首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Total and regional bone mass in female soccer players   总被引:2,自引:0,他引:2  
This cross-sectional study investigated bone mass in female athletes participating in an impact-loading sport (soccer), and evaluated whether any changes in bone mass could be related to the type of weight-bearing loading and muscle strength. The group of soccer players consisted of 16 second-division female players (age 20.9±2.2 years) training for about 6 hours/week. The reference group consisted of 13 nonactive females (age 25.0±2.4 years) not participating in any kind of regular or organized sport activity. The groups were matched according to weight and height. Areal bone mineral density (BMD) was measured in total body, head, lumbar spine, femoral neck, Ward's triangle, trochanter, the whole femur and humerus, and in specific sites in femur diaphysis, distal femur, proximal tibia, and tibia diaphysis using dual X-ray absorptiometry. Isokinetic concentric peak torque of the quadriceps and hamstring muscles was measured using an isokinetic dynamometer. The soccer players had significantly (P<0.05-0.01) higher BMD in the lumbar spine (10.7%), femoral neck (13.7%), Ward's triangle (19.6%), nondominant femur and humerus (8.2 and 8.0%, respectively), distal femur (12.6%), and proximal tibia (12.0%) compared with the nonactive women. There was no significant difference in muscle strength of the thigh between the two groups. In the nonactive group, muscle strength in the quadriceps and especially hamstrings, was correlated to BMD of the adjacent bones (whole femur, hip sites) and also to distant sites (humerus). In the soccer group, there were no correlations between muscle strength and BMD of the adjacent and distant bones. Soccer playing and training appears to have a beneficial effect on bone mass in young females, and it seems that there is a site-specific skeletal response to the type of loading subjected to each BMD site. Muscle strength in the thigh is not related to bone mass in female soccer players.  相似文献   

2.
The purpose of this cross-sectional study was to evaluate bone mass in female athletes participating in an impact loading sport (volleyball), and especially to investigate whether any changes in bone mass might be related to the type and magnitude of weightbearing loading and muscle strength. The volleyball group consisted of 13 first division players (age 20.9 ± 3.7 years) training for about 8 hours/week, and the reference group consisted of 13 nonactive females (age 25.0 ± 2.4 years) not participating in any kind of regular or organized sport activity. The groups were matched according to weight and height. Areal bone mineral density (BMD) was measured in total body, head, lumbar spine, femoral neck, Ward's triangle, trochanter, the whole femur, and humerus using dual-energy-X-ray absorptiometry. Isokinetic concentric peak torque of the quadricep and hamstring muscles was measured using an isokinetic dynamometer. Compared with the controls, the volleyball players had a significantly (P < 0.05–0.01) higher BMD of the total body (6.1%), lumbar spine (13.2%), femoral neck (15.8%), Ward's triangle (17.9%), trochanter (18.8%), nondominant femur (8.2%), and humerus (dominant 9.5%, nondominant 10.0%), but not of the head and the dominant whole femur. The dominant humerus showed significantly higher BMD than the nondominant humerus in both the volleyball and nonactive group (P < 0.05). There was no significant difference in muscle strength of the thigh between the two groups. In the nonactive group, muscle strength in the quadriceps, and especially hamstrings, was correlated to BMD of the adjacent bones (whole femur, hip sites) and also to distant sites (humerus). However, in the volleyball group there were no correlations between muscle strength and BMD of the adjacent bones, but quadricep strength correlated to BMD of the humerus. These results clearly show that young female volleyball players have a high bone mass. The demonstrated high bone mass seems to be related to the type of loading subjected to each BMD site. Muscle strength of the thigh seems to have little impact on BMD in female volleyball players. Received: 18 June 1996 / Accepted: 31 October 1996  相似文献   

