首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The objective of this study was to investigate the central processing of dynamic mechanical allodynia in patients with mononeuropathy. Regional cerebral blood flow, as an indicator of neuronal activity, was measured with positron emission tomography. Paired comparisons were made between three different states; rest, allodynia during brushing the painful skin area, and brushing of the homologous contralateral area. Bilateral activations were observed in the primary somatosensory cortex (S1) and the secondary somatosensory cortex (S2) during allodynia compared to rest. The S1 activation contralateral to the site of the stimulus was more expressed during allodynia than during innocuous touch. Significant activations of the contralateral posterior parietal cortex, the periaqueductal gray (PAG), the thalamus bilaterally and motor areas were also observed in the allodynic state compared to both non-allodynic states. In the anterior cingulate cortex (ACC) there was only a suggested activation when the allodynic state was compared with the non-allodynic states. In order to account for the individual variability in the intensity of allodynia and ongoing spontaneous pain, rCBF was regressed on the individually reported pain intensity, and significant covariations were observed in the ACC and the right anterior insula. Significantly decreased regional blood flow was observed bilaterally in the medial and lateral temporal lobe as well as in the occipital and posterior cingulate cortices when the allodynic state was compared to the non-painful conditions. This finding is consistent with previous studies suggesting attentional modulation and a central coping strategy for known and expected painful stimuli. Involvement of the medial pain system has previously been reported in patients with mononeuropathy during ongoing spontaneous pain. This study reveals a bilateral activation of the lateral pain system as well as involvement of the medial pain system during dynamic mechanical allodynia in patients with mononeuropathy.  相似文献   

2.
Representation of cold allodynia in the human brain--a functional MRI study   总被引:2,自引:0,他引:2  
Seifert F  Maihöfner C 《NeuroImage》2007,35(3):1168-1180
Cold allodynia, meaning that innocuous cold stimuli become painful, is a characteristic, but enigmatic feature of neuropathic pain. Here, we used functional magnetic resonance imaging (fMRI) and investigated brain activations underlying menthol-induced cold allodynia. 12 healthy volunteers were investigated using a block-design fMRI approach. Firstly, brain activity was measured during application of innocuous cold stimuli (at 5 degrees C above cold pain threshold) and noxious cold stimuli (at 5 degrees C below cold pain threshold) to normal skin of the forearm using a peltier- driven thermostimulator. The stimuli were adjusted to the individual cold pain threshold. Secondly, cold allodynia was induced by topical menthol and cortical activations were measured during previously innocuous cold stimulation (i.e. cold pain threshold +5 degrees C), that were then perceived as painful. On a numeric rating scale for pain (0-10) innocuous cold, cold pain and cold allodynia were rated to 0.9+/-0.3, 4.1+/-0.3 and 4.5+/-0.5, respectively. Sensory and affective components of allodynic and cold pain were equal in the McGill pain questionnaire. All tested conditions (innocuous cold, noxious cold and cold allodynia) led to significant activations of bilateral insular cortices, bilateral frontal cortices and the anterior cingulate cortex. When noxious cold and innocuous cold were compared, noxious cold contributed significantly more to activations of the posterior insula and innocuous cold contributed more to activations of ipsilateral anterior insular cortex. However, comparing cold allodynia and equally intense cold pain conditions, we found significantly increased activations in bilateral dorsolateral prefrontal cortices (DLPFC) and the brainstem (ipsilateral parabrachial nucleus) during cold allodynia. Furthermore, in contrast maps cold allodynia contributed significantly more to activations of the bilateral anterior insula, whereas the contribution to activation of the contralateral posterior insula was equal. It is concluded that cold allodynia activates a network similar to that of normal cold pain but additionally recruits bilateral DLPFC and the midbrain, suggesting that these brain areas are involved in central nociceptive sensitisation processes.  相似文献   

