首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations.Peculiar dermatologic manifestations are present in several heritable gastrointestinal disorders. Muir-Torre syndrome (MTS) is a genodermatosis whose peculiar feature is the presence of sebaceous gland tumors associated with visceral malignancies. We describe one patient in whom multiple sebaceous gland tumors were associated with early onset colon and thyroid cancers and attenuated polyposis coli. Her family history was positive for colonic adenomas. She had a daughter presenting with yellow papules in the forehead region developed in the late infancy. Skin and visceral neoplasms were tested for microsatellite instability and immunohistochemical status of mismatch repair (MMR), APC and MYH proteins. The proband colon and skin tumors were microsatellite stable and showed normal expression of MMR proteins. Cytoplasmic expression of MYH protein was revealed in colonic cancer cells. Compound heterozygosity due to biallelic mutations in MYH, R168H and 379delC, was identified in the proband. The 11-year-old daughter was carrier of the monoallelic constitutional mutation 379delC in the MYH gene; in the sister, the R168H MYH gene mutation was detected. This report presents an interesting case of association between MYH-associated polyposis and sebaceous gland tumors. These findings suggest that patients with MTS phenotype that include colonic polyposis should be screened for MYH gene mutations.  相似文献   

2.
Objective: To analyse somatic molecular changes, clinicopathological features, family history, and germline mutations in families with colorectal cancer (CRC). Methods: Molecular changes (K-ras and ß-catenin mutations, chromosome 18q allele loss (LOH), APC LOH, microsatellite instability (MSI), and expression of ß-catenin and p53) were examined in four series of CRC patients with proven or probable hereditary disease: hereditary non-polyposis colon cancer (HNPCC); MYH associated polyposis (MAP); multiple (>5) colorectal adenomas without familial adenomatous polyposis (FAP); and other families/cases referred to family cancer clinics (FCC series). HNPCC was diagnosed using a combination of germline mutation screening and tumour studies. A series of unselected CRC patients was also studied. Results: There was overlap between genetic pathways followed by each type of CRC, but significant differences included: increased frequency of K-ras mutation and reduced frequency of APC LOH in cancers from MAP, but not from multiple adenoma patients; reduced frequency of LOH in HNPCC CRCs; and increased MSI in CRCs from HNPCC, but not from FCC or multiple adenoma patients. HNPCC was apparently detected efficiently by combined germline and somatic analysis. Cancers from the FCC, unselected, and multiple adenoma series shared similar molecular characteristics. In the FCC and multiple adenoma series, hierarchical cluster analysis using the molecular features of the cancers consistently identified two distinct groups, distinguished by presence or absence of K-ras mutation. Conclusions: While K-ras mutation status is known to differentiate hereditary bowel cancer syndromes such as MAP and FAP, it may also distinguish groups of non-HNPCC, FCC patients whose disease has different, as yet unknown, genetic origins.  相似文献   

3.
Nucaro A  Pisano T  Chillotti I  Montaldo C  Pruna D 《Clinical genetics》2011,79(4):394-5; author reply 396
Jasperson KW, Samowitz WS, Burt RW. Constitutional mismatch repair‐deficiency syndrome presenting as colonic adenomatous polyposis: clues from the skin. Constitutional mismatch repair‐deficiency (CMMR‐D) syndrome is an autosomal recessive condition characterized by hematologic malignancies, brain tumors, Lynch syndrome‐associated cancers and skin manifestations reminiscent of neurofibromatosis type 1 (NF1). In contrast to Lynch syndrome, CMMR‐D syndrome is exceptionally rare, onset typically occurs in infancy or early childhood and, as described in this report, may also present with colonic polyposis suggestive of attenuated familial adenomatous polyposis (AFAP) or MUTYH associated polyposis (MAP). Here we describe two sisters with CMMR‐D syndrome due to germline bi‐allelic MSH6 mutations. Both sisters are without cancer, are older than typical for this condition, have NF1 associated features and a colonic phenotype suspicious for an attenuated polyposis syndrome. This report highlights the role of skin examinations in leading to an underlying genetic diagnosis in individuals with colonic adenomatous polyposis, but without mutations associated with AFAP or MAP.  相似文献   