3.
The skeleton of a cricket fast bowler is exposed to a unique combination of gravitational and torsional loading in the form of substantial ground reaction forces delivered through the front landing foot, and anterior-posterior shear forces mediated by regional muscle contractions across the lumbo-pelvic region. The objectives of this study were to compare the hip structural characteristics of elite fast bowlers with recreationally active age-matched controls, and to examine unilateral bone properties in fast bowlers. Dual-energy X-ray absorptiometry of the proximal femur was performed in 26 elite male fast bowlers and 26 normally active controls. Hip structural analysis (GE Lunar; enCORE version 15.0) determined areal bone mineral density (BMD) of the proximal femur, and cross-sectional area, section modulus (Z), cross-sectional moment of inertia, and femoral strength index at the narrow region of the femoral neck. Mean femoral neck and trochanter BMD were greater in fast bowlers than in controls (p?<0.001). All bone geometry properties, except for cross-sectional moment of inertia, were superior in fast bowlers (p?<0.05) following adjustment for height and lean mass. There were no asymmetries in BMD or bone geometry when considering leg dominance of the fast bowlers (p?>?0.05). Elite fast bowlers have superior bone characteristics of the proximal femur, with results inferring enhanced resistance to axial compression (cross-sectional area), and bending (Z) forces, and enhanced strength to withstand a fall impact as indicated by their higher femoral strength index. No asymmetries in hip bone properties were identified, suggesting that both torsional and gravitational loading offer significant osteogenic potential.  相似文献   

4.
To evaluate whether the type of weight-bearing loading subjected to the skeleton during horseback-riding was associated with differences in bone mass and muscle strength of the thigh, we investigated bone mass and isokinetic muscle strength in 20 female horse riders (age 17.9 ± 0.6 years) who were riding 7.0 ± 3.4 hours/week, and 20 nonactive females (age 17.8 ± 1.1 years). The groups were matched according to age, weight, and height. Areal bone mineral density was measured in total body, head, lumbar spine, right femoral neck, Ward's triangle, and trochanter, the whole dominant and nondominant humerus, and in specific sites in the right femur diaphysis, distal femur, proximal tibia, and tibia diaphysis using dual X-ray absorptiometry. Isokinetic concentric and eccentric peak torque of the quadricep and hamstring muscles were measured using an isokinetic dynamometer. There were no significant differences in bone mass between the horseback riders and nonactives at any site measured. The horse riders were significantly (P < 0.05–0.01) stronger in concentric hamstrings strength at 90°/second and 225°/second and in eccentric quadricep and hamstring strength at 90°/second. Horseback riding in young females is associated with a high muscle strength of the thigh, but not with a high bone mass. Received: 18 February 1997 / Accepted: 15 October 1997  相似文献   

5.
In this cross-sectional study, bone mass and muscle strength of the thigh were investigated in 16 Caucasian female cross-country skiers, age 16.2 ± 0.3 years, that had been ski-training for 6.4 ± 1.8 years (range 3–9 years) and were now training for 6.3 ± 2.4 hours/week (range 3–12 hours). They were compared with 16 nonactive females, age 16.4 ± 0.7 years. The groups were matched according to age, weight, height, and pubertal status. Areal bone mineral density (BMD) was measured using dual energy X-ray absorptiometry, in the total body, head, both total humerus and humerus diaphyses, spine, and in the right femoral neck, greater trochanter, femoral diaphysis, distal femur, proximal tibia, and tibia diaphysis. Bone mineral apparent density (BMAD) was also calculated for the femoral neck and humerus diaphyses. Isokinetic muscle strength of the quadricep and hamstring muscles was measured in an isokinetic dynamometer. Compared with the controls, the cross-country skiing group had significantly higher BMD in the right whole humerus (6.9%), left whole humerus (9.2%), left humerus diaphysis (8.1%), femoral neck (8.9%), greater trochanter (9.3%), femur diaphysis (7.6%), and BMAD of the femoral neck (+19.4%). In the nonactive group there were significant side-to-side differences in BMD of the whole humeri, humerus diaphyses, and BMAD of the humerus diaphyses (3.1%, 5.4%, and 8.8% higher in the right arm, respectively). No such differences were found in the cross-country skiing group. Lean body mass was significantly higher in the cross-country skiers (21.7%), and fat mass (−25.5%) and body fat percent (−28.0%) were significantly lower compared with the nonactive group. There were, however, no significant differences in concentric peak torque of the thigh muscles between the two groups. Stepwise regression analyses revealed that BMI was the best predictor of several sites in the nonactive group. In the cross-country group, on the other hand, muscle strength was a strong predictor of BMD, both at adjacent and more distant BMD sites. In conclusion, it seems that this type of endurance training is associated with a site-specific higher bone mass that may be associated with the type and magnitude of loading during off-season and during the main sports activity, cross-country skiing. Received: 4 May 1998 / Accepted: 8 March 2000  相似文献   

