首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
Although a number of chemokine receptors display coreceptor activities in vitro, chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) remain the major coreceptors used by the human immunodeficiency virus type 1 (HIV-1). In this study, we used an envelope-mediated fusion assay to demonstrate low CCR4 coreceptor activity with some primary HIV-1 and simian immunodeficiency virus-1 (mac316) isolates in vitro. The coreceptor activity was sensitive to CCR4-specific antibodies and to the CCR4-specific chemokine ligand macrophage-derived chemokine (MDC)/chemokine ligand 22 (CCL22). Treatment of peripheral blood mononuclear cells (PBMCs; which express high levels of CCR4) with CCL22 caused down-modulation of endogenous CCR4 but had no significant effect on HIV-1 entry, suggesting that CCR4 may not be used as an entry coreceptor. Despite expression of other minor coreceptors on PBMCs, CCR5 and CXCR4 are preferentially used by HIV-1 isolates, as shown by chemokine-inhibition data. To determine the factors involved in this selective use, we analyzed CCR4 coreceptor activity and compared it with CCR5 use in PBMCs. We used a quantitative fluorescence-activated cell-sorting assay to estimate the numbers of CCR4 and CCR5 antibody-binding sites (ABS) on PBMCs. Although CCR4 was found on a higher percentage of CD4(+) cells, CCR5 ABS was twofold greater than CCR4 ABS on CD4(+) cells. Confocal microscopy revealed strong cell-surface CD4/CCR5 but weak CD4/CCR4 colocalization in PBMCs. Binding studies demonstrated that soluble gp120 had greater affinity to CCR5 than CCR4. The results suggested that coreceptor density, colocalization with CD4, and affinity of the viral gp120 to the coreceptor may determine preferential coreceptor use by HIV-1.  相似文献   

2.
A human CD4-positive T cell line from a donor homozygous negative for the chemokine receptor CCR5 was established, characterized, and used for determining the coreceptor usage of human immunodeficiency virus type 1 (HIV-1) isolates. Clones of this IL-2 dependent human T-cell lymphotropic virus type 1 (HTLV-I) immortalized cell line, named IsnoR5 clones 1 and 2, are susceptible to infection by HIV-1 isolates that use CXCR4 as a coreceptor but resistant to infection by CCR5 tropic HIV-1 viruses. HIV-1 isolates whose replication is inhibited in IsnoR5 cells in the presence of the bicyclam AMD 3100, a CXCR4 specific inhibitor, utilize a coreceptor distinct from CCR5 and CXCR4. Using a panel of primary HIV-1 isolates we have shown that a single T cell line is sufficient to discriminate between use of CCR5, CXCR4 or an alternative coreceptor. As IsnoR5 clone 1 cells revealed the existence of even minor populations of CXCR4-using virus variants, they could be useful for the early identification of changes in coreceptor usage in HIV infected individuals facilitating the timely introduction of appropriate clinical treatments.  相似文献   

3.
The human immunodeficiency virus replication cycle begins by sequential interactions between viral envelope glycoproteins with CD4 molecule and a member of the seven-transmembrane, G-protein-coupled, receptors' family (coreceptor).In this report we focused on the contribution of CCR8 as alternative coreceptor for HIV-1 and HIV-2 isolates. We found that this coreceptor was efficiently used not only by HIV-2 but particularly by HIV-1 isolates. We demonstrate that CXCR4 usage, either alone or together with CCR5 and/or CCR8, was more frequently observed in HIV-1 than in HIV-2 isolates. Directly related to this is the finding that the non-usage of CXCR4 is significantly more common in HIV-2 isolates; both features could be associated with the slower disease progression generally observed in HIV-2 infected patients.The ability of some viral isolates to use alternative coreceptors besides CCR5 and CXCR4 could further impact on the efficacy of entry inhibitor therapy and possibly also in HIV pathogenesis.  相似文献   

