首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
N-Methyl-D-aspartate (NMDA) glutamate receptor antagonists are being developed as therapeutic agents for several clinical conditions. However, the ability of these agents to produce neurotoxicity and psychosis can compromise their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state may play a role in neurodegenerative and psychotic disorders. A better understanding of the mechanism underlying these adverse effects should allow for the safer use of these agents and might clarify mechanisms underlying certain clinical disorders. NRHypo neurotoxicity is mediated by a complex disinhibition mechanism in which NMDA antagonists abolish GABAergic inhibition, resulting in the simultaneous excessive release of acetylcholine and glutamate onto the vulnerable retrosplenial cortex (RSC) neurons. Systemically administered GABAergic agents are potent protectors against NRHypo neurotoxicity. To determine where in brain GABAergic agents could be acting to protect against NRHypo neurotoxicity, we injected the GABAergic agonist, muscimol, into different brain regions of rats treated systemically with a neurotoxic dose of the potent NMDA antagonist, MK-801. We report that muscimol injections into the anterior thalamus or diagonal band of Broca provide substantial protection, suggesting that disinhibition of neurons in these regions underlies NRHypo neurotoxicity. Muscimol injections into the RSC also provide substantial protection possibly by directly inhibiting the vulnerable RSC neuron. Injections of muscimol into other areas known to project to the RSC (ventral orbital cortex, anterior cingulate cortex and subiculum) provide only minimal protection. We conclude that GABAergic agents prevent NRHypo neurotoxicity mainly by activating GABA receptors in the anterior thalamus, diagonal band of Broca and RSC.  相似文献   

2.
The neurotransmitter glutamate activates the N-methyl-D-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist DL-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

3.
Subanesthetic doses of NMDA receptor antagonists induce positive, negative and cognitive schizophrenia-like symptoms in healthy humans and precipitate psychotic reactions in stabilized schizophrenic patients. These findings suggest that defining neurobiologic effects induced by NMDA antagonists could guide the formulation of experimental models relevant to the pathophysiology of schizophrenia and antipsychotic drug action. Accordingly, the effects of subanesthetic doses of the non-competitive NMDA antagonists ketamine and MK-801 were examined on regional brain [14C]-2-deoxyglucose (2-DG) uptake in rats. The effects of these drugs were compared to those of amphetamine, in order to assess the potential role of generalized behavioral arousal, motor activity and dopamine release in brain metabolic responses to the NMDA antagonists. Subanesthetic doses of MK-801 and ketamine induced identical alterations in patterns of 2-DG uptake. The most pronounced increases in 2-DG for both NMDA antagonists were in the hippocampal formation and limbic cortical regions. By contrast, amphetamine treatment did not increase 2-DG uptake in these regions. In isocortical regions, ketamine and MK-801 reduced uptake in layers 3 and 4, creating a striking shift in the laminar pattern of 2-DG uptake in comparison to control conditions. After amphetamine, the fundamental laminar pattern of isocortical labeling was similar to saline-treated rats. Administration of ketamine and MK-801 decreased 2-DG uptake in the medial geniculate and inferior colliculus, whereas amphetamine tended to increase uptake in these regions. Since ketamine induced similar effects on regional 2-DG uptake as observed for the selective antagonists MK-801, the effects of ketamine are likely related to NMDA antagonistic properties of the drug. The distinct differences in brain 2-DG uptake induced by amphetamine and NMDA antagonists indicate that generalized behavioral arousal, and increased locomotor activity mediated by dopamine release, are not sufficient to account for the alterations in brain metabolic patterns induced by ketamine and MK-801. Thus, the dramatic alteration in regional 2-DG uptake induced by ketamine and MK-801 reflects a state selectively induced by reduced NMDA receptor function.  相似文献   

4.
Previously we have shown that delivery of rapidly recurring hippocampal seizures (RRHS) to awake rats causes a rapid kindling and that RRHS in urethane-anesthetized rats leads to a progressive lengthening of afterdischarges and diminution of paired pulse inhibition. The present experiments examined the relationship between the changes in afterdischarge durations and inhibition. Pre-treatment before RRHS with the non-competitive NMDA receptor antagonists MK-801 and ketamine blocked afterdischarge lengthening. MK-801 also prevented RRHS-induced changes in paired pulse inhibition. For pharmacodynamic and pharmacokinetic reasons the ability of ketamine to counteract RRHS-induced changes of paired pulse inhibition was not examined. MK-801 also blocked the rightward shift of stimulus intensity vs. population spike curves which RRHS caused. We suggest that RRHS leads to an enduring diminution of GABAergic inhibition and that this accounts, at least in part, for the lengthening of afterdischarges seen with recurrent hippocampal seizures. In addition, NMDA receptor activation appears to play a role in this decrease of the potency of GABAergic inhibition. However, mechanisms which are not dependent on NMDA receptor activation also play a critical role in hippocampal epileptogenesis.  相似文献   

