首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Background and the purpose of the study

Amphotericin B (AmB) which is an appropriate antibiotic for the treatment of mycosis has many toxic effects including nephrotoxicity. Recently preparation of a new drug loaded nanoparticles for the reduction of toxicity and increase in the effectiveness of AmB has been reported. The objective of this study was to prepare and evaluate in vitro and in vivo efficacy of the spray-dried AmB-loaded nanospheres.

Methods

AmB-loaded nanospheres was prepared by means of nanoprecipitation method. The spray-dried nanospheres was prepared by using aerosil and AmB entrapment efficacy was measured by HPLC method. Minimum inhibitory concentration (MIC) of AmB-loaded nanospheres against Candida albicans (ATCC 90028) was determined by using microdilution method and its in vitro haemolytic effect and antifungal efficacy on infected rabbits was also analyzed.

Results

The entrapment efficacy for AmB loaded nanospheres was 65.2%±3. The MIC of AmB-loaded nanospheres against C. albicans compared to the free antibiotic was lower significantly. Also, the AmB-loaded nanospheres found to be 9.5 times less toxic than free AmB on human red blood cells. In vivo testing indicated that AmB-loaded nanospheres have a stronger protective effect against candidiasis compared to the free AmB.

Conclusion

Results of this study suggest that prepared spray-dried AmB-loaded nanospheres would be a good choice for the treatment of mycosis because of low toxicity and high stability and effectiveness.  相似文献   

2.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

3.
Amphotericin B (AmB) is used in the treatment of fungal infections; however, its clinical use is limited by its toxic side effects. In this study, AmB-loaded cationic liposome gels were formulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and cholesterol (CH) at a molar ratio of DOPE:DOTAP:CH?=?4:5:1 in thermosensitive gel composed of poloxamer 407 (P407) and poloxamer 188 (P188). To enhance the solubility of AmB, 6 mol% of distearoyl phosphatidyl ethanolamine–polyethylene glycol was added prior to encapsulation of the drug into liposomes. Scanning electron microscopy was used to observe the AmB encapsulated cationic liposome gels. In vitro release, stability and cytotoxicity of AmB in cationic liposome gels were evaluated. The particle size and zeta potential of AmB-loaded liposomes were in the range of 400–500?nm and 40–60 mV, respectively. The thermosensitive gel at the ratio of P407:P188?=?15:15 (w/w) gelled at 37°C, approximating body temperature. Encapsulation efficiency of AmB was ~50–60%, which was influenced by the ratio of AmB to lipid. Moreover, AmB-loaded cationic liposome gels were more stable and less toxic than free AmB. From these results, cationic liposome gel formulations may be useful for vaginal delivery of AmB.  相似文献   

4.

Background and Purpose

The aim of this study was to devise a nanoemulsified carrier system (CopNEC) to improve the oral delivery of amphotericin B (AmB) by increasing its oral bioavailability and synergistically enhance its antileishmanial activity with copaiba oil (Cop).

Experimental Approach

The AmB encapsulated NEC (CopNEC-AmB) comprised of Cop, d-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine was prepared by high-pressure homogenization method. Stability study of CopNEC-AmB was carried out in simulated gastric fluid and simulated intestinal fluid. The CopNEC-AmB and plain AmB were compared as regards their in vitro antileishmanial activity, pharmacokinetics, organ distribution and toxicity.

Key Results

The optimal CopNEC-AmB had a small globule size, low polydispersity index, high ζ potential and encapsulation efficiency. The high resolution transmission electron microscopy illustrated spherical particle geometry with homogeny in their sizes. The optimal CopNEC-AmB was found to be stable in gastrointestinal fluids showing insignificant changes in globule size and encapsulation efficiency. The AUC0–48 value of CopNEC-AmB in rats was significantly improved showing 7.2-fold higher oral bioavailability than free drug. The in vitro antileishmanial activity of CopNEC-AmB was significantly higher than that of the free drug as Cop synergistically enhanced the antileishmanial effect of AmB by causing drastic changes in the morphology of Leishmania parasite and rupturing its plasma membrane. The CopNEC-AmB showed significantly less haemolytic toxicity and cytotoxicity and did not change the histopathology of kidney tissues as compared with AmB alone.