4.
The bridging sheet region of the gp120 subunit of the HIV-1 Env protein interacts with the major virus coreceptors, CCR5 and CXCR4. We examined the impact of mutations in and adjacent to the bridging sheet region of an X4 tropic HIV-1 on membrane fusion and entry inhibitor susceptibility. When the V3-loop of this Env was changed so that CCR5 was used, the effects of these same mutations on CCR5 use were assayed as well. We found that coreceptor-binding site mutations had greater effects on CXCR4-mediated fusion and infection than when CCR5 was used as a coreceptor, perhaps related to differences in coreceptor affinity. The mutations also reduced use of the alternative coreceptors CCR3 and CCR8 to varying degrees, indicating that the bridging sheet region is important for the efficient utilization of both major and minor HIV coreceptors. As seen before with a primary R5 virus strain, bridging sheet mutations increased susceptibility to the CCR5 inhibitor TAK-779, which correlated with CCR5 binding efficiency. Bridging sheet mutations also conferred increased susceptibility to the CXCR4 ligand AMD-3100 in the context of the X4 tropic Env. However, these mutations had little effect on the rate of membrane fusion and little effect on susceptibility to enfuvirtide, a membrane fusion inhibitor whose activity is dependent in part on the rate of Env-mediated membrane fusion. Thus, mutations that reduce coreceptor binding and enhance susceptibility to coreceptor inhibitors can affect fusion and enfuvirtide susceptibility in an Env context-dependent manner.  相似文献   

5.
Two HIV-1 isolates (CM4 and CM9) able to use alternate HIV-1 coreceptors on transfected cell lines were tested for their sensitivity to inhibitors of HIV-1 entry on primary cells. CM4 was able to use CCR5 and Bob/GPR15 efficiently in transfected cells. The R5 isolate grew in Delta32/Delta32 CCR5 PBMC in the absence or presence of AMD3100, a CXCR4-specific inhibitor, indicating that it uses a receptor other than CCR5 or CXCR4 on primary cells. It was insensitive to the CCR5 entry inhibitors RANTES and PRO140, but was partially inhibited by vMIP-1, a chemokine that binds CCR3, CCR8, GPR15 and CXCR6. The coreceptor used by this isolate on primary cells is currently unknown. CM9 used CCR5, CXCR4, Bob/GPR15, CXCR6, CCR3, and CCR8 on transfected cells and was able to replicate in the absence or presence of AMD3100 in Delta32/Delta32 CCR5 PBMC. It was insensitive to eotaxin, vMIP-1 and I309 when tested individually, but was inhibited completely when vMIP-1 or I309 was combined with AMD3100. Both I309 and vMIP-1 bind CCR8, strongly suggesting that this isolate can use CCR8 on primary cells. Collectively, these data suggest that some HIV-1 isolates can use alternate coreceptors on primary cells, which may have implications for strategies that aim to block viral entry.  相似文献   

6.
In this study, coreceptor usage of HIV-1 other than subtype B in relation to HIV-1 transmission from mother to child was investigated. Repeated sampling of 42 HIV-1-seropositive, asymptomatic women in Cameroon during the second and third trimesters of pregnancy, at delivery, and 6 months postpartum were performed. Env subtyping was carried out from uncultured peripheral blood mononuclear cells (PBMCs) by heteroduplex mobility assay and, whenever necessary, by DNA sequencing. Virus isolates were tested for coreceptor usage on human cell lines-U87.CD4 and GHOST(3)-engineered to express stably CD4 and the chemokine receptors CCR1, CCR2b, CCR3, CCR5, or CXCR4, or the orphan receptors BOB/gpr15 or Bonzo/STRL33/TYMSTR. Transmission rate was 11.9%. Viruses were predominantly envelope subtype A and used CCR5 as coreceptor and, surprisingly, 4 of 28 (14.2%) isolates from mothers and 1 of 3 isolates from children used the orphan receptor Bonzo as well. In 2 transmitting mothers from whom sequential HIV-1 isolates were available, viral coreceptor usage evolved from CCR5 monotropic to CCR5/Bonzo dual tropic during pregnancy, and in 1 case transmission of this virus could be documented. Our data suggest that evolution of HIV-1 coreceptor usage to dual (or multi-) tropism may occur during pregnancy.  相似文献   

