首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
[3H]LY341495 is a highly potent and selective antagonist for group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3), which has been used to label these receptors in cells expressing recombinant receptor subtypes. In this study, we characterized the kinetics, pharmacology, and distribution of [3H]LY341495 binding to mGlu receptors in rat brain tissue. Equilibrium experiments in the rat forebrain demonstrated binding to a single site that was saturable, reversible, and of high affinity (Bmax, 3.9 +/- 0.65 pmol/mg of protein, Kd, 0.84 +/- 0.11 nM). The relative order of potencies for displacement of [3H]LY341495 by mGlu receptor ligands was LY341495 > L-glutamic acid > LY354740 > (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine > 4-(2R,4R)-aminopyrrolidine-2,4-dicarboxylate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (R,S)-alpha-methyl-4-phosphonophenylglycine > (R,S)3,5-dihydroxyphenylglycine > L-(+)-2-amino-4-phosphonobutyric acid. [3H]LY341495 was not displaced by the selective ionotropic glutamate receptor agonists N-methyl-D-aspartic acid, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate at concentrations up to 1 mM. Comparison of [3H]LY341495 binding in rat brain with recombinant mGlu receptor subtypes demonstrated a very high correlation with mGlu3 receptor binding (r2 = 0.957), a significant, but lower, correlation with mGlu2 receptor binding (r2 = 0.869), but no significant correlation to mGlu8 receptor binding (r2 = 0.284). Regional studies using autoradiography showed a similar distribution of [3H]LY341495 binding to that for group II mGlu receptors previously reported by others using immunocytochemical techniques. These studies indicate that [3H]LY341495 selectively labels group II (mGlu2/3) receptors, but under the conditions used, [3H]LY341495 may bind predominately to mGlu3 receptor populations in the rat forebrain.  相似文献   

2.
6-Nitroquipazine (DU 24565; 6-nitro 2-piperazinylquinoline) is a very potent 5-hydroxytryptamine (5-HT; serotonin) uptake inhibitor. It has been demonstrated very recently that [3H]-6-nitroquipazine is a suitable radioligand for studying 5-HT uptake sites. The present study evaluates [3H]6-nitroquipazine as a radioligand for in vivo labeling of 5-HT uptake sites in mouse brain. Very high uptake of radioactivity in the brain after i.v. administration of [3H]-6-nitroquipazine was shown. Regional distribution of the radioactivity in mouse brain 3 hr after injection of [3H]-6-nitroquipazine was in the order (highest to lowest) hypothalamus greater than midbrain greater than striatum greater than hippocampus greater than cerebral cortex greater than medulla oblongata greater than cerebellum. The regional distribution of in vivo [3H]-6-nitroquipazine binding in mouse brain was highly correlated with that in rat brain obtained from previous in vitro binding studies. Coadministration of carrier 6-nitroquipazine (5 mg/kg) significantly decreased the radioactivity in the hypothalamus, whereas that in the cerebellum and cerebral cortex was increased. Because the cerebellum has very low density of [3H]-6-nitroquipazine binding sites, the radioactivity in the cerebellum could, therefore, reflect the amount on nonspecific binding and free ligand. Kinetic studies showed highest in vivo specific binding 1 hr after injection of [3H]-6-nitroquipazine and slow clearance of specific binding. Specific binding in the hypothalamus was inhibited in a stereoselective manner by the stereoisomers of norzimelidine. Furthermore, specific binding in the hypothalamus was reduced by several 5-HT uptake inhibitors, in a dose-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca(2+) assays (EC(50) = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 microM) and competed for binding of [(3)H]2-methyl-6-(phenylethynyl)pyridine (K(i) = 4.3 microM), but not [(3)H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.  相似文献   