4.
《Genetics in medicine》2021,23(10):1807-1817
Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer and 30% of all cases of CRC are believed to have a familial component and up to one-third of these (10%) are hereditary. Pathogenic germline variants in multiple genes have been associated with predisposition to hereditary CRC or polyposis. Lynch syndrome (LS) is the most common hereditary CRC syndrome, caused by variants in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 and is inherited in a dominant manner. Heritable conditions associated with colonic polyposis include familial adenomatous polyposis (FAP) associated with APC pathogenic variants, MUTYH-associated polyposis (MAP) caused by biallelic MUTYH pathogenic variants, and polymerase proofreading–associated polyposis (PPAP) caused by POLE or POLD1 pathogenic variants. Given the overlapping phenotypes of the cancer syndromes along with the limited sensitivity of using clinical criteria alone, a multigene panel testing approach to diagnose these conditions using next-generation sequencing (NGS) is effective and efficient. This technical standard is not recommended for use in the clinic for patient evaluation. Please refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine an appropriate testing strategy and guide medical screening and management. This 2021 edition of the American College of Medical Genetics and Genomics (ACMG) technical standard supersedes the 2013 edition on this topic.  相似文献   

5.
Simple and complex genetics of colorectal cancer susceptibility   总被引:2,自引:0,他引:2  
There are several hereditary conditions associated with an increased risk of colorectal cancer (CRC). These include well-characterized autosomal dominant syndromes, such as familial adenomatous polyposis (FAP) and hereditary nonpolyposis colorectal cancer (HNPCC). A novel autosomal recessive form of FAP, caused by mutations in the base excision repair gene MYH, has recently been recognized. This discovery has provided further evidence for the importance of DNA repair mechanisms in CRC development, already documented by the involvement of the mismatch repair in HNPCC. Additional CRC-predisposing conditions, such as hyperplastic polyposis and hereditary mixed polyposis syndrome, are being outlined. Heterogeneity of genetic mechanisms has important consequences for counseling and surveillance in hereditary CRC. Nevertheless, classical mendelian conditions represent only a minor share of the total CRC population burden. Alleles of the same genes that are involved in hereditary syndromes might also act as low penetrance variants, as shown for APC 1307K in the Ashkenazi. However, the level of complexity of multifactorial CRC is such that current tools appear inadequate to pinpoint all the involved components. A combination of different strategies, including careful clinical observation, analysis of homogeneous patient populations, and critical evaluation of data derived from experimental models, along with methodological improvements in nucleic acid analysis, will probably be necessary to unravel the basis of nonmendelian CRC. Once this is achieved, it will be possible to realize the ultimate goal of targeted CRC prevention, with the adoption of measures tailored according to individual risk levels. .  相似文献   

6.
Heritable genetic variants can significantly affect the lifetime risk of developing cancer, including polyposis and colorectal cancer (CRC). Variants in genes currently known to be associated with a high risk for polyposis or CRC, however, explain only a limited number of hereditary cases. The identification of additional genetic causes is, therefore, crucial to improve CRC prevention, detection and treatment. We have performed genome‐wide and targeted DNA copy number profiling and resequencing in early‐onset and familial polyposis/CRC patients, and show that deletions affecting the open reading frame of the tumour suppressor gene FOCAD are recurrent and significantly enriched in CRC patients compared with unaffected controls. All patients carrying FOCAD deletions exhibited a personal or family history of polyposis. RNA in situ hybridization revealed FOCAD expression in epithelial cells in the colonic crypt, the site of tumour initiation, as well as in colonic tumours and organoids. Our data suggest that monoallelic germline deletions in the tumour suppressor gene FOCAD underlie moderate genetic predisposition to the development of polyposis and CRC. © 2015 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.  相似文献   

7.
One third of colorectal carcinomas (CRC) show familial clustering of which about 5% have a monogenetic trait. Distinction between disease with and without polyposis, tumor histology and tumor spectrum in a given patient are all of diagnostic relevance. Familial adenomatous polyposis (FAP) underlies approximately 1% of CRC characterized by rapidly forming (>100) adenomas. In contrast to these about 2%-3% of CRC have a hereditary background without polyposis (HNPCC). This is the only hereditary tumour syndrome to date for which a tissue-based molecular screening test is available. Accordingly, expression analysis of mismatch repair genes (MSH2, MSH6 and MLH1, PMS2) is performed first. In the case of an equivocal result with no complete loss of expression testing of microsatellite instability (MSI) is added. In contrast to the other diseases MYH-associated polyposis (MAP) follows a recessive trait with polyp numbers usually between 15-30 adenomas and should be distinguished from attenuated forms of FAP with <100 polyps in the differential diagnosis. In the case of suspected familial cancer syndrome genetic counseling is warranted in order to decide ultimately whether there is an indication for genetic testing (evidence of a germ-line mutation).  相似文献   