5.
Acetylcholine release from the rabbit retina mediated by NMDA receptors.   总被引:5,自引:0,他引:5  
The cholinergic amacrine cells of the rabbit retina may be labeled with 3H-choline, and the activity of the cholinergic population may be monitored by following the release of 3H-ACh. In magnesium-free medium, the glutamate analog NMDA caused massive ACh release, up to 50x the basal efflux. Magnesium blocked the NMDA-evoked release of ACh with an IC50 of 151 microM. The NMDA-evoked release of ACh was unchanged in glycine-free medium or in the presence of 500 microM glycine. However, the block of NMDA-evoked release by 7-chlorokynurenic acid (7-Cl-Kyn) was reversed by exogenous glycine. This suggests that the NMDA receptors mediating ACh release possess an allosteric glycine binding site, but under normal conditions, it is saturated by endogenous glycine. Submaximal doses of NMDA were used to determine the potency of NMDA antagonists and their specificity was established with submaximal doses of other glutamate agonists. DL-2-amino-7-phosphonoheptanoate (DL-AP-7) was a competitive NMDA antagonist, with an IC50 of 33 microM and (+)5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) was a noncompetitive NMDA antagonist, with an IC50 of 10.6 nM. Neither antagonist blocked the light-evoked release of ACh from the retina. Furthermore, light stimulation did not activate the use-dependent block characteristic of MK-801, indicating that the endogenous transmitter did not open the NMDA channel. These results suggest that NMDA receptors do not mediate the physiological input to cholinergic amacrine cells in the rabbit retina.  相似文献   

6.
The neurotransmitter glutamate activates the N-methyl-d-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist dl-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

7.
Three NMDA antagonists (2-amino-7-phosphonoheptanoic acid (APH), MK-801, and ketamine) were tested for their ability to antagonize epileptogenic responses in a synaptic and a non-synaptic model of epileptogenesis in the CA1 region of the hippocampal slice. IC50 values for antagonism of the second population spike in the 'low Mg2+' synaptic model were MK-801 1.5 x 10(-7) M, APH 7.4 x 10(-7) M, ketamine 7.5 x 10(-7) M. IC50 values for antagonism of the frequency of spontaneous field bursts in the non-synaptic 'low Ca2+' model were MK-801 3.2 x 10(-5) M, ketamine 3.2 x 10(-5) M and APH greater than 10(-4) M. The antiepileptogenic action of NMDA antagonists is therefore more pronounced in the model with an important involvement of the NMDA receptor ionophore.  相似文献   

8.
Summary The effects of haloperidol and diazepam were investigated on stereotypies (wall contacts and turn rounds) induced by the non-competitive NMDA antagonist MK-801 in rats. Haloperidol (0.03, 0.10, 0.25 and 0.40mg/kg body weight) caused a dose-dependent antagonism whereas diazepam (3.0 and 5.0 mg/ kg) caused a dose-dependent agonism of the stereotypies induced by 0.30 mg/ kg MK-801 (all drugs given intraperitoneal). Conversely, diazepam (5.0 mg/kg) given alone reduced significantly the number of spontaneous wall contacts and turn rounds. The paradoxial stimulation of MK-801 induced stereotypies by diazepam could be explained by a shift between positive and negative corticostriatothalamic feedback loops envolving GABAergic neurons in favour of the former.  相似文献   

9.
The action of N-methyl-D-aspartate (NMDA) antagonists on motoneurons was studied in the isolated, hemisected frog spinal cord using sucrose gap techniques. NMDA-evoked motoneuron depolarizations were depressed by application of APV, APH, kynurenate, Mg2+ ions, ketamine, and MK-801. Upon returning to normal Ringer's solution after exposure to all antagonists (except MK-801). NMDA responses were significantly potentiated. Kainate- and quisqualate-induced depolarizations were unchanged. The facilitation appeared to result, at least in part, from a direct action on motoneuron membranes since it persisted in the presence of tetrodotoxin which eliminated interneuronal firing. However, indirect actions involving interneurons also contributed to the potentiation because NMDA-evoked changes in K+ release were increased following exposure to NMDA antagonists and return to normal medium. Reduction of temperature (7 degrees C) which should reduce amino acid uptake did not affect results with APV. In addition, desensitization of NMDA responses was not altered by application of APV. The results indicate that NMDA antagonists have complex and long-lasting effects on the function of the NMDA receptor complex.  相似文献   