4.
Metabotropic glutamate receptors (mGluRs) have previously been shown to play a role in pain transmission during inflammatory or neuropathic pain states. However, the role of mGluR5 in post-operative pain remains to be fully investigated. The present study was conducted to characterize analgesic activity of 2-methyl-6-(phenylethynyl)-pyridine (MPEP) in the skin-incision-induced post-operative pain model in rats. MPEP is a potent and selective mGluR5 antagonist with high affinity (K(i)=6.3+/-0.9 nM) in rat cortex using [(3)H]-MPEP as a radioligand, while not competing with the mGluR1-selective radioligand [(3)H]-R214127 (K(i)>10,000 nM) in rat cerebellum. Post-operative pain was examined 2 h following surgery using weight-bearing (WB) difference between injured and uninjured paws as a measure of non-evoked pain. In this model, MPEP, as morphine, showed dose-dependent effects and full efficacy after systemic administration (ED(50)=15 mg/kg, i.p. for MPEP, ED(50)=1.3 mg/kg, s.c. for morphine). In addition, intrathecal (i.t.) and intracerebroventricular (i.c.v.) MPEP reduced WB difference (ED(50)=65 microg/rat i.t. and ED(50)=200 microg/rat i.c.v.). Interestingly, intraplantar (i.pl.) injection of MPEP either before or after surgery induced a similar reduction in WB difference (ED(50)=90 microg/rat, i.pl.) while contralateral i.pl. MPEP injection did not produce any effect. These results demonstrate that both peripheral and central mGluR5 receptors play a role in nociceptive transmission observed during post-operative pain. In addition, the data suggest that mGluR5 antagonists could offer a new therapeutic approach to the treatment of post-operative pain.  相似文献   

5.
The properties of sites in rat brain labeled in vivo after administration of [3H]cyanoimipramine ([3H]CN-IMI) have been studied. The radioactivity in hypothalamus and cortex 20 min to 2 hr after [3H]CN-IMI administration was reduced in rats pretreated with chlorimipramine (10 mg/kg) 5 min before [3H]CN-IMI. No effect of chlorimipramine pretreatment was seen in the cerebellum; levels of radioactivity in this tissue were subtracted from total levels in hypothalamus and cortex to define specific binding. This represented approximately 50 and 30% of total binding in hypothalamus and cortex, respectively. Specific binding in hypothalamus and cortex was reduced by a number of drugs which are potent blockers of serotonin uptake and the binding was inhibited in a stereoselective manner by the stereoisomers of norzimelidine. In contrast, pretreatment with drugs which are weak inhibitors of serotonin uptake had no effect on specific binding. Experiments using increasing doses of [3H]CN-IMI showed that the binding in vivo was saturable. Lesioning rats with the serotonin neurotoxin 5,7-dihydroxytryptamine resulted in an 80% decrease in the specific binding in hypothalamus and a 35% decrease in cortex. The potencies of drugs to inhibit the specific binding of [3H]CN-IMI in vivo were highly correlated with their previously published potencies for inhibiting serotonin uptake in human blood platelets in vitro and for preventing the serotonin depletion induced by 4-methyl-alpha-ethyl-metatyramine in vivo. These results indicate that [3H]CN-IMI can be given to rats to provide a measure of serotonin uptake sites in the central nervous system in vivo.  相似文献   

6.
Mice received i.p. injections of either saline or drug before i.p. administration of [3H]Ro 15-1788 (flumazenil), a selective benzodiazepine (BZD) receptor antagonist. Subjects were decapitated and six brain regions (cortex, cerebellum, striatum, hippocampus, hypothalamus and brain stem) were analyzed for the levels of tritium present in each tissue. Benzyl, ethyl and methyl alcohol enhanced in vivo binding of [3H]Ro 15-1788 in a dose-dependent manner in all brain regions studied with mean ED50 values of 2.4, 34.8 and 38.4% volume/kg body weight, respectively. Lorazepam (18 mg/kg) completely blocked effects of benzyl, ethyl and methyl alcohol to increase [3H]Ro 15-1788 binding. These data indicate that the alcohol-induced increases in [3H]Ro 15-1788 binding occurred at the level of the BZD receptor. In addition, these alcohols did not alter the in vivo binding of [3H]diprenorphine, an opioid receptor ligand, further indicating the selective effect of alcohol on BZD receptors. Administration of lorazepam or alprazolam produced a dose-dependent decrease in the binding of [3H]Ro 15-1788 to brain tissue after administration of either saline or 30% volume/kg ethanol. However, low doses of alprazolam increased binding of [3H]Ro 15-1788 in the absence of ethanol. Together, these results suggest that ethanol produces an increase in the number of BZD binding sites in vivo. These alcohol-induced alterations in BZD receptor binding may mediate, in part, the anxiolytic or sedative properties of ethanol.  相似文献   