Conclusions and Implications

This prototype CopNEC formulation showed improved bioavailability and had a non-toxic synergistic effect on the antileishmanial activity of AmB.  相似文献   

5.
Abstract

Objective: In this study, attempt has been focused to prepare a nanoemulsion (NE) gel for topical delivery of amphotericin B (AmB) for enhanced as well as sustained skin permeation, in vitro antifungal activity and in vivo toxicity assessment.

Materials and methods: A series of NE were prepared using sefsol-218 oil, Tween 80 and Transcutol-P by slow spontaneous titration method. Carbopol gel (0.5%?w/w) was prepared containing 0.1%?w/w AmB. Furthermore, NE gel (AmB-NE gel) was characterized for size, charge, pH, rheological behavior, drug release profile, skin permeability, hemolytic studies and ex vivo rat skin interaction with rat skin using differential scanning calorimeter. The drug permeability and skin irritation ability were examined with confocal laser scanning microscopy and Draize test, respectively. The in vitro antifungal activity was investigated against three fungal strains using the well agar diffusion method. Histopathological assessment was performed in rats to investigate their toxicological potential.

Results and discussion: The AmB-NE gel (18.09?±?0.6?µg/cm2/h) and NE (15.74?±?0.4?µg/cm2/h) demonstrated the highest skin percutaneous permeation flux rate as compared to drug solution (4.59?±?0.01?µg/cm2/h) suggesting better alternative to painful and nephrotoxic intravenous administration. Hemolytic and histopathological results revealed safe delivery of the drug. Based on combined results, NE and AmB-NE gel could be considered as an efficient, stable and safe carrier for enhanced and sustained topical delivery for AmB in local skin fungal infection.

Conclusion: Topical delivery of AmB is suitable delivery system in NE gel carrier for skin fungal infection.  相似文献   

6.
Amphotericin B (AmB) was formulated in trilaurin-based emulsomes (nanosize lipid particles) stabilized by soya phosphatidylcholine (PC), as a new delivery system for macrophage targeting for the treatment of visceral leishmaniasis (VL). Emulsomes were modified by coating them with macrophage-specific ligand (O-palmitoyl mannan, OPM). The antileishmanial activity of AmB-deoxycholate (AmB-Doc) and emulsome entrapped AmB was tested in vitro in Leishmania donovani infected macrophage-amastigote system (J774A.1 cells), which showed higher efficacy of OPM grafted AmB emulsomes (TLEs-OPM) over plain AmB emulsomes (TLEs) and AmB-Doc. The in vivo antileishmanial activity of the AmB (0.5 mg/kg) was tested in AmB-Doc, TLEs and TLEs-OPM forms against VL in L. donovani infected hamsters. Formulation TLEs-OPM eliminated intracellular amastigotes of L. donovani within splenic macrophages more efficiently (73.7 +/- 6.7% parasite inhibition) than the formulation TLEs (51.7 +/- 5.4% parasite inhibition) (P < 0.01) or AmB-Doc (30.4 +/- 4.8% parasite inhibition) (P < 0.001). Our results suggest that these newer formulations (plain and ligand appended emulsomes) are a promising alternative to the conventional AmB-Doc formulation for the treatment of VL.  相似文献   

7.
Abstract

Context: Nanoemulsions (NE) are one of the robust delivery tools for drugs due to their higher stability and efficacy.

Objectives: The purpose of present investigation is to develop stable, effective and safe NE of docetaxel (DTX).