6.
Bone mineral mass in males and females with and without Down syndrome   总被引:1,自引:0,他引:1  
Previous bone comparison studies between subjects with and without Down syndrome (DS) were performed using bone mineral density (BMD) as the dependent variable, and mainly focused on lumbar spine region. The purpose of this study was to compare bone mineral mass adjusted for bone and body size, in limbs, lumbar spine, and femoral neck between males and females with and without DS. Subjects were 66 females (33 with DS) and 68 males (34 with DS) aged 14–40 years. Analysis of covariance (ANCOVA) was used to analyze the main and interaction effects of gender and condition on bone mineral mass. For this purpose, adjusted bone mineral content (BMC) (for bone area, height, and age), volumetric bone mineral density (vBMD) (for age), and composite indices of femoral neck strength (for age), were used as the dependent variables, corrected additionally for body composition variables selected by regression analysis. ANCOVA revealed lower lumbar spine vBMD in DS than in control subjects with (–5%, P=0.013), or without body weight adjustments (–6%, P=0.003). In femoral neck, the mean of each strength measure was also lower in DS than in control subjects. Mean differences between groups were, with and without additional adjustments for fat mass, respectively, –8% (P=0.009), and –13% (P<0.001) for compressive strength, –11% (P=0.036), and –16% (P=0.004) for bending strength, and –7% (P=0.031), and –11% (P=0.002) for impact strength. These lumbar spine and femoral neck differences between groups were highest in young adults (>20 years) and not significant in adolescents. No interaction effect was observed between gender and condition. In conclusion, DS was shown to be a risk factor for low vBMD in lumbar spine, and for diminished bone strength relative to the loads that the femoral neck must bear. Body composition did not reach statistical significance as predictor of bone differences in these sites between subjects with and without DS, suggesting that other factors may be involved in this detrimental bone status, particularly in young adults compared with adolescents.  相似文献   

7.
We have developed an analytical model of long bone cross-sectional ontogeny in which appositional growth of the diaphysis is primarily driven by mechanical stimuli associated with increasing body mass during growth and development. In this study, our goal was to compare theoretical predictions of femoral diaphyseal structure from this model with measurements of femoral bone mineral and geometry by dual energy x-ray absorptiometry. Measurements of mid-diaphyseal femoral geometry and structure were made previously in 101 Caucasian adolescents and young adults 9–26 years of age. The data on measured bone mineral content and calculated section modulus were compared with the results of our analytical model of cross-sectional development of the human femur over the same age range. Both bone mineral content and section modulus showed good correspondence with experimental measurements when the relationships with age and body mass were examined. Strong linear relationships were evident for both parameters when examined as a function of body mass.  相似文献   