7.
Attachment and entry of HIV-1 into CD4 cells involve a series of events in which different viral envelope proteins interact with specific cell receptors, culminating in fusion of viral and cell membranes. AMD-3100 is a small molecule inhibitor of HIV-1 attachment to the CXCR4 chemokine receptor, and T-20 is a synthetic peptide corresponding to a region of HIV-1 gp41 that blocks fusion to cell membranes. To evaluate the interaction between agents acting at two different steps of the entry process, we conducted in vitro studies of the combination of T-20 and AMD-3100 against an X4 HIV-1 isolate. Single drugs or multiply diluted fixed ratio combinations of drugs were added to peripheral blood mononuclear cells infected with a clinical isolate, 14aPre. Drug interactions were evaluated using the median-effect principle and the combination index technique. The 50% inhibitory concentration (IC50) for T-20 was 0.10 microg/ml and for AMD-3100 was 0.19 microg/ml. Synergy was observed between T-20 and AMD-3100 and this increased with higher inhibitory concentrations, with combination indices ranging from 0.62 at IC50 to 0.02 at IC95. Whether these synergistic interactions translate into clinical benefit will need to be addressed in the context of clinical trials.  相似文献   

8.
It is widely documented that a complete switch from the predominant CCR5 (R5) to CXCR4 (X4) phenotype is less common for HIV-1 subtype C (HIV-1C) compared to other major subtypes. We investigated whether dualtropic HIV-1C isolates represented dualtropic, mixed R5 and X4 clones or both. Thirty of 35 functional HIV-1 env clones generated by bulk PCR amplification from peripheral blood mononuclear cells (PBMCs) infected with seven dualtropic HIV-1C isolates utilized CXCR4 exclusively. Five of 35 clones displayed dualtropism. Endpoint dilution of one isolate did not yield a substantial proportion of R5-monotropic env clones. Sequence-based predictive algorithms showed that env sequences from PBMCs, CXCR4 or CCR5-expressing cell lines were indistinguishable and all possessed X4/dualtropic characteristics. We describe HIV-1C CXCR4-tropic env sequence features. Our results suggest a dramatic loss of CCR5 monotropism as dualtropism emerges in HIV-1C which has important implications for the use of coreceptor antagonists in therapeutic strategies for this subtype.  相似文献   

9.
The envelope glycoprotein of the human immunodeficiency virus (HIV) utilizes CD4 as a receptor and CCR5 and/or CXCR4 as coreceptor to gain entry into the cell. The CCR5-tropic viruses, observed early in infection, could be important in transmission and the CXCR4-tropic viruses, observed late, may play an important role in disease progression. Viruses from 40 HIV-positive, asymptomatic or symptomatic individuals in India were isolated. Of 40 isolates 39 used CCR5. Thirty-three isolates were subtype C, 3 isolates were subtype A, and 4 isolates were HIV-2. Only 1 HIV-2 isolate, from a symptomatic individual, was dualtropic. Therefore, a majority of isolates from India belonged to subtype C and all the isolates utilized CCR5 exclusively irrespective of HIV disease status.  相似文献   

10.
11.
12.
Kajumo F  Thompson DA  Guo Y  Dragic T 《Virology》2000,271(2):240-247
CXCR4 mediates the fusion and entry of X4 and R5X4 strains of human immunodeficiency virus type 1 (HIV-1). The residues involved in CXCR4 coreceptor function have not all yet been identified, but tyrosine and negatively charged residues in the amino-terminal domain of CCR5 were shown to be indispensable for gp120 binding and entry of R5 and R5X4 strains. We therefore evaluated the role of such residues in CXCR4 coreceptor function by replacing tyrosines (Y), aspartic acids (D), and glutamic acids (E) with alanines (A) and testing the ability of these mutants to mediate the entry of X4 and R5X4 HIV-1 isolates. Our results show that viral entry depends on YDE-rich clusters in both the amino-terminus and the second extracellular loop of CXCR4. Different viral isolates vary in their dependence on residues in one or the other domain. The determinants of CXCR4 coreceptor function are, therefore, more diffuse and isolate-dependent than those of CCR5.  相似文献   