10.
Status epilepticus (SE) evolves through several stages when untreated. The later stages of SE are less responsive to standard anticonvulsants and may require general anesthesia to suppress seizures. Antagonists acting at the N-methyl-D-aspartate (NMDA) subclass of glutamate (excitatory) receptors have been demonstrated to exert antiepileptic activity in some seizure models. We report experiments performed to determine if NMDA receptor antagonists are effective in stopping seizures in the late stages of SE. A model of limbic SE induced by 90 min of 'continuous' electrical stimulation of the hippocampus in rats was employed. Three NMDA receptor antagonists, one 'competitive' (CPP) and two 'non-competitive' (ketamine and MK-801), were compared to 3 standard antiepileptic drugs (diazepam, phenobarbital, and phenytoin) for their ability to suppress seizures at a physiologically defined stage of SE. All NMDA receptor antagonists, diazepam and phenobarbital were effective in suppressing behavioral and electrographic seizures for varying periods of time. Phenytoin had no effect on SE. Ketamine and MK-801 induced a paradoxical enhancement of electrographic seizures that preceded SE suppression. We believe that NMDA-receptor antagonists offer a novel approach for treating the late stages of SE.  相似文献   

11.
The present study covers both the effects of MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, and pentobarbital on cholinergic terminal damage and delayed neuronal death (DND) in ischemic gerbil. To study the above effects, in vivo microdialysis, immunohistochemical, and morphological techniques were used. MK-801 (3 mg/kg) or pentobarbital (50 mg/kg) were injected intraperitoneally 1 h or 30 min before 5 min ischemia, respectively. Each estimation was then carried out 4, 7, or 14 days after ischemia. Ischemia induced a significant decrease in acetylcholine (ACh) release and a disappearance of choline acetyltransferase (ChAT)-immunoreactivity in the hippocampus in addition to inducing DND. On day 4, MK-801 protected ischemia-induced DND in the hippocampal CA1 subfield. However, MK-801 had no effect against the decrease in ACh release in spite of protection of the decrease in ChAT-immunoreactivity. On day 7 and 14, no protective effect of MK-801 was observed in all estimations. It became clear that the mechanism of cholinergic terminal dysfunction is different from that involved in pyramidal cell death, i.e., excitative neurotoxicity induced by overabundant extracellular glutamate. Pentobarbital also provided protection against DND. However, protective effects of pentobarbital on the decrease in ACh release and the low ChAT-immunoreactivity were incomplete. Our present study indicated a limitation on the efficacy of NMDA receptor antagonist and barbiturate against cerebral ischemia.  相似文献   

12.
The neuroprotective effects of the NMDA antagonists MK-801 and ketamine were analyzed in a mutant strain of Han-Wistar rats which develop neurodegeneration in the hippocampus and cerebellum. Previous experiments have shown that the progressive neuronal degeneration observed in this mutant may be the result of a dysfunctional glutamatergic system. For MK-801 studies, mutants were injected in a chronic paradigm with (+)MK-801 or its weaker acting isomer (-)MK-801 at a dose of 1 mg/kg. Ketamine studies consisted of both acute (50 mg/kg once) and chronic (10 mg/kg multiple times) injection paradigms. MK-801-treated mutants exhibited longer life spans (8-23%) compared to saline-injected mutants. Ketamine-injected mutants in both paradigms also lived slightly longer (6-9%) than the saline mutants. Motor skill deterioration was monitored in an open-field test, and after 50 days of age the MK-801 and ketamine mutants displayed over 20% greater motor skill activity than the saline mutants. In the cerebellum, mutants treated with ketamine and both forms of MK-801 had 10-20% more Purkinje cells surviving at 55 days than the saline mutants. Further, the density of CA3c pyramidal hippocampal neurons in ketamine and MK-801-treated mutants as compared to saline mutants appeared to be greater upon qualitative analysis. This study shows that these mutants derive some protective effects from the NMDA antagonists MK-801 and ketamine, confirming glutamate-induced excitotoxicity as a possible cause of neuronal degeneration in this mutant strain of rat.  相似文献   