Methods: Soybean oil, lecithin, Pluronic F68, PEG 4000 and ethanol were employed as excipients and NEs were prepared by hot homogenization followed by ultra-sonication. NEs were optimized and investigated for different in vitro and in vivo parameters viz. droplet size, poly dispersity index, charge; zeta potential, drug content and in vitro drug release, in vitro cytotoxicity, in vitro cell uptake and acute toxicity. Transmission electron microscopy was performed to study morphology and structure of NEs. Stability studies of the optimized formulation were performed.

Results: Droplet size, poly dispersity index, zeta potential, drug content and in vitro drug release were found to be 233.23?±?4.3?nm, 0.24?±?0.010, ?43.66?±?1.9?mV, 96.76?±?1.5%, 96.25?±?2.1%, respectively. NE F11 exhibited higher cell uptake (2.83 times than control) and strong cytotoxic activity against MCF-7 cancer cells (IC50; 13.55?±?0.21?µg/mL at 72?h) whereas no toxicity or necrosis was observed with liver and kidney tissues of mice at a dose of 20?mg/kg. Transmission electron microscopy ensured formation of poly-dispersed and spherical droplets in nanometer range. NE F11 (values indicated above) was selected as the optimized formulation based on the aforesaid parameters.

Conclusion: Conclusively, stable, effective and safe NE was developed which might be used as an alternative DTX therapy.  相似文献   

8.
The antifungal and antileishmanial agent amphotericin B (AmB) has been complexed with lipids to develop a less toxic formulation of AmB. Because lipid particles are phagocytized by the reticuloendothelial system, lipid associated AmB should be concentrated in infected macrophages of liver and spleen and be very effective against visceral leishmaniasis (VL) and systemic fungal infections. Therefore, AmB was formulated in trilaurin based nanosize lipid particles (emulsomes) stabilized by soya phosphatidylcholine (PC) as a new intravenous drug delivery system for macrophage targeting. Emulsomes were prepared by cast film technique followed by sonication to obtain particles of nanometric size range. Formulations were optimized for AmB to lipid ratio, sonication time and PC to trilaurin ratio. Emulsomes were modified by coating them with macrophage-specific ligand (O-palmitoyl mannan, OPM). The surface modified emulsomes and their plain counterparts were characterised for size, shape, lamellarity and entrapment efficiency. Fluorescence microscopy study showed significant localization of plain and coated emulsomes inside the liver and spleen cells of golden hamsters. In vivo organ distribution studies in albino rats demonstrated that extent of accumulation of emulsome entrapped AmB in macrophage rich organs, particularly liver, spleen and lungs was significantly high when compared against the free drug (AmB-deoxycholate or AmB-Doc). The rate and extent of accumulation were found to increase further on ligand anchoring. Further, a significantly higher (P < 0.05) drug concentration in the liver was estimated over a period of 24 h for OPM coated emulsomes than for plain emulsomes. We concluded that OPM coated emulsomes could fuse with the macrophages of liver and spleen due to ligand–receptor interaction and could target the bioactives inside them. The proposed plain and OPM coated emulsome based systems showed excellent potential for passive and active intramacrophage targeting, respectively and the approach could be a successful alternative to the currently available drug regimens of VL and systemic fungal infections.  相似文献   

9.

Purpose

To develop a biocompatible and bioresorbable calcium phosphate (CaP) nanoparticles (NPs) bearing Amphotericin B (AmB) with an aim to provide macrophage specific targeting in visceral leishmaniasis (VL).

Materials & Methods

CaP-AmB-NPs were architectured through emulsion precipitation method. The developed formulation was extensively characterized for various parameters including in-vitro and in-vivo antileishmanial activity. Moreover, plasma pharmacokinetics, tissue biodistribution and toxicity profile were also assessed.