7.
Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] is an atypical anxiolytic agent with unknown molecular target that has previously been demonstrated both in rodents and human to exert anxiolytic activity. Here, we report that fenobam is a selective and potent metabotropic glutamate (mGlu)5 receptor antagonist acting at an allosteric modulatory site shared with 2-methyl-6-phenylethynyl-pyridine (MPEP), the protypical selective mGlu5 receptor antagonist. Fenobam inhibited quisqualate-evoked intracellular calcium response mediated by human mGlu5 receptor with IC(50) = 58 +/- 2 nM. It acted in a noncompetitive manner, similar to MPEP and demonstrated inverse agonist properties, blocking 66% of the mGlu5 receptor basal activity (in an over expressed cell line) with an IC(50) = 84 +/- 13 nM. [(3)H]Fenobam bound to rat and human recombinant receptors with K(d) values of 54 +/- 6 and 31 +/- 4 nM, respectively. MPEP inhibited [(3)H]fenobam binding to human mGlu5 receptors with a K(i) value of 6.7 +/- 0.7 nM, indicating a common binding site shared by both allosteric antagonists. Fenobam exhibits anxiolytic activity in the stress-induced hyperthermia model, Vogel conflict test, Geller-Seifter conflict test, and conditioned emotional response with a minimum effective dose of 10 to 30 mg/kg p.o. Furthermore, fenobam is devoid of GABAergic activity, confirming previous reports that fenobam acts by a mechanism distinct from benzodiazepines. The non-GABAergic activity of fenobam, coupled with its robust anxiolytic activity and reported efficacy in human in a double blind placebo-controlled trial, supports the potential of developing mGlu5 receptor antagonists with an improved therapeutic window over benzodiazepines as novel anxiolytic agents.  相似文献   

8.
The use of [3H]flunitrazepam as a ligand to measure alterations in benzodiazepine receptors in vivo in rats was investigated. Animals were injected with [3H]flunitrazepam i.v., arterial samples of [3H]flunitrazepam were obtained and, later, the animals were sacrificed to assay brain binding. [3H]flunitrazepam enters the brain rapidly and binds to benzodiazepine receptors. About two-thirds of this binding is blocked by predosing the animals with 5 mg/kg of clonazepam. The amount of remaining (nonspecific) binding correlates very well (r = 0.88) with the amount of radioactivity found in plasma at the time of death. A series of rats were lesioned unilaterally with kainic acid in the caudate-putamen several months before the infusion of [3H]flunitrazepam. In vivo autoradiography in lesioned rats showed that benzodiazepine binding in globus pallidus and substantia nigra on the side of the lesion was increased significantly as compared to the intact side. The observed changes in benzodiazepine binding were similar to those observed previously in lesioned rats using in vitro techniques. Thus, benzodiazepine receptor regulation can be imaged quantitatively using in vivo binding techniques.  相似文献   

9.
FMPD [6-fluoro-10-[3-(2-methoxyethyl)-4-methyl-piperazin-1-yl]-2-methyl-4H-3-thia-4,9-diaza-benzo[f]azulene] is a potential novel antipsychotic with high affinity for dopamine D2 (Ki= 6.3 nM), 5-HT(2A) (Ki= 7.3 nM), and 5-HT6 (Ki= 8.0 nM) human recombinant receptors and lower affinity for histamine H1 (Ki= 30 nM) and 5-HT2C (Ki= 102 nM) human recombinant receptors than olanzapine. Oral administration of FMPD increased rat nucleus accumbens 3,4-dihyroxyphenylacetic acid concentrations (ED200 = 6 mg/kg), blocked 5-HT2A agonist-induced increases in rat serum corticosterone levels (ED50= 1.8 mg/kg), and inhibited the ex vivo binding of [125I]SB-258585 [4-iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzenesulfonamide] to striatal 5-HT6 receptors (ED50= 10 mg/kg) but failed to inhibit ex vivo binding of [3H]pyrilamine to hypothalamic histamine H1 receptors at doses of up to 30 mg/kg. In electrophysiology studies, acute administration of FMPD selectively elevated the number of spontaneously active A10 (versus A9) dopamine neurons and chronic administration selectively decreased the number of spontaneously active A10 (versus A9) dopamine neurons. FMPD did not produce catalepsy at doses lower than 25 mg/kg p.o. In Fos-induction studies, FMPD had an atypical antipsychotic profile in the striatum and nucleus accumbens and increased Fos expression in orexin-containing neurons of the hypothalamus. FMPD produced only a transient elevation of prolactin levels. These data indicate that FMPD is an orally available potent antagonist of dopamine D2, 5-HT2A, and 5-HT6 receptors and a weak antagonist of H1 and 5-HT2C receptors. FMPD has the potential to have efficacy in treating schizophrenia and bipolar mania with a low risk of treatment-emergent extrapyramidal symptoms, prolactin elevation, and weight gain. Clinical trials are needed to test these hypotheses.  相似文献   