8.
The aim of this study was to investigate any differences in bone mass at different sites between young adults subjected to a high physical activity and a group of young adults with a low level of physical activity. In addition, we compared the relationship among bone mass, muscle strength, and body constitution in these two groups. The reference group consisted of 20 men, age 24.6 ± 2.3 years, not training for more than 3 hours per week. The ice hockey players consisted of 20 players, age 23.4 ± 4.9 years, from an ice hockey team in the second highest national Swedish league, training for about 10 hours per week. The groups were matched according to age, height, and weight. Areal bone mineral density (BMD) was measured in total body, head, humerus, spine, pelvis, femur, femoral neck, Ward's triangle, trochanter, femur diaphysis, proximal tibia, and tibia diaphysis using dual energy X-ray absorptiometry. BMD was significantly higher in the total body (8.1%), humerus (11.4%), spine (12.7%), pelvis (12.4%), femoral neck (10.3%), femur (7.4%), proximal tibia (9.8%), and tibia diaphysis (7.5%) in the high activity group. Fat mass was significantly lower in the high activity group (18.7%). The high activity group also had a significantly higher lean body mass (5.4%) and a significantly higher isokinetic muscle strength of the quadriceps muscle compared with the reference group. In the reference group, there was a general strong independent relationship between muscle strength of the thigh and all BMD sites, except for the head, tibia diaphysis, and proximal tibia. Furthermore, in the same group, body mass index (BMI) independently predicted pelvis BMD. On the contrary, in the high activity group, muscle strength did not predict any BMD site at all. In the same group, body constitutional parameters (weight, height, and fat mass) independently predicted pelvis BMD, and BMI was shown to be an independent predictor of humerus BMD. The differences in BMD between the groups seem to be site-specific and may be associated with the type and magnitude of loading during off season training and preferentially during ice hockey. High physical activity seems to weaken the relationship between BMD and muscle strength. Hence, impact forces may be of greater importance in regulating bone mass than muscle strength in itself in highly trained athletes. Received: 15 October 1997 / Accepted: 1 November  相似文献   

9.
Osteoporotic fractures are less prevalent in African Americans than in caucasians, possibly because of differences in bone structural strength. Bone structural adaptation can be attributed to changes in load, crudely measured as lean and fat mass throughout life. The purpose of this analysis was to describe the associations of leg lean mass, total body fat mass, and hours walked per week with femoral bone mineral density (BMD) and bone geometry in a cross-sectional sample of 1,748 men of African descent between the ages of 40 and 79 years. BMD, section modulus (Z), cross-sectional area (CSA), and subperiosteal width were measured from dual energy X-ray absortiometry (DXA) scans using the hip structural analysis (HSA) program. Multiple linear regression models explained 35% to 48% of the variance in bending (Z) and axial (CSA) strength at the femoral neck and shaft. Independent of all covariates including total body fat mass, one standard deviation increase in leg lean mass was significantly associated with a 5% to 8% higher Z, CSA, and BMD (P < 0.010) at the neck and shaft. The number of hours walked per week was not a strong or consistent independent predictor of bone geometry or BMD. We have shown that weight is the strongest independent predictor of femur BMD and geometric strength although the effect appears to be mediated by lean mass since leg lean mass fraction and total body fat mass fraction had significant and opposing effects at the narrow neck and shaft in this group of middle aged and elderly men.  相似文献   

10.
Introduction Black and white South Africans hail from vastly disparate cultural and socio-economic backgrounds the result of which exposes black children to numerous factors known to impact negatively on bone mass. Thus, we studied ethnic differences in bone size and bone mass between 476 10-year-old black and white South African girls and boys (black boys n=182, white boys n=72, black girls n=158, white girls n=64) who formed part of a longitudinal cohort of children born in Johannesburg, South Africa, during 1990. Methods Bone area (BA) and bone mineral content (BMC) were measured at the whole body, total hip, femoral neck, lumbar spine (L1–L4) and mid- and distal radii by dual energy X-ray absorptiometry (DXA). Vertebral heights and metacarpal indices were measured. Anthropometry, skeletal maturity and pubertal development were also assessed. Results After correction for height, weight, gender and puberty, black children had greater BMC at the femoral neck (P<0.0001), total hip (P<0.05) and mid-radius (P<0.001) than white children.. At the whole body, lumbar spine, and distal one-third of the radius, there were no differences in BMC between black and white children after correction for differences in body size. After correction for height and puberty, vertebral heights were less in black children than white children, and cortical areas at the second metacarpal were greater in black children. Conclusion These findings suggest that, at the femoral neck, total hip and mid-radius, these differences are not a result of differences in anthropometry, bone age or pubertal stage, or environmental factors but are most likely to result from genetic differences.  相似文献   