Results

Optimized CaP-AmB-NPs exhibited higher entrapment (71.1?±?6.68%) of AmB. No trend related to higher hemolysis was apparent in the developed formulation as evidenced in commercially available colloidal and liposomal formulations. Cellular uptake of the developed CaP-AmB-NPs was quantified through flow cytometry in J774A.1 cell line, and a 23.90 fold rise in uptake was observed. Fluorescent microscopy also confirmed the time dependent rise in uptake. In-vivo multiple dose toxicity study demonstrated no toxicity upto 5 mg/kg dose of AmB. Plasma kinetics and tissue distribution studies established significantly higher concentration of AmB in group treated with CaP-AmB-NPs in liver and spleen as compared to CAmB, LAmB and AmB suspension group. In-vivo animal experimental results revealed that the CaP-AmB-NPs showed higher splenic parasite inhibition compared to CAmB and LAmB in leishmania parasite infected hamsters.

Conclusions

The investigated CaP-AmB-NPs are effective in provoking macrophage mediated uptake and collectively features lower toxicity and offers a suitable replacement for available AmB-formulations for the obliteration of intra-macrophage VL parasite.
  相似文献   

10.
Amphotericin B (AmB) is a very efficient drug against serious diseases such as leishmaniasis and systemic fungal infections. However, its oral bioavailability is limited due to its poor solubility in water. Nevertheless, it is marketed as high-cost lipid parenteral formulations that may induce serious infusion-related side effects. In this study, oil-in-water (O/W) microemulsions (MEs) were developed and characterized with a view to their use as solubility enhancers and oral delivery systems for AmB. Therefore, different nonionic surfactants from the Tween® and Span® series were tested for their solubilization capacity in combination with several oils. Based on pseudoternary phase diagrams, AmB-loaded MEs with mean droplet sizes about 120 nm were successfully produced. They were able to improve the drug solubility up to 1000-fold. Rheological studies showed the MEs to be low-viscosity formulations with Newtonian behavior. Circular dichroism and absorption spectra revealed that part of the AmB in the MEs was aggregated as an AmB reservoir carrier. Cytotoxicity studies revealed limited toxicity to macrophage-like cells that may allow the formulations to be considered as suitable carriers for AmB.  相似文献   

11.
This work aims to develop poly(d,l-lactide-co-glycolide) (PLGA)-nanospheres containing amphotericin B (AmB) with suitable physicochemical properties and anti-parasitic activity for visceral leishmaniasis (VL) therapy. When compared with unloaded-PLGA-nanospheres, the AmB-loaded PLGA-nanospheres displayed an increased particle size without affecting the polydispersity and its negative surface charge. AmB stability in the PLGA-nanospheres was > 90% over 60-days at 30 °C. The AmB-PLGA-nanospheres demonstrated significant in vitro and in vivo efficacy and preferential accumulation in the visceral organs. In addition, an immune-modulatory effect was observed in mice treated with AmB-PLGA-nanospheres, correlating with improved treatment efficacy. The in vitro cytotoxic response of the T-lymphocytes revealed that AmB-PLGA-nanospheres efficacy against VL infection was strictly due to the action of CD8+- but not CD4+-T lymphocytes. Overall, we demonstrate a crucial role for CD8+ cytotoxic T lymphocytes in the efficacy of AmB-PLGA nanospheres, which could represent a potent and affordable alternative for VL therapy.From the Clinical EditorThis study demonstrates a crucial role for CD8+ T lymphocytes in eliminating visceral leishmaniasis in a murine model by enhancing the cytotoxic efficacy of CD8+ T-cells via amphotericin-B-PLGA nanospheres, paving a way to a unique, potentially more potent and cost-effective therapeutic strategy.  相似文献   