10.
The effects of chronic administration of the tricyclic antidepressant agent desmethylimipramine (DMI) on brain adrenergic and serotonergic receptor binding processes were studied. We examined the kinetic properties of alpha adrenergic, beta adrenergic and serotonergic receptor binding sites in cortical and subcortical brain regions of rats treated chronically for various time periods with DMI(6 mg/kg i.p. daily). After 1 week of daily injections, beta receptor binding density in the cortex was significantly decreased. The reduced density of the cortical beta receptors was evident throughout a 12-week administration period. It was not until after 6 weeks of DMI administration that a significant reduction in the subcortical beta receptors was evident. Compared to saline-injected controls, chronic DMI administration lowered [3H]dihydroalprenolol binding in the hippocampus but not in the striatum. After 12 weeks of DMI we detected no differences in alpha adrenergic binding characteristics in the cortex or subcortical forebrain using [3H]dihydroergocryptine as the binding ligand. There was no consistent alteration in the cortical serotonin receptor densities throughout the 12 weeks of DMI administration, and DMI had no effect on the serotonergic binding characteristics in the subcortical forebrain region. We conclude that chronic DMI administration selectively decreases the density of beta adrenergic receptors in rat brain.  相似文献   

11.
Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on excitatory amino acid receptors may have neuroprotective effects and utility for the treatment of neurodegeneration after brain ischemia. In the present study, the in vitro and in vivo pharmacological properties of the novel glutamate antagonist SPD 502 [8-methyl-5(4-(N,N-dimethylsulfamoyl)phenyl)-6,7, 8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2, 3-dione-3-O-(4-hydroxybutyric acid-2-yl)oxime] are described. In binding studies, SPD 502 was shown to display selectivity for the [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-binding site (IC50 = 0.043 microM) compared with the [3H]kainate- (IC50 = 81 microM), [3H]cis-4-phosphonomethyl-2-piperidine carboxylic acid-(CGS 19755), and [3H]glycine-binding sites (IC50 > 30 microM) in rat cortical membranes. In an in vitro functional assay, SPD 502 blocked the AMPA-induced release of [3H]gamma-aminobutyric acid from cultured mouse cortical neurons in a competitive manner with an IC50 value of 0.23 microM. Furthermore, SPD 502 potently and selectively inhibited AMPA-induced currents in cortical neurons with an IC50 value of 0.15 microM. In in vivo electrophysiology, SPD 502 blocked AMPA-evoked spike activity in rat hippocampus after i.v. administration with an ED50 value of 6.1 mg/kg and with a duration of action of more than 1 h. Furthermore, SPD 502 increased the seizure threshold for electroshock-induced tonic seizures in mice at i.v doses of 40 mg/kg and higher. In the two-vessel occlusion model of transient forebrain ischemia in gerbils, SPD 502 (10 mg/kg bolus injection followed by a 10 mg/kg/h infusion for 2 h) resulted in a highly significant protection against the ischemia-induced damage in the hippocampal CA1 pyramidal neurons.  相似文献   