11.
The attainment of optimal peak bone mass during adolescence is important in the primary prevention of osteoporosis. Exercise may contribute to skeletal development and bone density during growth, although competitive exercise is suggested to have an adverse effect. This study assesses the effect of moderate exercise on the bone density of adolescent females. Additionally, other factors which significantly influence attainment of peak bone mass were identified. This was a cross-sectional study of 42 adolescent females, classified as runners (n=15) or non-runners (n=27). Nutrient intake, energy expenditure, menstrual history and pubertal stage were recorded. Bone age, skinfold thickness, body composition and bone mineral density (BMD) of total body, lumbar spine and proximal femur were measured. Statistical analyses used Student's t-test, Pearson correlation and multiple regression analyses. Runners had lower fat mass and higher lean mass, with a trend to higher BMD in all sites measured. There were no significant differences in menstrual cycle regularity, age at menarche or number who had attained menarche. Pubic hair development was similar in both groups. Breast development was delayed in runners, although this may have been a function of lower fat mass in this group. When subjects were categorized according to menarchal status, postmenarchal girls were significantly taller and heavier, with higher fat mass and significantly higher total body and lumbar spine BMD. There was no significant relationship between BMD at any site and dietary nutrient intake. Multiple regression analyses, using BMD as the dependent variable, identified running status, pubertal stage, fat mass and lean mass as significant determinants. When BMD/height was used, significant determinants in total body BMD were fat mass, pubertal stage and running status, while in the lumbar spine, only the latter two variables remained significant. In conclusion, body composition, physical activity and sexual maturity were identified as significant determinants of bone density during adolescence. Runners had significantly lower body fat than non-runners, but this did not interfere with hormonal cyclicity, and caused no detriment to their bone density. The results of this study are reassuring, since they indicate that sub-elite competitive athletics has no detrimental effect on bone mass accrual in adolescent females.  相似文献   

12.
The purpose of this study was to examine the relationships among bone mineral density (BMD), body composition, and isokinetic strength in young women. Subjects were 76 women (age: 20 ± 2 yr, height: 164 ± 6 cm, weight: 57 ± 6 kg, body fat: 27 ± 4%) with a normal body mass index (18–25 kg/m2). Total body, nondominant proximal femur, and nondominant distal forearm BMD were measured with dual-energy x-ray absorptiometry. Isokinetic concentric (CON) and eccentric (ECC) strength of the nondominant thigh and upper arm were measured at 60 deg/sec. Fat-free mass (FFM) correlated (P < 0.001) with BMD of the total body (r = 0.56) and femoral neck (r = 0.52), whereas fat mass (FM) did not relate to BMD at any site. Leg FFM, but not FM, correlated with BMD in all regions of interest at the proximal femur. Weak associations were observed between arm FFM and forearm BMD. Isokinetic strength did not relate to BMD at any site after correcting for regional FFM. In conclusion, strong, independent associations exist between BMD and FFM, but not FM or isokinetic strength, in young women.  相似文献   