12.
Teicoplanin (Teico) is an antimicrobial agent that spontaneously forms micelles in aqueous media. In this work, we characterized the physicochemical properties of nanoparticles formed by the interaction of Teico with Amphotericin B (AmB). Teico-AmB micelles structure spontaneously in aqueous media, with a particle size of 70–100 nm and a zeta potential of -28 mV. Although the characterization of these nanostructures yielded satisfactory results, in vitro cytotoxicity tests showed high toxicity. Based on this, adding cholesterol to the formulation was evaluated to try to reduce the toxicity of the drug. These Teico-AmB-Chol nanostructures have a larger size, close to 160 nm, but a lower polydispersity index. They also showed strongly negative surface charge and were more stable than Teico-AmB, remaining stable for at least 20 days at 4 °C and 25 °C and against centrifugation, dilution, freezing, lyophilization and re-suspension processes with a recovery percentage of AmB greater than 95%, maintaining their initial size and zeta potential. These Teico-AmB-Chol micelles show lower cytotoxic effect and higher biological activity than Teico-AmB, even than Amfostat® and Ambisome® formulations. These two new nanoparticles, with and without Chol, are discussed as potential formulations able to improve the antifungal therapeutic efficiency of AmB.  相似文献   

13.
The antifungal and antileishmanial agent amphotericin B (AmB) has been complexed with lipids to develop a less toxic formulation of AmB. Because lipid particles are phagocytized by the reticuloendothelial system, lipid associated AmB should be concentrated in infected macrophages of liver and spleen and be very effective against visceral leishmaniasis (VL) and systemic fungal infections. Therefore, AmB was formulated in trilaurin based nanosize lipid particles (emulsomes) stabilized by soya phosphatidylcholine (PC) as a new intravenous drug delivery system for macrophage targeting. Emulsomes were prepared by cast film technique followed by sonication to obtain particles of nanometric size range. Formulations were optimized for AmB to lipid ratio, sonication time and PC to trilaurin ratio. Emulsomes were modified by coating them with macrophage-specific ligand (O-palmitoyl mannan, OPM). The surface modified emulsomes and their plain counterparts were characterised for size, shape, lamellarity and entrapment efficiency. Fluorescence microscopy study showed significant localization of plain and coated emulsomes inside the liver and spleen cells of golden hamsters. In vivo organ distribution studies in albino rats demonstrated that extent of accumulation of emulsome entrapped AmB in macrophage rich organs, particularly liver, spleen and lungs was significantly high when compared against the free drug (AmB-deoxycholate or AmB-Doc). The rate and extent of accumulation were found to increase further on ligand anchoring. Further, a significantly higher (P < 0.05) drug concentration in the liver was estimated over a period of 24 h for OPM coated emulsomes than for plain emulsomes. We concluded that OPM coated emulsomes could fuse with the macrophages of liver and spleen due to ligand-receptor interaction and could target the bioactives inside them. The proposed plain and OPM coated emulsome based systems showed excellent potential for passive and active intramacrophage targeting, respectively and the approach could be a successful alternative to the currently available drug regimens of VL and systemic fungal infections.  相似文献   

14.
Our aim in the present investigation was to develop a nanoparticulate carrier of amphotericin B (AmB) for controlled delivery as well as reduced toxicity. Nanoparticles of different gelatins (GNPs) (type A or B) were prepared by two-step desolvation method and optimized for temperature, pH, amount of cross-linker, and theoretical drug loading. AmB-loaded GNPs were characterized for size, polydispersity index (PI), shape, morphology, surface charge, drug release, and hemolysis. The developed GNPs (GNP(A300)) were found to be of nanometric size (213 +/- 10 nm), having low PI (0.092 +/- 0.015) and good entrapment efficiency (49.0 +/- 2.9%). All GNPs showed biphasic release characterized by an initial burst followed by controlled release. The in vivo hematological toxicity results suggest nonsignificant reduction (P > .05) in hemoglobin concentration and hematocrit. Nephrotoxicity results showed that there was a nonsignificant (P > .05) increase in blood urea nitrogen and serum creatinine levels. The results confirm that developed GNPs could optimize AmB delivery in terms of cost and safety, and type A gelatin with bloom number 300 was found suitable for such preparation.  相似文献   