3.
OBJECTIVE: A case study was conducted to examine a patient with chronic neuropathic pain of the right foot following peripheral nerve injury and characterize associated sensory abnormalities. METHODS: Multimodal psychophysical examination of the patient's affected and nonaffected foot included thermal sensibility, dynamic touch, and directional sensibility. In addition, we used functional magnetic resonance imaging to study cortical representation of brush-evoked allodynia. RESULTS: Detailed psychophysical examination revealed substantial deficits in warm, cool, and tactile perception on the injured foot. These findings indicated severe dysfunction of perceptual processes mediated by A beta, A delta, and C fibers. Despite reduced tactile perception, light touch evoked a deep burning pain in the foot. Functional magnetic resonance imaging during brushing of the patient's injured foot showed that tactile allodynia led to activation of several cortical regions including secondary somatosensory cortex, anterior and posterior insular cortex, and anterior cingulate cortex. Brushing of the patient's nonaffected foot led to fewer activated regions. DISCUSSION: The profound sensory disturbances suggest a possible deafferentation type of tactile allodynia mediated by changes within the central nervous system, such as a disruption of normal tactile or thermal inhibition of nociception. The functional magnetic resonance imaging data suggest that tactile allodynia is represented in similar brain regions as experimental pain.  相似文献   

4.
Parietal, insular and anterior cingulate cortices are involved in the processing of noxious inputs and genesis of pain sensation. Parietal lesions may generate central pain by mechanisms generally assumed to involve the 'medial' pain system (i.e. medial thalamic nuclei and anterior cingulate cortex (ACC)). We report here PET and fMRI data in a patient who developed central pain and allodynia in her left side after a bifocal infarct involving both the right parietal cortex (SI and SII) and the right ACC (Brodmann areas 24 and 32), thus questioning the schematic representation of cortical pain processing. No rCBF increase was found in any part of the residual cingulate cortices, neither in the basal state (which included spontaneous pain and extended hypoperfusion around the infarct), nor during left allodynic pain. Thus, as previously observed in patients with lateral medullary infarct, neither spontaneous pain nor allodynia reproduce the cingulate activation observed after noxious pain in normal subjects. Conversely, both PET and fMRI data argue in favour of plastic changes in the 'lateral discriminative' pain system. Particularly, allodynia was associated with increased activity anteriorly to the infarct in the right insula/SII cortex. This response is likely to be responsible for the strange and very unpleasant allodynic sensation elicited on the left side by a non-noxious stimulation.  相似文献   

5.
6.
The anti-migraine drug sumatriptan often induces unpleasant somatosensory side effects, including a dislike of being touched. With a double-blind cross-over design, we studied the effects of sumatriptan and saline on perception (visual analogue scale) and cortical processing (functional magnetic resonance imaging) of tactile stimulation in healthy subjects. Soft brush stroking on the calf (n=6) was less pleasant (p<0.04) and evoked less activation of posterior insular cortex in the sumatriptan compared to the saline condition. Soft brushing activated pain processing regions (anterior insular, lateral orbitofrontal, and anterior cingulate cortices, and medial thalamus) only in the sumatriptan condition, whereas activation of somatosensory cortices was similar in both conditions. Soft brush stroking on the palm (n=6) was equally pleasant in both conditions. One possible mechanism for the activation of pain processing regions by brush stroking is sensitization of nociceptors by sumatriptan. Another possibility is inhibition of a recently discovered system of low-threshold unmyelinated tactile (CT) afferents that are present in hairy skin only, project to posterior insular cortex, and serve affective aspects of tactile sensation. An inhibition of impulse transmission in the CT system by sumatriptan could disinhibit nociceptive signalling and make light touch less pleasant. This latter alternative is consistent with the observed reduction in posterior insular cortex activation and the selective effects of stimulation on hairy compared to glabrous skin, which are not explained by the nociceptor sensitization account.  相似文献   

7.
P.G. Nash  I.J. Klineberg  G.M. Murray 《Pain》2010,151(2):384-393
The conscious perception of somatosensory stimuli is thought to be located in the contralateral cerebral cortex. However, recent human brain imaging investigations in the spinal system report bilateral primary somatosensory cortex (SI) activations during unilateral noxious stimuli and that this ipsilateral spinal representation may be independent of transcallosal connections. In the trigeminal system, there is primate evidence for an ipsilateral somatosensory pathway through the thalamus to the face SI. However, the organization of the trigeminal nociceptive pathway in the human is not clear. The aim of this study was to determine whether noxious stimuli applied to the face are transmitted to the cerebral cortex by bilateral pathways. We used functional magnetic resonance imaging (fMRI) to compare ipsilateral and contralateral activation of the thalamus, SI and secondary somatosensory cortex (SII) during muscle and cutaneous orofacial pain and innocuous facial stimulation in healthy human subjects. We found that both muscle and cutaneous noxious stimuli, from injections of hypertonic saline into the right masseter or overlying skin, evoked bilateral increases in signal intensity in the region encompassing the ventral posterior thalamus as well as the face region of SI and SII. In contrast, innocuous unilateral brushing of the lower lip evoked a strict contralateral ventroposterior thalamic activation, but bilateral activation of SI and SII. These data indicate that, in contrast to innocuous inputs from the face, noxious information ascends bilaterally to the face SI through the ventroposterior thalamus in humans.  相似文献   