13.
Petit MA  Beck TJ  Lin HM  Bentley C  Legro RS  Lloyd T 《BONE》2004,35(3):750-759
We used 10 years of longitudinal data from Penn State Young Women's Health Study to explore predictors of adult bone structural geometry and strength. One hundred twelve participants were enrolled in the study at age 12. We report findings on the 76 participants who remained in the study for 10 years. Measurements were recorded biannually for the first 4 years and annually thereafter. Proximal femur DXA scans (Hologic QDR 2000) were taken from 17-22 years and analyzed using a hip structure analysis program to assess areal bone mineral density (BMD, g/cm2), subperiosteal width, cortical thickness, bone cross-sectional area (CSA), and section modulus (Z) at the narrow neck and femoral shaft. Total body lean mass (g) was measured with DXA total body scans. Nutrition, anthropometry, and sex steroids [testosterone (T) and estradiol (E2)] were measured from ages 12-22 years. Multiple regression models were used to assess predictors of change in bone variables (17-22 years) and absolute bone values (average of age 21 and 22 years, n = 79). Neck Z (+3.1%) and width (+1.3%), but not BMD (-0.8%), increased significantly from age 17 to 22 years. At the shaft, all variables increased (+1.0-4.0%, P < 0.01). After controlling for baseline (age 17) height, weight and bone measurement, weight change (neck) or lean mass (shaft), and age of menarche were the primary predictors of change in bone strength. After controlling for height and weight, only lean mass predicted absolute young adult Z at both the neck (r2 = 0.48, P < 0.01) and the shaft (r2 = 0.67, P < 0.01). When lean mass was removed from the model, sports exercise score replaced lean mass as a predictor of Z at both neck (r2 = 0.40, P < 0.01) and shaft (r2 = 0.60, P < 0.01) sites. For neck and shaft cortical thickness and BMD, both estradiol and sports score/lean mass were positive predictors (r2 = 0.15-0.40, P < 0.01). For neck bone width, testosterone levels (negative) and lean mass (positive) were significant (r2 = 0.48). Results were similar for each geometric variable at the shaft site. These data suggest that bone adapts its bending strength primarily to mechanical loading (represented by lean mass and sports exercise score) and that sex steroids are associated with bone geometric structure.  相似文献   

14.
The objective of this study was to evaluate the relationship among bone mineral density (BMD), physical activity, muscle strength, and body constitution, in young men with a low or moderate level of physical exercise. Another aim was to investigate whether the head is unaffected by physical activity. The subjects consisted of 33 Caucasian healthy men, mean age 24.8 ± 2.3 years. BMDs of the total body, lumbar spine (L2-L4), femoral neck, Ward's triangle and trochanter, humerus, and head were measured using dual-energy-X-ray absorptiometry (DXA). Bivariate correlations were measured among the different BMD sites and age, weight, height, body mass index (BMI), fat mass, lean body mass, amount of physical activity (hours/week), hamstrings strength, and quadriceps strength. Significant predictors were found for all BMD sites except the head. Using all these variables, only 6% of the variation in BMD of the head could be explained, whereas 46% (total body), 31% (humerus), 17% (lumbar spine), 38% (femoral neck, Ward's), and 41% could be explained for the trochanter. Physical activity and muscle strength were found to be independent significant predictors of BMD of the total body and the sites at the proximal femur. These results suggest that at the time of peak bone mass attainment, physical activity is an important predictor of the clinically relevant proximal femur in young men with a low or moderate level of physical activity. Furthermore, since head BMD was not related to the level of physical activity, we suggest that head BMD may be used as an internal standard, to control for selection bias, in studies investigating the effect of physical activity on bone mass. Received: 5 February 1996 / Accepted: 24 September 1996  相似文献   