15.
Mesquite gum (MG) and nopal mucilage (NM) mixtures were used for microencapsulation of lemon essential oil (LEO) by spray drying. Emulsions of MG, NM and MG–NM mixtures (25–75, 50–50, 75–25) were evaluated according to the droplet size (1.49–9.16?μm), viscosity and zeta potential (?16.07 to ?20.13?mV), and microcapsules were characterised in particle size (11.9–44.4?μm), morphology, volatile oil retention (VOR) (45.9–74.4%), encapsulation efficiency (EE) (70.9–90.6%), oxidative stability and thermal analysis. The higher concentration of MG led to smaller droplet sizes and lower viscosity in the emulsions, and smaller particle sizes with the highest VOR in microcapsules. The higher concentration of NM induced to higher viscosity in the emulsions, and larger particle sizes with the highest values of EE and oxidative stability in microcapsules. This work shows evidence that MG–NM mixtures can have synergic effect in desirable characteristics such as retention and shelf life extension of LEO in microcapsules.  相似文献   

16.
The objective of the present investigation was to assess the potential of polysaccharide (mannose) conjugated engineered multiwalled carbon nanotubes (MWCNTs) bearing Amphotericin B (AmB) formulation for site-specific delivery to macrophages. The mannosylated carbon nanotubes (CNTs) were synthesized and AmB was efficiently loaded using dialysis diffusion method. The synthesized mannosylated MWCNTs were characterized by various physicochemical and physiological parameters such as fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM & TEM), drug loading and entrapment efficiency, in-vitro release kinetics, in-vivo study and toxicological investigation. AmB loaded mannosylated MWCNTs (AmBitubes) was found to be nanometric in size (500?nm) with tubular structure and good entrapment efficiency (75.46?±?1.40%). In-vitro AmB from AmBitubes was found to be released in a controlled manner at pH 4, 7.4 and 10, with enhanced cell uptake and higher disposition in macrophage-rich organs, thereby indicating the site-specific drug delivery. The results suggest that AmBitubes could be employed as efficient nano-carrier for antileishmanial therapy.  相似文献   

17.
The aim of this study was to develop a potential novel formulation of carbopol-based nanoemulsion gel containing apigenin using tamarind gum emulsifier which was having the smallest droplet size, the highest drug content, and a good physical stability for Skin delivery. Apigenin loaded nanoemulsion was prepared by high speed homogenization method and they were characterized with respect to morphology, zeta potential, differential scanning calorimeter study, and penetration studies. In-vitro release studies and skin permeation of apigenin loaded nanoemulsion by goat abdominal skin was determined using Franz diffusion cell and confocal laser scanning microscope (CLSM). The cytotoxicity of the reported formulation was evaluated in HaCaT Cells (A) and A431 cells (B) by MTT assay. The nanoemulsion formulation showed droplet size, polydispersity index, and zeta potential of 183.31?nm, 0.532, and 31.9?mV, respectively. The nanoemulsions were characterized by TEM demonstrated spherical droplets and FTIR to ensure the compatibility among its ingredients. CLSM showed uniform fluorescence intensity across the entire depth of skin in nanocarriers treatment, indicating high penetrability of nanoemulsion gel through goatskin. The nanoemulsion gel showed toxicity on melanoma (A341) in a concentration range of 0.4–2.0?mg/ml, but less toxicity toward HaCaT cells. The carbopol-based nanoemulsion gel formulation of apigenin possesses better penetrability across goatskin as compared to marketed formulation. Hence, the study postulates that the novel nanoemulsion gel of apigenin can be proved fruitful for the treatment of skin cancer in near future.  相似文献   

18.
Objective: To improve the therapeutic index of brucine, the novel stealth liposomes (SLS-n), composed of naturally unsaturated and hydrogenated soy phosphatidylcholines, with significant difference of phase transition temperature, were developed to encapsulate brucine.