8.
Objective: To investigate the contribution of MYH associated polyposis coli (MAP) among polyposis families in the Netherlands, and the prevalence of colonic and extracolonic manifestations in MAP patients. Methods: 170 patients with polyposis coli, who previously tested negative for APC mutations, were screened by denaturing gradient gel electrophoresis and direct sequencing to identify MYH germline mutations. Results: Homozygous and compound heterozygous MYH mutations were identified in 40 patients (24%). No difference was found in the percentage of biallelic mutation carriers between patients with 10–99 polyps or 100–1000 polyps (29% in both groups). Colorectal cancer was found in 26 of the 40 patients with MAP (65%) within the age range 21 to 67 years (median 45). Complete endoscopic reports were available for 16 MAP patients and revealed five cases with gastro-duodenal polyps (31%), one of whom also presented with a duodenal carcinoma. Breast cancer occurred in 18% of female MAP patients, significantly more than expected from national statistics (standardised morbidity ratio = 3.75). Conclusions: Polyp numbers in MAP patients were equally associated with the attenuated and classical polyposis coli phenotypes. Two thirds of the MAP patients had colorectal cancer, 95% of whom were older than 35 years, and one third of a subset of patients had upper gastrointestinal lesions. Endoscopic screening of the whole intestine should be carried out every two years for all MAP patients, starting from age 25–30 years. The frequent occurrence of additional extraintestinal manifestations, such as breast cancer among female MAP patients, should be thoroughly investigated.  相似文献   

9.
The presence of multiple (5–100) colorectal adenomas suggests an inherited predisposition, but the genetic aetiology of this phenotype is undetermined if patients test negative for Mendelian polyposis syndromes such as familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP). We investigated whether 18 common colorectal cancer (CRC) predisposition single-nucleotide polymorphisms (SNPs) could help to explain some cases with multiple adenomas who phenocopied FAP or MAP, but had no pathogenic APC or MUTYH variant. No multiple adenoma case had an outlying number of CRC SNP risk alleles, but multiple adenoma patients did have a significantly higher number of risk alleles than population controls (P=5.7 × 10−7). The association was stronger in those with ≥10 adenomas. The CRC SNPs accounted for 4.3% of the variation in multiple adenoma risk, with three SNPs (rs6983267, rs10795668, rs3802842) explaining 3.0% of the variation. In FAP patients, the CRC risk score did not differ significantly from the controls, as we expected given the overwhelming effect of pathogenic germline APC variants on the phenotype of these cases. More unexpectedly, we found no evidence that the CRC SNPs act as modifier genes for the number of colorectal adenomas in FAP patients. In conclusion, common colorectal tumour risk alleles contribute to the development of multiple adenomas in patients without pathogenic germline APC or MUTYH variants. This phenotype may have ‘polygenic'' or monogenic origins. The risk of CRC in relatives of multiple adenoma cases is probably much lower for cases with polygenic disease, and this should be taken into account when counselling such patients.  相似文献   

10.

Background  

MUTYH associated polyposis (MAP) is an autosomal recessive inherited disorder. Carriers of bi-allelic MUTYH germline mutations have a risk of approximately 60% to develop colorectal carcinoma (CRC). In the general population about 1.5% is a heterozygous MUTYH mutation carrier. Children of MAP patients have an increased risk of inheriting two MUTYH mutations compared to the general population, implicating an increased risk for developing CRC.  相似文献   