8.
In 15 patients with painful peripheral neuropathy and dynamic mechanical allodynia, the influence of spontaneous ongoing neuropathic pain on pain sensitivity in a remote pain-free area was examined, as was the influence of ischemia-induced heterotopic noxious conditioning stimulation (HNCS) on the intensity of ongoing pain and brush-evoked allodynia. In addition, the modulating effect of HNCS on pain sensitivity in a pain-free area was investigated. Pain thresholds to pressure and heat as well as the sensitivity to suprathreshold pressure- and heat pain were assessed in the pain-free area. Dynamic mechanical allodynia was induced by a recently developed semi-quantitative brushing technique and the patients continuously rated the intensity of the allodynia using a computerized visual analogue scale (VAS). The total brush-evoked pain intensity was calculated as the area under the VAS curve. At baseline, no significant difference in pain sensitivity was found between patients and their healthy controls in the pain-free area, indicating a lack of activation of pain modulatory systems from the spontaneous pain. Compared to baseline, the patients rated the ongoing neuropathic pain intensity significantly lower during the HNCS-procedure (p<0.05). In contrast, there was no influence from HNCS on the total brush-evoked pain intensity. In the pain-free area higher pressure pain thresholds were demonstrated during conditioning stimulation in patients and controls alike (p<0.01). In controls only, a significantly higher heat pain threshold was found during the HNCS-procedure (p<0.01). The main finding of the present study was that HNCS altered differentially spontaneous and brush-provoked pain in patients with painful peripheral neuropathy.  相似文献   

9.
We have examined a hemispherectomized patient who complained of touch-evoked pricking and burning pain in her paretic hand, especially when the hand was cold. Psychophysical examination showed that for the paretic side she confused cool and warm temperatures, and confirmed that she had a robust allodynia to brush stroking that was enhanced at a cold ambient temperature. Functional magnetic resonance imaging (fMRI) showed that during brush-evoked allodynia, brain structures implicated in normal pain processing (viz. posterior part of the anterior cingulate cortex, secondary somatosensory cortex, and prefrontal cortices) were activated. The fMRI findings thus indicate that the central pain in this patient was served by brain structures implicated in normal pain processing. Possible pathophysiological mechanisms include plasticity as well as thalamic disinhibition.  相似文献   

10.
Although electrical stimulation of the precentral gyrus (MCS) is emerging as a promising technique for pain control, its mechanisms of action remain obscure, and its application largely empirical. Using positron emission tomography (PET) we studied regional changes in cerebral flood flow (rCBF) in 10 patients undergoing motor cortex stimulation for pain control, seven of whom also underwent somatosensory evoked potentials and nociceptive spinal reflex recordings. The most significant MCS-related increase in rCBF concerned the ventral-lateral thalamus, probably reflecting cortico-thalamic connections from motor areas. CBF increases were also observed in medial thalamus, anterior cingulate/orbitofrontal cortex, anterior insula and upper brainstem; conversely, no significant CBF changes appeared in motor areas beneath the stimulating electrode. Somatosensory evoked potentials from SI remained stable during MCS, and no rCBF changes were observed in somatosensory cortex during the procedure. Our results suggest that descending axons, rather than apical dendrites, are primarily activated by MCS, and highlight the thalamus as the key structure mediating functional MCS effects. A model of MCS action is proposed, whereby activation of thalamic nuclei directly connected with motor and premotor cortices would entail a cascade of synaptic events in pain-related structures receiving afferents from these nuclei, including the medial thalamus, anterior cingulate and upper brainstem. MCS could influence the affective-emotional component of chronic pain by way of cingulate/orbitofrontal activation, and lead to descending inhibition of pain impulses by activation of the brainstem, also suggested by attenuation of spinal flexion reflexes. In contrast, the hypothesis of somatosensory cortex activation by MCS could not be confirmed by our results.  相似文献   