12.
The aim of the present study was to establish the relationship between the plasma and brain concentration-time profiles of F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5-methyl-pyridin-2-ylmethyl)-amino]-methyl}piperidin-1-yl]methanone, fumaric acid salt] after acute administration and both its hyper- and hypoanalgesic effects in rats. The maximal plasma concentration (C(max)) of F 13640 after i.p. administration of 0.63 mg/kg was obtained at 15 min and decreased to half its maximal value after about 1 h. The amount of F 13640 collected by means of in vivo microdialysis in hippocampal dialysates could be measured reliably after 0.63 and 2.5 mg/kg, reached its maximum at about 1 h, and fell to half of its maximal value at about 3 h. 5-Hydroxytryptamine 1A (5-HT(1A)) receptor occupancy was estimated by ex vivo binding in rat brain sections. F 13640 inhibited [(3)H]8-hydroxy-2-[di-n-propylamino] tetralin binding ex vivo in rat hippocampus, entorhinal cortex, and frontal cortex (ED(50), 0.34 mg/kg i.p.). Maximal inhibition was reached at approximately 30 min after 0.63 mg/kg F 13640 and fell to half of its value after about 4 to 8 h. After injection (15 min) in the paw pressure test, F 13640 (0.63 mg/kg i.p.) induced an initial hyperalgesia that was followed 4 h later by a paradoxical analgesia that lasted until 8 h. In contrast, in the formalin test, F 13640 inhibited pain behaviors until 4 h after drug administration. F 13640 also produced elements of the 5-HT syndrome that lasted up to 4 h after administration. These results demonstrate that F 13640 induces hyperalgesia and/or analgesia with a time course that parallels the occupancy of 5-HT(1A) receptors and the presence of the compound in blood and brain.  相似文献   

13.
The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition.  相似文献   

14.
6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) is a novel histamine H(3) receptor antagonist with high affinity for human (pK(i) = 9.59 -9.90) and rat (pK(i) = 8.51-9.17) H(3) receptors. GSK189254 is >10,000-fold selective for human H(3) receptors versus other targets tested, and it exhibited potent functional antagonism (pA(2) = 9.06 versus agonist-induced changes in cAMP) and inverse agonism [pIC(50) = 8.20 versus basal guanosine 5'-O-(3-[(35)S]thio)triphosphate binding] at the human recombinant H(3) receptor. In vitro autoradiography demonstrated specific [(3)H]GSK189254 binding in rat and human brain areas, including cortex and hippocampus. In addition, dense H(3) binding was detected in medial temporal cortex samples from severe cases of Alzheimer's disease, suggesting for the first time that H(3) receptors are preserved in late-stage disease. After oral administration, GSK189254 inhibited cortical ex vivo R-(-)-alpha-methyl[imidazole-2,5(n)-(3)H]histamine dihydrochloride ([(3)H]R-alpha-methylhistamine) binding (ED(50) = 0.17 mg/kg) and increased c-Fos immunoreactivity in prefrontal and somatosensory cortex (3 mg/kg). Microdialysis studies demonstrated that GSK189254 (0.3-3 mg/kg p.o.) increased the release of acetylcholine, noradrenaline, and dopamine in the anterior cingulate cortex and acetylcholine in the dorsal hippocampus. Functional antagonism of central H(3) receptors was demonstrated by blockade of R-alpha-methylhistamine-induced dipsogenia in rats (ID(50) = 0.03 mg/kg p.o.). GSK189254 significantly improved performance of rats in diverse cognition paradigms, including passive avoidance (1 and 3 mg/kg p.o.), water maze (1 and 3 mg/kg p.o.), object recognition (0.3 and 1 mg/kg p.o.), and attentional set shift (1 mg/kg p.o.). These data suggest that GSK189254 may have therapeutic potential for the symptomatic treatment of dementia in Alzheimer's disease and other cognitive disorders.  相似文献   