11.
We present a patient with a history of colonic polyposis and family history significant for colon polyps and colorectal cancer (CRC). The patient and the family also had a history of bone loss of the jaw and early tooth loss, consistent with oligodontia. Genetic testing revealed the patient to have a previously unpublished variant of unknown significance (VUS) in the AXIN2 gene. These clinical findings have been demonstrated previously in only two other families, both of which exhibited oligodontia, colorectal neoplasia (polyps and cancer) and a heterozygous mutation in AXIN2. The AXIN2 protein is component of the Wnt pathway, which is known to be vital for organism development and cellular homeostasis. Alterations of the Wnt pathway lead to cell proliferation and neoplasm, in addition to agenesis of physical structures (such as teeth). The analysis of our pedigree further supports an association between colonic neoplasm (polyposis and CRC), the AXIN2 gene in general, and this particular VUS. It also highlights the importance of analyzing and disseminating information on pedigrees with less commonly encountered genomic abnormalities so that genotypic-phenotypic correlations can be solidified.  相似文献   

12.
We describe a family in which four siblings exhibited multiple or classic colonic polyposis with or without colorectal carcinoma (CRC). One female developed three primary tumors, including CRC and carcinomas of the ovary and breast. Whole‐exome sequencing of germline DNA from affected and unaffected individuals revealed a novel missense mutation in the exonuclease domain of POLE (c.833C>A; p.Thr278Lys) associated with a highly penetrant, autosomal‐dominant inheritance pattern. Functional studies in yeast and demonstration of a high mutational burden in the available tumors confirmed the pathogenicity of the novel variant. Prominent POLE‐deficient somatic mutational signatures were seen in the CRCs, but in contrast, a mutational signature typical of concomitant tumoral loss of POLE and mismatch‐repair function (POLE‐exo*/MSI) was noted in the breast cancer. The breast cancer also showed distinctive pathological characteristics that reflect the presence of both the germline POLE variant and the secondary somatic MMR alterations.  相似文献   

13.
Morak M, Laner A, Bacher U, Keiling C, Holinski‐Feder E. MUTYH‐associated polyposis – variability of the clinical phenotype in patients with biallelic and monoallelic MUTYH mutations and report on novel mutations. To further characterize 215 APC mutation‐negative patients with colorectal neoplasias classified in classical, attenuated, or atypical familial adenomatous polyposis (FAP) coli we performed mutation screening in the Mut Y homologue (MUTYH) gene. The incidence was 15% for biallelic and 3.7% for monoallelic MUTYH mutations. We describe six novel MUTYH mutations in biallelic constellation and two novel monoallelic missense mutations. Of 33 MUTYH‐associated polyposis coli (MAP) patients 57% were attenuated familial adenomatous polyposis (AFAP) patients, 10% display early‐onset classical FAP and 18% had only few adenomas at higher age. Biallelic cases had a high incidence of extracolonic polyposis in 32% and colorectal cancer (CRC) in 33% of the cases. The clinical picture of MAP ranged from classical FAP or synchronous CRC at age 30 years to few adenomas at age 54 years without evidence of CRC, initially suspected for hereditary non‐polyposis colorectal cancer (HNPCC). The mean age of onset was 43 years, with 11 (33%) patients being younger than 40 years of age, indicating that the clinical manifestation can be earlier than so far reported. Monoallelic MUTYH mutation carriers had a positive family history in seven of eight cases allowing the hypothesis of a disease‐causing synergism of MUTYH mutations with other genes.  相似文献   

14.
Germinal mutations in the base excision repair (BER) gene MUTYH (MYH) have recently been described in association with predisposition to multiple colorectal adenomas and cancer. In contrast to the classic dominant condition of familial adenomatous polyposis (FAP) due to germinal mutations in the APC gene, the MYH polyposis is an autosomal recessive disease. The identification of individuals affected by MYH polyposis brings new and important implications for the diagnostic, screening, genetic counseling, follow up and therapeutic options in these patients. In this study, screening for germinal mutations in the MYH gene was performed in 53 Portuguese individuals with multiple colorectal adenomas or classic adenomatous polyposis, in whom no mutation had been identified in the APC gene. The results revealed the presence of biallelic germline MYH mutations in 21 patients. In addition, we here report 3 mutations (c.340T>C [p.Y114H]; c.503G>A [p.R168H]; and c.1186_1187insGG [p.E396fsX437]) which, to our knowledge, have not been previously described.  相似文献   