11.
Previous human imaging studies have revealed a network of brain regions involved in the processing of allodynic pain; this includes prefrontal areas, insula, cingulate cortex, primary and secondary somatosensory cortices and parietal association areas. In this study, the neural correlates of the perceived intensity of allodynic pain in neuropathic pain patients were investigated. In eight patients, dynamic mechanical allodynia was provoked and brain responses recorded using functional magnetic resonance imaging (fMRI). Voxels in which the magnitude of fMRI signal correlated linearly with the ratings of allodynic pain across the group were determined in a whole brain analysis using a general linear model. To ensure that activation reflected only allodynic pain ratings, a nuisance variable containing ratings of ongoing pain was included in the analysis. We found that the magnitude of activation in the caudal anterior insula (cAI) correlates with the perceived intensity of allodynic pain across subjects, independent of the level of ongoing pain. However, the peak of activation in the allodynic condition was located in the rostral portion (rAI). This matches the representation of other clinical pain syndromes, confirmed by a literature review. In contrast, experimental pain in healthy volunteers resides predominantly in the cAI, as shown by the same literature review. Taken together, our data and the literature review suggest a functional segregation of anterior insular cortex.  相似文献   

12.
Studies on neuropathic pain with large samples of patients are rare and have to be considered cautiously, comparatively to physiological pain which received over the last 6 years many information and increased knowledge of nociceptive mechanisms. If we consider the main advances and consistent data from functional imaging in neuropathic pain, three findings have to be highlighted: 1) Neuropathic pain is generally associated with thalamic hypoactivity contralateral to pain. Arguments from previous literature indicate that these abnormalities are more likely related to pain processes, rather than loss of thalamic afferences; 2) In dynamic conditions of provoked pain, allodynia is associated with excessive activations in operculo-insular cortices, including on the side ipsilateral to pain; 3) Thalamus contralateral to pain is frequently associated with a low cerebral blood flow at the basal level that can be transformed in overactivity during allodynic stimulation, while medial frontal activity (supposed to be strong for extreme pain) is lowered. It is difficult to conclude formally on these data, even though they are reproducible from one group of investigator to the other. Abnormal electrophysiological activities such as thalamic bursts in neuropathic pain may be viewed as convergent findings linking neuropathic pain and thalamic abnormalities. These data suggest that thalamic abnormalities may have something to do with neuropathic pain. Further studies are needed to disentangle abnormalities related to pain from those related to desafferentation.  相似文献   

13.
Witting N  Svensson P  Jensen TS 《Pain》2003,103(1-2):75-81
Neuronal hyperexcitability is a key finding in patients with neuropathic pain. Contributing to hyperexcitability may be decreased activity in the endogenous pain inhibitory systems. The present study aimed at recruiting descending inhibition, by the use of painful heterotopic stimulation (HTS), in 16 patients with peripheral chronic neuropathic pain and associated brush-evoked allodynia. Two experiments were performed: one examined the effect of HTS on ongoing pain and intensity of brush-evoked allodynia and the other tested the effect of HTS on ongoing pain and area of brush-evoked allodynia. Both experiments consisted of two sessions, one with painful cold HTS (1 degrees C water bath) another with non-painful neutral HTS (32 degrees C water bath). The area of brush-evoked allodynia was significantly reduced (P=0.003) during painful HTS, as compared to non-painful HTS. In contrast, neither the intensity of brush-evoked allodynia nor the ongoing pain was significantly changed. The results indicate that endogenous pain modulating systems can alter some aspects of chronic neuropathic brush-evoked allodynia. The differential effect of painful HTS on ongoing pain and area of brush-evoked allodynia suggest that separate mechanisms are involved.  相似文献   