13.
The susceptibility of HIV-1 to chemokine-mediated inhibition may be lost as a consequence of the expanded usage of chemokine co-receptors frequently occurring in clade B isolates obtained from individuals with advanced disease. Since chemokine-based immune intervention is under intense investigation, it is crucial to determine its potential effect on primary dualtropic HIV isolates characterized by simultaneous utilization of CCR5 and CXCR4 chemokine co-receptors (R5X4 viruses). In the present study, the CCR5 binding chemokine regulated upon activation normal T cell expressed and secreted (RANTES) strongly inhibited the replication of two of eight primary R5X4 viruses in mitogen-activated primary peripheral blood mononuclear cells (PBMC). The CXCR4 antagonist AMD3100 efficiently suppressed the replication of other two HIV isolates, whereas the remaining four viruses were partially inhibited by treatment with either RANTES or AMD3100. The potency of chemokine-mediated inhibition was influenced by PBMC donor variability, but it was usually independent from the levels of expression of CCR5 or CXCR4. Dual co-receptor usage was maintained by the viruses after two serial passages on U87.CD4 astrocytic cell lines expressing exclusively either CCR5 or CXCR4. The gp120 env variable domains were sequenced before and after passages on U87.CD4 cells. Virus replication into U87.CD4-CXCR4 cells did not result in changes in the V3 region but perturbed the dominant env V4 sequence. Interestingly, double passage onto U87.CD4-CXCR4 cells determined the loss of susceptibility to RANTES inhibition. In conclusion, interference with CCR5 may efficiently inhibit the replication of at least some dualtropic HIV-1 strains, whereas forced CXCR4 usage may result in viral escape from CCR5-dependent inhibitory effects.  相似文献   

14.
15.
The chemokine coreceptors play a significant role in HIV entry and pathogenesis. The V3 region of HIV envelope glycoprotein is considered as a principal determinant for viral phenotype and tropism. The present study describes lack of association between the V3 genotype and viral phenotype of 18 Indian HIV-2 isolates. The viruses were isolated, confirmed by PCR and the HIV subtypes were determined by sequencing V3 region of the env gene. The coreceptor usage and syncytium inducing (SI) capacity of isolates was determined. Our study indicated that CCR5 coreceptor usage and NSI phenotype is predominant among Indian HIV-2 isolates obtained from patients in the early stage of infection. Two of the four HIV-2 isolates obtained from the late stage patients were SI and dual tropic. Phylogenetic analysis of these isolates revealed close relatedness to the isolates from western and southern India.  相似文献   

16.
HIV-1 infection of nonhuman primates does not lead to the acquired immunodeficiency syndrome seen in humans. The basis for this lack of disease progression in these animals is still unknown. In this study, primary nonhuman primate peripheral blood mononuclear cells (PBMC) were tested for their susceptibility to in vitro infection by several different primary HIV-1 isolates representing distinct subtypes or clades. None of the five HIV-1 subtypes tested were able to readily establish an infection in chimpanzee or baboon PBMC, as determined by p24 antigen capture assays. To address the mechanism of in vitro resistance to HIV-1 infection, PBMC were analyzed for HIV coreceptor mRNA expression and cell surface expression. Flow cytometry analysis of the nonhuman primate PBMC demonstrated that they do express CD4, CCR3, CCR5, and CXCR4 on their cell surface. Therefore, the level of restriction in the virus replication cycle does not appear to lie at the point of entry in these cells.  相似文献   