15.
The distribution of dopamine D2 receptors in the rat brain was determined by quantitative autoradiography of the binding of [125I]epidepride and the effects of chronic drug administration on regulation of receptors in striatal and extrastriatal brain regions were characterized. [125I]Epidepride (2200 Ci/mmol) bound with high affinity to coronal tissue sections from the rat brain (Kd = 78 pM), and specific binding was detected in a number of discrete layers, nuclei or regions of the hippocampus, thalamus, cerebellum and other extrastriatal sites. Pharmacological analysis of radioligand binding to hippocampal and cerebellar membranes indicated binding to dopamine D2 receptors, and approximately 10% of the binding appeared to represent low affinity idazoxan-displaceable binding to alpha-2 adrenoceptors. The binding to extrastriatal regions resembled previously reported radioligand binding to dopamine D2 receptors in striatal and cortical membranes. Chronic (14 day) administration of two dopamine D2 receptor antagonists, either the typical neuroleptic haloperidol (1.5 mg/kg i.p.) or the atypical neuroleptic clozapine (30 mg/kg i.p.), caused a significant increase in the density of [125I]epidepride binding sites in the medial prefrontal cortex and parietal cortex. Only haloperidol caused a significant increase in the density of [3H]spiperone and [125I]epidepride binding sites in the striatum and a slight increase in [125I]epidepride binding sites in the hippocampus. Similar administration of amphetamine (5 mg/kg i.p.) had no significant effect on the density of dopamine D2 receptors in any brain region examined. In addition, no drug-induced changes in the characteristics of dopamine D2 receptors in discrete areas of the cerebellum were observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Intravenous injection of 5 muCi of [3H]ifenprodil to mice resulted in an accumulation of radioactivity in the whole brain which was maximal at 5 min postinjection and then declined in a biphasic manner. When whole brain radioactivity was measured 2 h after [3H]ifenprodil injection, more than 65% of the incorporated label was displaced by i.p. administration (30 min before the radiotracer) of the ifenprodil chemical congener +/-alpha-(4-chlorophenyl)-4-(4- fluorophenylmethyl)-1-piperidine ethanol (SL 82.0715) (10 mg/kg). At this time, most of the radioactivity (80%) present in the brain comigrated with authentic [3H]ifenprodil. When administered 30 min before the radiotracer, several sigma ligands inhibited in vivo [3H]ifenprodil binding to the mouse brain with the following rank order of potency (ID50, mg/kg, i.p.): haloperidol (0.27) greater than ifenprodil (0.83) greater than SL 82.0715 (1.37) greater than BMY 14,802 (5.5) greater than 1,3-di-O-tolylguanidine (18). GBR 12909 (20 mg/kg, i.p.) and phencyclidine (30 mg/kg, i.p.) also inhibited this binding by 71 and 59%, respectively. In contrast, the N-methyl-D-aspartate receptor channel blockers 1-[1-(2-thienyl)cyclohexyl] piperidine and MK-801 (10 mg/kg, i.p.) failed to affect [3H]ifenprodil binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mianserin, a tetracyclic antidepressant, is a potent serotonin (5-HT) and histamine H1 antagonist in peripheral smooth muscle systems. Mianserin was found to possess high affinity for 5-HT2 and histamine H1 receptor binding sites in brain membranes. By using [3H]mianserin, both 5-HT2 and histamine H1 receptors can be specifically labeled in rat cerebral cortex membranes. Simultaneous incubation of brain membranes with 300 nM triprolidine or 30 nM spiroperidol enables the selective labeling of 5-HT2 or histamine H1 receptors, respectively. In the guinea-pig cerebellum, [3H]mianserin exclusively labels histamine H1 receptors, since 5-HT2 sites are virtually absent in this area.  相似文献   