14.
Allodynia means that innocuous tactile stimulation is felt as pain. Accordingly, cerebral activations during allodynia or touch should markedly differ. The aim of this study was to investigate whether the imagination of allodynia affects brain processing of touch in healthy subjects. Seventeen healthy subjects divided into 2 subgroups were investigated: The first group (n = 7) was familiar with allodynia, based on previous pain studies, whereas the second group (n = 10) had never knowingly experienced allodynia. Using functional magnetic resonance imaging, 2 experimental conditions were investigated. In one condition the subjects were simply touched at their left hand, whereas during the other condition they were asked to imagine pain (allodynia) during tactile stimulation of the right hand and to estimate the imagined pain on a numeric rating scale. Data processing and analysis were performed with the use of SPM5. The group analysis of all subjects revealed that tactile stimulation activated contralateral somatosensory cortices (S1 [primary] and S2 [secondary]), but the imagination of allodynia led to an additional activation of anterior cingulate cortex and bilateral activation of S2, insular cortex, and prefrontal cortices. Subgroup analysis using rating-weighted predictors revealed activation of the contralateral thalamus, anterior cingulate cortex, and amygdala and a bilateral activation of S1, S2, and insular cortex and prefrontal cortices in allodynia-experienced subjects. In contrast, allodynia-inexperienced subjects only activated contralateral S1 and bilateral S2. Just the imagination that touch is painful is able to partly activate the central pain system, but only when the subject has previous experience of this. According to our results, the medial pain system is involved in the encoding of imagined allodynia. PERSPECTIVE: This article reports that pain experience is able to alter central processing of sensory stimuli. Pain knowledge appears to be able to shift "normal" tactile processing to a different quality, resulting in modified brain activity. Therefore, our study may contribute to the current understanding of human pain and will promote future research on this field.  相似文献   

15.
Injury to the insular cortex in humans produces a lack of appropriate response to pain. Also, there is controversial evidence on the lateralization of pain modulation. The aim of this study was to test the effect of insular cortex lesions in three models of pain in the rat. An ipsilateral, contralateral or bilateral radiofrequency lesion of the rostral agranular insular cortex (RAIC) was performed 48 h prior to acute, inflammatory or neuropathic pain models in all the experimental groups. Acute pain was tested with paw withdrawal latency (PWL) after thermal stimulation. Inflammation was induced with carrageenan injected in the paw and PWL was tested 1 h and 24 h afterwards. Neuropathic pain was tested after ligature of the sciatic nerve by measuring mechanical nociceptive response after stimulation with the von Frey filaments. Another model of neuropathy consisted of thermo stimulation followed by right sciatic neurectomy prior to the recording of autotomy behaviour. Acute pain was not modified by the RAIC lesion. All the RAIC lesion groups showed diminished pain‐related behaviours in inflammatory (increased PWL) and neuropathic models (diminished mechanical nociceptive response and autotomy score). The lesion of the RAIC produces a significant decrease in pain‐related behaviours, regardless of the side of the lesion. This is a clear evidence that the RAIC plays an important role in the modulation of both inflammatory and neuropathic—but not acute—pain.  相似文献   

16.
Using a semi-quantitative method the repeatability of brush-evoked allodynia was examined within and between days in nine patients with spontaneous ongoing pain and dynamic mechanical allodynia due to peripheral neuropathy. In addition, the relationship between the intensity of spontaneous ongoing pain and the total brush-evoked pain intensity was addressed. The brush stimulus was applied in the innervation territory of the lesioned nervous structure by lightly stroking 60 mm of the skin four times with an 8 mm wide brush. Using a computerized visual analogue scale the patients continuously rated the intensity and duration of brush-evoked allodynia and the total brush-evoked pain intensity was calculated as the area under the curve. The patients were examined 4 days during one month, i.e. at day 1, 3, 28 and 30 and each study day the stimulus was repeated four times with an inter-stimulus interval of 10 min. The variation between repeated assessments was analyzed using the intraclass correlation coefficient and the total brush-evoked pain intensity within days ranged from 0.89 to 0.95 ("very good repeatability") and between days from 0.77 to 0.97 ("very good repeatability"). A significant positive correlation was demonstrated between the mean intensity of spontaneous ongoing pain and the mean total brush-evoked pain intensity (r(s)=0.68, P<0.042, "a moderate to good correlation").  相似文献   