Methods: Brucine-loaded stealth liposomes with different lipid compositions were prepared and characterized for their entrapment efficiency (EE), particle size, zeta potential and in vitro drug release profile. Tissue distribution after intravenous administration of different brucine formulations was further compared in tumor-bearing mice.

Results: Compared with the conventional stealth liposomes composed of SPC (SLS-s) or HSPC (SLS-h), EE and zeta potential of SLS-n were increased slightly, and the size was decreased slightly. The results of drug release showed that SLS-n were more stable than SLS-s. After intravenous administration, tumor AUC in SLS-s, SLS-n and SLS-h treated animals were 1.33, 1.72 and 2.59-fold higher than in mice treated with the same dose of free brucine, respectively. Compared with brucine solution, administration of SLS-s and SLS-n could significantly decrease brucine concentration in brain, but administration of SLS-h resulting in significantly increased (2.75-fold) concentration in 10?min.

Conclusion: Since brucine has severe central nervous system toxicity, our study indicated that SLS-n could considerably improve the therapeutic index of brucine.  相似文献   

19.
Vulvovaginal candidiasis (VVC) is a typical kind of vaginal mucosal infection. Herein, we developed a novel vaginal delivery system of amphotericin B (AmB) nanosuspension-loaded thermogel (AmB NPs/thermogel) utilising pharmaceutical technique of high-pressure homogenisation and Poloxamer P407/P188 hydrogel. The stabiliser and hydrogel materials of the formulation were tested to maintain proper sol–gel transition as well as the relative stability of the particle size of AmB nanosuspension in the thermogel. The particle size of AmB nanosuspensions in the hydrogel was ~247?nm. Transmission electron microscopy images confirmed the round-shape morphology of AmB nanoparticles in AmB NPs/thermogel, while that of irregular morphology of merely AmB nanosuspensions without stabiliser and hydrogel materials. AmB could be sustained release for ~12?h in vitro. In vivo drug content in the vaginal tissue was also evaluated with 87, 47, 33 and 6.7% drug remaining after 1, 3, 6 and 12?h, respectively. The in vivo anti-Candida test was conducted on candidiasis-infected mice model. In the same drug dose of 2.5?mg/kg, AmB NPs/thermogel showed better anti-Candida efficiency compared with commercial AmB effervescent tablet. This delivery system might show some insights for the vaginal formulation development of other hydrophobic antifungal drugs.  相似文献   

20.
《Journal of drug targeting》2013,21(10):913-926
Abstract

Purpose: Development and evaluation of camptothecin-loaded-microemulsion (ME) and -magnetic microemulsion (MME) for passive/active-targeted delivery to BALB/c mice-bearing breast cancer.

Methods: Based on the pseudo-ternary phase diagrams camptothecin-loaded-MEs and -MMEs were developed using benzyl alcohol:Captex 300 (3:1), TPGS:Tween 80 (2:1) and water. Furthermore, characterized for their droplet size distribution, magnetic susceptibility and effect of droplet size in plasma and evaluated for in vitro and in vivo targeting potential, drug release, haemolytic potential, cytotoxicity, genotoxicity, in vivo biodistribution and lactone ring stability.

Results: Drug-loaded MEs showed uniform droplet distribution, extended drug release (76.07?±?4.30% at 24?h), acceptable level of haemolytic activity (<20%), significant cytotoxicity (129?±?3.9?ng/mL) against MCF-7 cancer cells and low DNA damage in lymphocytes. Targeting potential of MMEs was documented in 4T1 breast cancer-induced BALB/c mice. MMEs were concentrated more at the target tissue on introduction of external magnetic field. In vivo biodistribution study documented the active targeting of 5067.56?±?354.72?ng/gm and passive targeting of 1677.58?±?134.20?ng/gm camptothecin to breast cancer from MME and ME, respectively. Lactone stability study shows around 80% of the lactone stable at 24?h.

Conclusions: Developed ME and MME may act as a promising nanocarrier for efficient targeting of breast cancer tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号