15.
We investigated the association of age at onset of type 1 diabetes with areal bone mineral density (aBMD), estimates of bone strength, and outer diameter. Using dual-energy X-ray absorptiometry (DXA), aBMD, axial strength (cross-sectional area [CSA]), bending strength (section modulus [SM]), and outer diameter at the narrow neck, intertrochanter, and shaft of the proximal femur were determined for 60 adults. Analysis of covariance (ANCOVA) was used to determine if the DXA-based measures of bone were related to age at onset and if this relationship differed by gender. Age at onset, gender, and the interaction of age at onset by gender were included in the ANCOVA models along with current age, duration, height, lean soft tissue mass, and hemoglobin A1c as covariates. In the adjusted models with CSA, SM, or outer diameter as the dependent variable, age at onset (p<0.01) and gender (p<0.0001) were significant with no interaction. For shaft aBMD, there was a significant age at onset by gender interaction (p=0.0285), where an earlier onset was associated with lower aBMD in the femoral shaft of females but not males. The findings suggest that an earlier onset of type 1 diabetes is associated with lower measures of bone strength and outer diameter.  相似文献   

16.
This cross-sectional study used peripheral quantitative computed tomography (pQCT) to evaluate the influences of age, body size, puberty, calcium intake, and physical activity on bone acquisition in healthy early adolescent girls. The pQCT technique provides analyses of volumetric bone mineral density (vBMD) (mg/cm(3)) for total as well as cortical and trabecular bone compartments and bone strength expressed as polar strength strain index (mm(2)). Bone mass of the nondominant distal and midshaft tibia by pQCT and lumbar spine and hip by dual X-ray absorptiometry (DXA) were measured in 84 girls ages 11-14 yr. Pubertal stage, menarche status, anthropometrics, and 3-d food intake and physical activity records were collected. Total and cortical bone mineral content and vBMD measurements by pQCT were significantly related to lumbar spine and femoral neck BMD measurements by DXA. We did not note any significant determinants or predictors for trabecular bone mass. Body weight was the most important predictor and determinant of total and cortical bone density and strength in healthy adolescent girls. Menarche, calcium intake, height, body mass index, and weight-bearing physical activity level age were also identified as minor but significant predictors and determinants of bone density and strength. Bone measurements by the pQCT technique provide information on bone acquisition, architecture, and strength during rapid periods of growth and development. Broader cross-sectional studies using the pQCT technique to evaluate the influence of age, gender, ethnicity, puberty, body size, and lifestyle factors on bone acquisition and strength are needed.  相似文献   

17.
To estimate genetic effects on femoral neck geometry and the distribution of bone mineral within the proximal femur a cross-sectional twin analysis was carried out at a university hospital that compared correlations in these traits in pairs of mono- and dizygo-tic female twins. Monozygotic (MZ, n=51 pairs, age 49.1±9.3 years) and dizygotic (DZ, n=26 pairs, age 45.7±11.3 years) twins were randomly selected from a larger sample of twins previously studied. Measurements of bone mineral density (BMD), femoral neck angles and length, cross-sectional area and moment of interia, the center of mass of the narrowest cross-section of the femoral neck, and BMDs of regions within the femoral neck were made. A summary index of the resistance of the femoral neck to forces experienced in a fall with impact on the greater trochanter (Fall Index, FI) was calculated. MZ pair intraclass correlations (rMZ) were significantly (p<0.05) different from zero for all bone mass and femoral geometry variables (0.35<rMZ<0.82). DZ pair correlations (rDZ) were lower thanrMZ for all variables (0.04<rDZ<0.52) except femoral neck length (rDZ=0.38, rMZ=0.36). After adjustment for BMD of the femoral neck,rMZ was significantly greater thanrDZ, yielding high heritability estimates for regional BMDs (0.72<H 2<0.78), the center of mass of the femoral neck (H 2=0.70, –0.04 to 1.43 95% CI) and the resistance of the femoral neck to forces experienced in a fall (FI,H 2=0.94, 0.06 to 1.85 95% CI), but not for femoral neck length. Adjustments for age did not alter these findings. It is concluded that there are significant familial influences on the distribution of femoral bone mass and on the calculated structural strength of the proximal femur, but not on femoral neck length. If the assumptions of the twin model are correct, this is evidence for genetic factors influencing these traits.  相似文献   