17.
Ikeda R  Takahashi Y  Inoue K  Kato F 《Pain》2007,127(1-2):161-172
Neurons in the latero-capsular part of the central nucleus of the amygdala (CeA), a region now called the "nociceptive amygdala", receive predominantly nociceptive information from the dorsal horn through afferent pathways relayed at the nucleus parabrachialis (PB). Excitatory synaptic transmission between the PB afferents and these neurons is reported to become potentiated within a few hours of the establishment of arthritic or visceral pain, making it a possible mechanism linking chronic pain and unpleasant negative emotional experiences. However, it remains unknown whether such synaptic potentiation is consolidated or becomes adaptively extinct in the longer-lasting form of chronic pain, such as neuropathic pain, an as yet serious and frequent type of pain of important clinical concern. To address this issue, we recorded postsynaptic currents in CeA neurons evoked by PB tract stimulation in acute brain slices from young rats with neuropathic pain, as evaluated by tactile allodynic responses, following unilateral spinal nerve ligature made 1 week earlier. CeA neurons contralateral to the nerve ligation showed significantly larger-amplitude postsynaptic currents than those in the ipsilateral CeA and sham- and non-operated groups. The degree of synaptic potentiation, as compared between two sides, was positively correlated to that of tactile allodynia responses. In addition, blockade of NMDA receptors did not affect this potentiation. We conclude that potentiation of the PB-CeA synapse is consolidated in long-lasting neuropathic pain but that this potentiation results from a molecular mechanism distinct from that in arthritic and visceral pain.  相似文献   

18.
Functional magnetic resonance imaging (fMRI) has been used to map cerebral activations related to nociceptive stimuli in rodents. Here, we used fMRI to investigate abnormally increased responses to noxious or innocuous stimuli, in a well-established rat model of chronic neuropathic pain induced by photochemical lumbar spinal cord injury. In this model, a subpopulation of rats exhibits allodynia-like hypersensitivity to mechanical and cold stimulation of the trunk area. In those rats that do not develop overt hypersensitivity after identical spinal cord injury (i.e. non-hypersensitive rats), touch evoked pain can be triggered by the opioid receptor antagonist, naloxone. We show that cerebral activations in contralateral primary somatosensory cortex (SI) are markedly correlated with different behavioural characteristics of these animals. Identical electrical stimulation, applied on trunks of spinally injured hypersensitive and non-hypersensitive rats, evoked significantly higher responses in SI of the former than the latter. Although levels of fMRI signals in SI of the trunk territory were not significantly different between normal and spinally injured non-hypersensitive rats, the administration of naloxone significantly increased fMRI signals in the non-hypersensitive rats, but not in the normal rats. We conclude that increased activation of contralateral SI is a key feature of behavioural neuropathic pain in spinally injured rats and that fMRI is an effective method to monitor experimental neuropathic pain in small animals.  相似文献   

19.
Previous studies with normal volunteers have demonstrated distributed cortical responses to experimental heat pain within a network of structures. The network includes the insula, anterior cingulate, prefrontal, inferior parietal and somatosensory cortices. Patients suffering from chronic nociceptive pain following rheumatoid arthritis (RA) have shown damped central responses to experimental heat pain applied to the back of the right hand. In this study of patients with acute, left-sided, post-molar-extraction (surgical) pain, we assessed the cortical responses to experimental heat pain, applied to the back of the right hand, using positron emission tomography (PET), and compared the responses with a previously reported control group and the RA group. In response to the experimental heat pain, the surgical group indicated significantly increased regional cerebral blood flow in the prefrontal cortex [Brodman's area (BA) 44] ipsilateral to the heat stimulus. Contralateral increases were detected in the putamen and transverse temporal gyrus (BA 40/41/42) with bilateral increases in the insular cortex. Compared to the control and RA group, there were significantly reduced responses in the anterior cingulate (BA 24), pre-frontal medial, and orbito-frontal (BA 9/10/32/47) cortices. These results suggest that relatively discrete regions of the cerebral cortex are responsible for acute nociceptive processing during an acute inflammatory episode. The reduced frontal and anterior cingulate responses to the experimental heat pain (applied to the right hand) during acute inflammatory pain (left jaw) illustrates cortical modulation of nociceptive processing that may be related to non-somatotopic, bilateral, nociceptive inputs to these areas.  相似文献   

20.
Ciumas C  Lindström P  Aoun B  Savic I 《NeuroImage》2008,39(2):578-592
Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号