinopathy. The results point to the photoreceptor cell as the therapeutic target for USH treatment trials, such as MYO7A somatic gene replacement therapy.  相似文献   

20.
At present, there are severe limitations to the successful migration and integration of stem cells transplanted into the degenerated retina to restore visual function. This study investigated the potential role of chondroitin sulfate proteoglycans (CSPGs) and microglia in the migration of human Müller glia with neural stem cell characteristics following subretinal injection into the Lister hooded (LH) and Royal College of Surgeons (RCS) rat retinae. Neonate LH rat retina showed minimal baseline microglial accumulation (CD68-positive cells) that increased significantly 2 weeks after transplantation (p < .001), particularly in the ganglion cell layer (GCL) and inner plexiform layer. In contrast, nontransplanted 5-week-old RCS rat retina showed considerable baseline microglial accumulation in the outer nuclear layer (ONL) and photoreceptor outer segment debris zone (DZ) that further increased (p < .05) throughout the retina 2 weeks after transplantation. Marked deposition of the N-terminal fragment of CSPGs, as well as neurocan and versican, was observed in the DZ of 5-week-old RCS rat retinae, which contrasted with the limited expression of these proteins in the GCL of the adult and neonate LH rat retinae. Staining for CSPGs and CD68 revealed colocalization of these two molecules in cells infiltrating the ONL and DZ of the degenerating RCS rat retina. Enhanced immune suppression with oral prednisolone and intraperitoneal injections of indomethacin caused a reduction in the number of microglia but did not facilitate Müller stem cell migration. However, injection of cells with chondroitinase ABC combined with enhanced immune suppression caused a dramatic increase in the migration of Müller stem cells into all the retinal cell layers. These observations suggest that both microglia and CSPGs constitute a barrier for stem cell migration following transplantation into experimental models of retinal degeneration and that control of matrix deposition and the innate microglial response to neural retina degeneration may need to be addressed when translating cell-based therapies to treat human retinal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号