15.
Biallelic germ-line variants of the 8-hydroxyguanine repair gene MYH have been associated with multiple colorectal adenomas that display somatic G:C-->T:A transversions in APC. However, the effect of single germ-line variants has not been widely studied. To examine the relationship between monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC), 92 cases of sporadic CRC, 19 cases of familial CRC not meeting the Bethesda guidelines, 17 cases with multiple adenomas, and 53 normal blood donors were screened for 8 potentially pathogenic germ-line MYH variants. Loss of heterozygosity (LOH) at 1p adjacent to the MYH locus, microsatellite instability (MSI) status, and somatic mutations in KRAS2 and APC were analyzed in sporadic cancers. Neither homozygote nor compound heterozygote MYH variants were observed in the germ-line of any subjects with sporadic CRC. There was no difference in the incidence of monoallelic variants between this group (20 of 92, 22%) and cancer-free controls (14 of 53, 26%). However, the presence of monoallelic germ-line MYH variants was negatively associated with an MSI-high (MSI-H) tumor phenotype, with an incidence of only 1 of 23 (4%) MSI-H CRCs as contrasted with 19 of 69 (28%) non-MSI-H (P=0.02). Further, 4 of 5 tumors with 1p LOH contained monoallelic MYH variants compared with 15 of 53 without 1p LOH (P=0.04) and the normal population (P=0.03). The presence of G:C-->T:A transversions in KRAS2 or APC was significantly more common in single MYH variant tumors (9 of 12) than in MYH wild-type tumors (11 of 33; P=0.02). These results suggest that single germ-line variants of MYH may influence genetic pathways in CRC.  相似文献   

16.
Two forms of genomic instability can be distinguished in colorectal cancer (CRC) tumourigenesis. One is characterised by pronounced chromosomal instability (CIN), while the other relates to alterations produced at the nucleotide level that preferentially target microsatellite sequences. Tumours developing under the latter form of genomic instability possess a microsatellite instability-high (MSI-H) phenotype due to inactivation of the DNA mismatch repair system. The most recently described CRC syndrome, MUTYH-associated polyposis (MAP), shares characteristics with both MSI-H and CIN cancers. MAP carcinomas develop from the impairment of the base excision repair system, where MUTYH is involved, but also present a peculiar form of CIN. Several clinicopathological characteristics of MSI-H and MAP CRCs overlap such as tumour location, clinical prognosis and histological features. We propose that MSI-H and MAP CRCs are particularly prone to interact with their tumour microenvironment. A great deal of this interaction is probably stimulated by the immunogenic character of those tumours, known to possess a high mutagenic potential. The accumulation of mutations in coding regions of the genome of MSI-H and MAP carcinomas is likely to translate into a surplus of neo-antigens that trigger an anti-tumour immune response. The immune system constitutes thus an important vector of selective pressure that favours the outgrowth of tumour clones with immune-evasive phenotypes. In this review, we summarise the evidence for the influence of the tumour microenvironment in MSI-H and MAP tumourigenesis. Furthermore, we discuss how particular features of MSI-H and MAP CRCs can be exploited for the development of therapeutic strategies for affected patients.  相似文献   

17.
Pathological features of colorectal carcinomas in MYH-associated polyposis   总被引:1,自引:0,他引:1  
Aims:  MYH is a DNA glycosylase in the base excision repair pathway. Germ-line biallelic mutations in the MYH gene are associated with the development of multiple colorectal adenomas and colorectal carcinoma (CRC). A slightly increased risk of CRC is suggested in monoallelic MYH mutation carriers. The aim was to characterize the histopathological features of carcinomas from biallelics and monoallelics.
Methods and results:  Clinicopathological features of 57 colorectal carcinomas from 50 patients identified in familial CRC registries were recorded. These included 16 cancers from 14 MYH biallelics; 25 cancers from 22 MYH monoallelics; and 16 cancers from 14 controls. Carcinomas in biallelics demonstrated tubular, papillary or cribriform patterns as the predominant histological subtype, and main histological groups differed according to mutation status ( P  = 0.0053). All biallelic cancers were low grade, with high-grade tumours more common in monoallelics and controls ( P  = 0.002). Synchronous polyps were observed in 75% of biallelics, 33% of monoallelics and 43% of controls ( P  = 0.035). Serrated carcinoma was the predominant type in 12% (3/25) of the monoallelics but in none of the biallelics or controls. MYH immunohistochemistry failed to distinguish between groups.
Conclusions:  Neither pathological features nor immunohistochemistry could predict the MYH mutation status of CRCs in this study.  相似文献   