17.
Entry coreceptor use by HIV-1 plays a pivotal role in viral transmission, pathogenesis and disease progression. In many HIV-1 infected individuals, there is an expansion in coreceptor use from CCR5 to include CXCR4, which is associated with accelerated disease progression. While targeting HIV-1 envelope interactions with coreceptor during viral entry is an appealing approach to combat the virus, the methods of determining coreceptor use and the changes in coreceptor use that can occur during disease progression are important factors that may complicate the use of therapies targeting this stage of HIV-1 replication. Indicator cells are typically used to determine coreceptor use by HIV-1 in vitro, but the coreceptors used on these cells can differ from those used on primary cell targets. V3 based genetic sequence algorithms are another method used to predict coreceptor use by HIV-1 strains. However, these algorithms were developed to predict coreceptor use in cell lines and not primary cells and, furthermore, are not highly accurate for some classes of viruses. This article focuses on R5X4 HIV-1, the earliest CXCR4-using variants, reviewing the pattern of coreceptor use on primary CD4+ lymphocytes and macrophages, the relationship between primary cell coreceptor use and the two principal approaches to coreceptor analysis (genetic prediction and indicator cell phenotyping), and the implications of primary cell coreceptor use by these strains for treatment with a new class of small molecule antagonists that inhibit CCR5-mediated entry. These are important questions to consider given the development of new CCR5 blocking therapies and the prognosis associated with CXCR4 use.  相似文献   

18.
Despite the availability of the current clinically approved anti-HIV drugs, new classes of effective antiviral agents are still urgently needed to combat AIDS. A promising approach for drug development and vaccine design involves targeting research on HIV-1 entry, a multistep process that comprises viral attachment, coreceptor interactions, and fusion. Determination of the viral entry process in detail has enabled the design of specific agents that can inhibit each step in the HIV entry process. Therapeutic agents that interfere with the binding of the HIV envelope glycoprotein gp120 to the CD4 receptor (e.g., PRO 542, PRO 2000, and CV-N) or the coreceptors CCR5 and CXCR4 (e.g., SCH-C and AMD3100) are briefly outlined in this review. The anti-HIV activity of cyclotriazadisulfonamides, a novel class of compounds with a unique mode of action by down-modulating the CD4 receptor in lymphocytic and monocytic cells, is especially highlighted. On the basis of the successful results of T-20, the first approved entry inhibitor, the development of effective antiretrovirals that block HIV entry will certainly be further encouraged.  相似文献   

19.
Macrophages are important targets for HIV-1, and R5X4 strains play a central role in pathogenesis, especially in late-stage patients who may receive the fusion inhibitor T20 (enfuvirtide). Sensitivity to T20 varies markedly among HIV-1 strains and is influenced by viral and cellular factors that affect Env/CD4/coreceptor interactions. We addressed the relation between T20 inhibition and the pathway by which R5X4 HIV-1 infects primary macrophages, which express both coreceptors. In U87/CD4/coreceptor cells, T20 sensitivity for entry through CCR5 and CXCR4 was correlated. In macrophages, the proportion of total entry mediated by each coreceptor differed among isolates. Neither pathway was uniformly more or less sensitive to T20, however, nor did the proportion of entry mediated by each coreceptor predict T20 sensitivity. T20 sensitivity for macrophage infection overall correlated modestly with that for entry through CCR5 but not through CXCR4; however, unlike U87 cells, sensitivity of entry through CCR5 and CXCR4 was not correlated. These results suggest that strain-specific factors influence R5X4 T20 sensitivity regardless of the coreceptor used, an absence of systematic differences in efficiency by which R5X4 strains use the 2 coreceptors, and that efficiency and kinetics of interactions with CCR5 are central determinants of macrophage entry even when both pathways are utilized.  相似文献   

20.
HIV-1 clade C tends to exclusively use CCR5 irrespective of disease stages. We previously reported envelopes (Envs) obtained from an Indian patient (VB105) that used CXCR4, CXCR6, CCR2b, CCR3, GPR15, and CX3CR1 as additional coreceptors besides CCR5 for entry. Here we show that the primary VB105 virus was able to replicate in peripheral blood mononuclear cells (PBMCs) in presence of inhibitors that antagonizes all the above seven coreceptors at excess doses. In addition, VB105 Envs were found to efficiently infect CCR5-defective T cells (MOLT-4) in presence of excess TAK-779, AMD3100, vMIP-1 and vMIP-2 further substantiated the usage of additional coreceptors beyond the seven coreceptors as reported earlier by VB105 Env. Interestingly, VB105 Envs showed spontaneous exposure of CD4-induced epitopes and found to be associated with increased infection of macrophages. Information on HIV-1 clade C using alternate coreceptors in primary cells to better understand their impact on pathogenesis and efficacy to future entry inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号