13.
Classical anesthetics of the gamma-aminobutyric acid type A receptor (GABA(A))-enhancing class (e.g., pentobarbital, chloral hydrate, muscimol, and ethanol) produce analgesia and unconsciousness (sedation). Dissociative anesthetics that antagonize the N-methyl-D-aspartate (NMDA) receptor (e.g., ketamine, MK-801, dextromethorphan, and phencyclidine) produce analgesia but do not induce complete loss of consciousness. To understand the mechanisms underlying loss of consciousness and analgesia induced by general anesthetics, we examined the patterns of expression of c-Fos protein in the brain and correlated these with physiological effects of systemically administering GABAergic agents and ketamine at dosages used clinically for anesthesia in rats. We found that GABAergic agents produced predominantly delta activity in the electroencephalogram (EEG) and sedation. In contrast, anesthetic doses of ketamine induced sedation, followed by active arousal behaviors, and produced a faster EEG in the theta range. Consistent with its behavioral effects, ketamine induced Fos expression in cholinergic, monoaminergic, and orexinergic arousal systems and completely suppressed Fos immunoreactivity in the sleep-promoting ventrolateral preoptic nucleus (VLPO). In contrast, GABAergic agents suppressed Fos in the same arousal-promoting systems but increased the number of Fos-immunoreactive neurons in the VLPO compared with waking control animals. All anesthetics tested induced Fos in the spinally projecting noradrenergic A5-7 groups. 6-hydroxydopamine lesions of the A5-7 groups or ibotenic acid lesions of the ventrolateral periaqueductal gray matter (vlPAG) attenuated antinociceptive responses to noxious thermal stimulation (tail-flick test) by both types of anesthetics. We hypothesize that neural substrates of sleep-wake behavior are engaged by low-dose sedative anesthetics and that the mesopontine descending noradrenergic cell groups contribute to the analgesic effects of both NMDA receptor antagonists and GABA(A) receptor-enhancing anesthetics.  相似文献   

14.
Ketamine and MK-801 act at phencyclidine receptors to block transmitter activity through the N-methyl-D-aspartate (NMDA) subtype of glutamate (GLU) receptor. These agents also block the potent excitotoxic actions of NMDA and are of interest for their potential ability to protect against neurodegenerative processes mediated by the excitotoxic action of endogenous Glu at NMDA receptors. Here we show that degeneration of thalamic neurons caused by persistent seizure activity in the corticothalamic tract (putative glutamergic transmitter pathway) is prevented by systemic administration of ketamine or MK-801, despite the failure of these agents to eliminate persistent electrographic seizure activity recorded from cortex and thalamus.  相似文献   

15.
N-Methyl-D-aspartate (NMDA) antagonists act by an anti-excitotoxic action to provide neuroprotection against acute brain injury, but these agents can also cause toxic effects. In low doses they induce reversible neuronal injury, but in higher doses they cause irreversible degeneration of cerebrocortical neurons. GABAmimetic drugs protect against the reversible neurotoxic changes in rat brain. Here we show that two GABAmimetic anesthetic agents--propofol and sodium thiopental--protect against the irreversible neurodegenerative reaction induced by the powerful NMDA antagonist, MK-801.  相似文献   

16.
Ketamine and MK-801 are phencyclidine (PCP)-like noncompetitive antagonists of the N-methyl-D-aspartate (NMDA) receptor that produce a use-dependent blockade of the NMDA receptor-coupled channel. Recent studies have suggested that the binding properties of these drugs to the NMDA receptor in-vitro are different. In the present study, the effects of ketamine and MK-801 on the induction of long-term potentiation (LTP) were compared at perforant path--granule cell synapses in anaesthetized rats. LTP was observed in animals treated with either saline or MK-801, but not in those treated with ketamine. These results reveal that ketamine and MK-801 differentially modulate the induction of LTP, and we propose that this differential modulation may be related to the different binding properties of the drugs.  相似文献   