18.
The in vitro pharmacological properties of N-(1-Acetyl-2,3-dihydro-1H-indol-6-yl)-3-(3-cyano-phenyl)-N-[1-(2-cyclopentyl-ethyl)-piperidin-4yl]-acrylamide (JNJ-5207787), a novel neuropeptide Y Y(2) receptor (Y(2)) antagonist, were evaluated. JNJ-5207787 inhibited the binding of peptide YY (PYY) to human Y(2) receptor in KAN-Ts cells (pIC(50) = 7.00 +/- 0.10) and to rat Y(2) receptors in rat hippocampus (pIC(50) = 7.10 +/- 0.20). The compound was >100-fold selective versus human Y(1),Y(4), and Y(5) receptors as evaluated by radioligand binding. In vitro receptor autoradiography data in rat brain tissue sections confirmed the selectivity of JNJ-5207787. [(125)I]PYY binding sites sensitive to JNJ-5207787 were found in rat brain regions known to express Y(2) receptor (septum, hypothalamus, hippocampus, substantia nigra, and cerebellum), whereas insensitive binding sites were observed in regions known to express Y(1) receptor (cortex and thalamus). JNJ-5207787 was demonstrated to be an antagonist via inhibition of PYY-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding ([(35)S]GTPgammaS) in KAN-Ts cells (pIC(50) corrected = 7.20 +/- 0.12). This was confirmed auto-radiographically in rat brain sections where PYY-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding was inhibited by JNJ-5207787 (10 microM) in hypothalamus, hippocampus, and substantia nigra. After intraperitoneal administration in rats (30 mg/kg), JNJ-5207787 penetrated into the brain (C(max) = 1351 +/- 153 ng/ml at 30 min) and occupied Y(2) receptor binding sites as revealed by ex vivo receptor autoradiography. Hence, JNJ-5207787 is a potent and selective pharmacological tool available to establish the potential role of central and peripheral Y(2) receptors in vivo.  相似文献   

19.
Recently, selective and systemically active antagonists for the metabotropic glutamate 5 receptor (mGlu(5)) were discovered, and the most potent derivative was found to be MPEP (2-methyl-6-(phenylethynyl)pyridine). Given the high expression of mGlu(5) receptors in limbic forebrain regions, it was decided to evaluate the anxiolytic potential of MPEP. After an acute oral administration, MPEP attenuated the anxiety-dependent variable in a variety of well established anxiety test paradigms. In rats, MPEP (10, 30, and 100 mg/kg) increased punished responses in the Geller-Seifter test, but none of these effects reached statistical significance. MPEP significantly increased the ratio (open/total arm entries; 0.1, 1, and 10 mg/kg), the number of open arm entries (0.1, 1, and 10 mg/kg), as well as time spent on open arm (0.1 and 1 mg/kg) in the elevated plus maze test. Furthermore, MPEP (0.3 and 1 mg/kg) significantly increased the time spent in social contact in the social exploration test. In mice, MPEP attenuated stress-induced hyperthermia (15 and 30 mg/kg) and decreased the number of buried marbles in the marble burying test (7.5 and 30 mg/kg). Finally, MPEP (0.01, 0.1, 1, 10, and 100 mg/kg) was tested on spontaneous locomotor activity in mice, and only a dose of 100 mg/kg significantly reduced vertical activity; no effect was seen on horizontal activity. MPEP (7.5, 15, and 30 mg/kg) was ineffective on d-amphetamine-induced (2.5 mg/kg) locomotor activity in mice and prepulse inhibition in rats (1, 3, or 10 mg/kg). Thus, these findings indicate that MPEP exhibits anxiolytic-like effects and low risks for sedation and psychotomimetic side-effects in rodents.  相似文献   

20.
Antidepressant-like effects of metabotropic glutamate (mGlu)5 receptor antagonists have been reported previously. We now provide definitive identification of mGlu5 receptors as a target for these effects through the combined use of selective antagonists and mice with targeted deletion of the mGlu5 protein. In these experiments, the mGlu5 receptor antagonists 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and the more selective and metabolically stable analog 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) decreased immobility in the mouse forced swim test, a test predictive of antidepressant efficacy in humans. mGlu5 receptor knockout mice had a phenotype in the forced swim test that was congruent with the effects of receptor blockade; mGlu5 receptor knockout mice were significantly less immobile than their wild-type counterparts. Consistent with mGlu5 receptor mediation of the antidepressant-like effects of MPEP, the effects of MPEP were not observed in mGlu5 receptor knockout mice, whereas comparable effects of the tricyclic antidepressant imiprimine remained active in the mutant mice. MPEP and imiprimine resulted in a synergistic antidepressant-like effect in the forced swim test. The drug interaction was not likely because of increased levels of drugs in the brain, suggesting a pharmacodynamic interaction of mGlu5 and monoaminergic systems in this effect. Thus, the present findings substantiate the hypothesis that mGlu5 receptor antagonism is associated with antidepressant-like effects. This mechanism may not only provide a novel approach to the therapeutic management of depressive disorders but also may be useful in the augmentation of effects of traditional antidepressant agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号