18.
Ganglioneuromatous polyposis is a very rare intestinal disease which differs from isolated polypoid ganglioneuroma and from diffuse ganglioneuromatosis. Its clinical, endoscopic, microscopic and evolutive features are poorly known. We report three cases of colonic ganglioneuromatous polyposis that illustrated an uncommon diffusion pattern in two men and one woman aged 63-72 who presented with chronic diarrhea. Endoscopic features suggesting the diagnosis were diffuse polyposis predominating in the cecum and right colon, with hyperhemic flat lesions enhanced after indigocarmin instillation. Histological study of the biopsies, and of colectomy specimens, showed a diffuse mucosal ganglioneuromatous proliferation with a few adenomatous polyps. Search for multiple endocrine neoplasia (MEN) type 2b was negative. In conclusion, this polypoid type of diffuse ganglioneuromatosis can be suspected in patients with chronic diarrhea by the special endoscopic aspect of the colonic polyposis. Pathologists should be aware of the distinctive features; diagnosis requires search for adenomas and/or neoplasia by total colopsy in addition to search for MEN 2b.  相似文献   

19.
《Genetics in medicine》2014,16(1):101-116
Lynch syndrome, familial adenomatous polyposis, and Mut Y homolog (MYH)-associated polyposis are three major known types of inherited colorectal cancer, which accounts for up to 5% of all colon cancer cases. Lynch syndrome is most frequently caused by mutations in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2 and is inherited in an autosomal dominant manner. Familial adenomatous polyposis is manifested as colonic polyposis caused by mutations in the APC gene and is also inherited in an autosomal dominant manner. Finally, MYH-associated polyposis is caused by mutations in the MUTYH gene and is inherited in an autosomal recessive manner but may or may not be associated with polyps. There are variants of both familial adenomatous polyposis (Gardner syndrome—with extracolonic features—and Turcot syndrome, which features medulloblastoma) and Lynch syndrome (Muir–Torre syndrome features sebaceous skin carcinomas, and Turcot syndrome features glioblastomas). Although a clinical diagnosis of familial adenomatous polyposis can be made using colonoscopy, genetic testing is needed to inform at-risk relatives. Because of the overlapping phenotypes between attenuated familial adenomatous polyposis, MYH-associated polyposis, and Lynch syndrome, genetic testing is needed to distinguish among these conditions. This distinction is important, especially for women with Lynch syndrome, who are at increased risk for gynecological cancers. Clinical testing for these genes has progressed rapidly in the past few years with advances in technologies and the lower cost of reagents, especially for sequencing. To assist clinical laboratories in developing and validating testing for this group of inherited colorectal cancers, the American College of Medical Genetics and Genomics has developed the following technical standards and guidelines. An algorithm for testing is also proposed.Genet Med16 1, 101–116.  相似文献   

20.
Germline mutations of the adenomatous polyposis coli gene are associated with the dominantly inherited syndrome of familial adenomatous polyposis. Somatic mutations in this gene are an early event in sporadic colorectal tumorigenesis. Here we report a family with genetic characteristics that do not conform exactly to either of these situations. The index case and three siblings presented with colorectal cancer, and another sibling had lung cancer. There was no evidence of colorectal cancer susceptibility in previous generations, although one case of gastric cancer was observed. Using restriction fragment length polymorphism, single-strand conformational polymorphism, and sequencing analysis, we screened each living family member for alterations in the mutation cluster region of exon 15 of the APC gene. A constitutional single base pair substitution at codon 1317 was observed in two of the siblings with colorectal cancer, but neither exhibited any colonic features typical of FAP nor an early onset of cancer. This constitutional change is a missense mutation and therefore does not result in the truncation of the APC protein, the most commonly observed result of mutation in this gene. We present evidence that this change is not a polymorphism and may be capable of conferring a growth advantage. This particular germline APC mutation does not completely cosegregate with cancer in this family; therefore, we conclude that another gene locus may be responsible for the increased cancer risk observed. Genes Chromosom Cancer 15:122–128 (1996). © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号