17.
In rats lesioned with 6-hydroxydopamine (6-OHDA) the effect of the noncompetitive N-methyl D-aspartate (NMDA) receptor antagonist, MK-801, the dopamine (DA) D2 receptor agonist quinpirole and the A2A adenosine antagonist SCH 58261 was studied on acetylcholine (ACh) release in the lesioned striatum and contralateral turning behaviour stimulated by the administration of the DA D1 receptor agonist CY 208-243. Administration of CY 208-243 (75, 100 and 200 microg/kg) to 6-OHDA-lesioned rats dose-dependently stimulated ACh release and induced contralateral turning. MK-801 (50 and 100 microg/kg) reduced basal ACh release (max 22%) and did not elicit any turning. MK-801 (50 and 100 microg/kg) potentiated the contralateral turning, but failed to modify the stimulation of ACh release elicited by 100 and 200 microg/kg of CY 208-243. MK-801 (100 microg/kg) prevented the increase in striatal ACh release evoked by the lower dose of CY 208-243 (75 microg/kg) but contralateral turning was not observed. The D2 receptor agonist quinpirole (30 and 60 microg/kg) elicited low-intensity contralateral turning and decreased basal ACh release. Quinpirole potentiated the D1-mediated contralateral turning behaviour elicited by CY 208-243 (100 microg/kg), but failed to affect the increase in ACh release elicited by the D1 agonist. The adenosine A2A receptor antagonist SCH 58261 (1 microg/kg i.v.) failed per se to elicit contralateral turning behaviour. SCH 58261 potentiated the contraversive turning induced by CY 208-243 but failed to affect the increase of ACh release. The results of the present study indicate that blockade of NMDA receptors by MK-801. stimulation of DA D2 receptors by quinpirole and blockade of adenosine A2A receptors by SCH 58261 potentiate the D1-mediated contralateral turning behaviour in DA denervated rats without affecting the action of the D1 agonist on ACh release. These observations do not support the hypothesis that the potentiation of D1-dependent contralateral turning by MK-801, quinpirole or SCH 58261 is mediated by changes in D1-stimulated release of ACh in the striatum.  相似文献   

18.
N-Methyl-D-aspartate (NMDA) receptor antagonists inhibit both the kindling process and the expression of seizures in previously kindled adult rats. Experimental seizures are more readily produced in infant than adult rats, possibly related to a developmental predominance of NMDA receptor-mediated effects. If so, reduction of seizure susceptibility by NMDA receptor antagonists should be more dramatic in infant rats than in adults. We studied the effect of ketamine and MK-801 on kindling epileptogenesis and seizure expression in 15-day-old rats. Ketamine (5, 10, and 20 mg/kg) and MK-801 (0.033 and 0.1 mg/kg) both significantly increased the latency to stage 3 or 4 seizures in dose-dependent fashion. These results were similar to those found in adults but occurred at slightly lower doses. Ketamine 20 mg/kg and MK-801 0.33 mg/kg totally eliminated clinical seizure activity and nearly abolished afterdischarge in previously kindled infant rats, effects exceeding those reported in adults using doses up to 6 times as great. These results support the hypotheses that NMDA receptor-mediated neurotransmission plays an important role in seizure production and the increased seizure susceptibility in immature brain and raise the possibility that NMDA receptor antagonists could be useful antiepilepsy agents in young children.  相似文献   

19.
We have reexamined the effect of NMDA antagonists [(+)MK-801 and ketamine] on rapid tolerance to chlordiazepoxide. (+)MK-801 and ketamine blocked the development of rapid tolerance to chlordiazepoxide, but this effect was dependent on the dose ratio of the NMDA antagonist to that of the benzodiazepine used to produce rapid tolerance. Furthermore, NMDA antagonists blocked both learned and unlearned tolerance to chlordiazepoxide. It appears that in addition to impairment of memory and learning, NMDA antagonists may also influence some other mechanism involved in the production of drug tolerance.  相似文献   

20.
Inhibition of N-methyl-D-aspartate evoked sodium flux by MK-801   总被引:3,自引:0,他引:3  
The inhibition of N-methyl-D-aspartate (NMDA) stimulated 22Na+ efflux from rat hippocampal slices was studied using competitive and non-competitive receptor antagonists. There was a good correlation between the abilities of the competitive antagonists to block NMDA evoked 22Na+ efflux and their potencies as inhibitors of L-[3H]glutamate binding. The recently reported novel NMDA receptor antagonist, (+)-5-methyl-16,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) was shown to non-competitively inhibit NMDA stimulated 22Na+ efflux with an IC50 value of 0.4 microM. Relatively high (10 microM) concentrations of MK-801 had no effects on quisqualic acid, alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), or kainic acid stimulated efflux. However, MK-801 was able to block 22Na+ efflux induced by ibotenic acid and L-homocysteic acid, amino acids that act as NMDA receptor agonists. MK-801, (-)-MK-801, and non-competitive NMDA receptor antagonists of the arylcyclohexylamine and dioxolane classes inhibited NMDA stimulated 22Na+ efflux with potencies that reflected their abilities to compete for [3H]MK-801 binding sites in rat cortical membranes. These results indicate the utility of the 22Na+ efflux assay in studying the properties of NMDA receptors and confirm the nature and selectivity of the inhibition of NMDA receptor linked ion channel activation by MK-801.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号