18.
Hip fractures are the most serious complication of osteoporosis. Although low proximal femoral bone mineral density (BMD) does not cause hip fractures directly, it is clearly a prerequisite for the increased risk associated with aging. To investigate the mechanism of the age-related decline in proximal femoral bone mineral density, we have examined the relative importance of muscle strength, physical fitness, and body mass index (BMI) in addition to age in the determination of proximal femoral BMD in 73 healthy female volunteers age 20-75 years. Muscle strength was an independent predictor of BMD at all three sites in the proximal femur as well as in the lumbar spine and forearm; proximal femur BMD was also predicted by physical fitness. BMI was a positive predictor of bone mass at all sites. In the proximal femur, age was not an independent predictor of BMD at any site. In postmenopausal women muscle strength was a significant predictor of bone mass in the femur and forearm, but not in the spine. However, BMI remained predictive of bone mineral at all sites. Muscle strength, physical fitness, and weight appear to exert independent effects upon bone mass. Age effects may be mediated indirectly through associated changes in these factors. The integrated physical load on the skeleton may be a final common pathway.  相似文献   

19.
The effects of growth and pubertal development on the bone mineral density (BMD) of the lumbar spine and hip in peripubertal Japanese children were studied as a basis for evaluating the effects of modifiable factors on bone mass gain. The study comprised bone mass measurements in the lumbar spine (L2–4), femoral neck, and total hip using dual-energy X-ray absorptiometry as well as body size measurements and detailed interviews on medical history and pubertal status. The subjects were 404 first-grade students in three junior high schools (129 boys and 275 girls, mean age 12.8 ± 0.3 years) with no diseases or medication that would affect bone metabolism. BMD at each site showed an increasing trend with physical growth and sexual maturity. Significant positive correlations were observed between BMD at every skeletal site and height, weight, and grip strength in pre- and postpubertal boys and girls. In multiple regression analyses, pubertal development had a significant positive independent effect on BMD at every skeletal site in girls, but not in boys. Physical and pubertal development showed major effects on BMD, but the magnitude of these effects differed in boys and girls, even if they were of the same age. We conclude that confounding factors due to physical and pubertal development should be taken into consideration in different ways for boys and girls in investigations on the effects of environmental or behavioral factors on bone mass acquisition in peripubertal children.  相似文献   

20.
The femoral neck is a relevant and sensitive site for studying the degree of osteopenia. Engineering principles predict that bone structural parameters, like cross-sectional geometry, are important determinants of bone mechanical parameters. Mechanical parameters are also directly affected by the material properties of the bone tissue. However, the relative importance of structural and material properties is still unknown. The aim of this study was to compare bone competence and structural parameters between a murine strain showing a low bone mass phenotype, C57BL/6 (B6), and another one showing a high bone mass phenotype, C3H/He (C3H), in order to better determine the role of bone structure and geometry in bone failure behavior. Murine femora of 12- and 16-week-old B6 and 12- and 16-week-old C3H inbred strains were mechanically tested under axial loading of the femoral head. In order to assess the structural properties, we performed three-dimensional morphometric analyses in five different compartments of the mouse femur using micro-computed tomography. The mechanical tests revealed that B6 femora became stiffer, stronger, and tougher at 12-16 weeks, while bone brittleness stayed constant. C3H bone stiffness increased, but strength remained constant, work to failure decreased, and bone became more brittle. These age effects indicated that B6 did not reach peak bone properties at 16 weeks of age and C3H did reach maximal skeletal biomechanical properties before 16 weeks of age. Our investigations showed that 83% of the strength of the femoral neck in the B6 strain was explained by cortical thickness at this location; in contrast, in C3H none of the mechanical properties of the femoral neck was explained by bone structural parameters. The relative contributions of bone structural and material properties on bone strength are different in B6 and C3H. We hypothesize that these different contributions are related to differences at the ultrastructural level of bone that affect bone failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号