首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Identification of coryneform bacteria to the species level is important in certain circumstances for differentiating contamination and/or colonization from infection, which influences decisions regarding clinical intervention. However, methods currently used in clinical microbiology laboratories for the species identification of coryneform bacteria are often inadequate. We evaluated the MicroSeq 500 16S bacterial sequencing kit (Perkin-Elmer Biosystems, Foster City, Calif.), which is designed to sequence the first 527 bp of the 16S rRNA gene for bacterial identification, by using 52 coryneform gram-positive bacilli from clinical specimens isolated from January through June 1993 at the Mayo Clinic. Compared to conventional and supplemented phenotypic methods, MicroSeq provided concordant results for identification to the genus level for all isolates. At the species level, MicroSeq provided concordant results for 27 of 42 (64.3%) Corynebacterium isolates and 5 of 6 (83.3%) Corynebacterium-related isolates, respectively. Within the Corynebacterium genus, MicroSeq gave identical species-level identifications for the clinically significant Corynebacterium diphtheriae (4 of 4) and Corynebacterium jeikeium (8 of 8), but it identified only 50.0% (15 of 30) of other species (P < 0.01). Four isolates from the genera Arthrobacter, Brevibacterium, and Microbacterium, which could not be identified to the species level by conventional methods, were assigned a species-level identification by MicroSeq. The total elapsed time for running a MicroSeq identification was 15.5 to 18.5 h. These data demonstrate that the MicroSeq 500 16S bacterial sequencing kit provides a potentially powerful method for the definitive identification of clinical coryneform bacterium isolates.  相似文献   

2.
In recent years, the gram-negative bacterium Stenotrophomonas maltophilia has become increasingly important in biotechnology and as a nosocomial pathogen, giving rise to a need for new information about its taxonomy and epidemiology. To determine intraspecies diversity and whether strains can be distinguished based on the sources of their isolation, 50 S. maltophilia isolates from clinical and environmental sources, including strains of biotechnological interest, were investigated. The isolates were characterized by in vitro antagonism against pathogenic fungi and the production of antifungal metabolites and enzymes. Phenotypically the strains showed variability that did not correlate significantly with their sources of isolation. Clinical strains displayed remarkable activity against the human pathogenic fungus Candida albicans. Antifungal activity against plant pathogens was more common and generally more severe from the environmental isolates, although not exclusive to them. All isolates, clinical and environmental, produced a range of antifungal metabolites including antibiotics, siderophores, and the enzymes proteases and chitinases. From 16S ribosomal DNA sequencing analysis, the isolates could be separated into three clusters, two of which consisted of isolates originating from the environment, especially rhizosphere isolates, and one of which consisted of clinical and aquatic strains. In contrast to the results of other recent investigations, these strains could be grouped based on their sources of isolation, with the exception of three rhizosphere isolates. Because there was evidence of nucleotide signature positions within the sequences that are suitable for distinguishing among the clusters, the clusters could be defined as different genomovars of S. maltophilia. Key sequences on the 16S ribosomal DNA could be used to develop a diagnostic method that differentiates these genomovars.  相似文献   

3.
Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species.  相似文献   

4.
Twenty-one mycobacterial type strains and 334 clinical isolates of mycobacteria were identified by standardized sequence analysis using part of the gene encoding 16S rRNA. Apart from two clinical isolates, the resulting sequences corresponded to previously published sequences. The results of the molecular determinations of the type strains completely overlapped the identities obtained using conventional techniques (cultural characteristics, biochemical tests, commercial DNA probes, and gas chromatographic lipid profiles). Of 323 isolates conventionally identified as slow-growing mycobacteria, 318 (98.5%) were identified to the same species or group level by 16S rDNA sequence analysis, while 6 of the 11 strains of rapid growers obtained a corresponding identity with the two approaches. The sequencing protocol combined with a few cultural characteristics (i.e. growth rate, pigmentation and susceptibility testing) offers a rapid, reliable and usually definite identification of mycobacterial isolates.  相似文献   

5.
We compared the relative levels of effectiveness of three commercial identification kits and three nucleic acid amplification tests for the identification of coryneform bacteria by testing 50 diverse isolates, including 12 well-characterized control strains and 38 organisms obtained from pediatric oncology patients at our institution. Between 33.3 and 75.0% of control strains were correctly identified to the species level by phenotypic systems or nucleic acid amplification assays. The most sensitive tests were the API Coryne system and amplification and sequencing of the 16S rRNA gene using primers optimized for coryneform bacteria, which correctly identified 9 of 12 control isolates to the species level, and all strains with a high-confidence call were correctly identified. Organisms not correctly identified were species not included in the test kit databases or not producing a pattern of reactions included in kit databases or which could not be differentiated among several genospecies based on reaction patterns. Nucleic acid amplification assays had limited abilities to identify some bacteria to the species level, and comparison of sequence homologies was complicated by the inclusion of allele sequences obtained from uncultivated and uncharacterized strains in databases. The utility of rpoB genotyping was limited by the small number of representative gene sequences that are currently available for comparison. The correlation between identifications produced by different classification systems was poor, particularly for clinical isolates.  相似文献   

6.
The sequence of small-subunit rRNA varies in an orderly manner across phylogenetic lines and contains segments that are conserved at the species, genus, or kingdom level. By directing oligonucleotide primers at sequences conserved throughout the eubacterial kingdom, we amplified bacterial 16S ribosomal DNA sequences with the polymerase chain reaction. Priming sites were located at the extreme 5' end, the extreme 3' end, and the center of 16S ribosomal DNA. The isolates tested with these primers included members of the genera Staphylococcus, Coxiella, Rickettsia, Clostridium, Neisseria, Mycobacterium, Bilophila, Eubacterium, Fusobacterium, and Lactobacillus and the family Enterobacteriaceae. Initially, the yields from the reactions were erratic because the primers were self-complementary at the 3' ends. Revised primers that were not self-complementary gave more reproducible results. With the latter primers, 0.4 pg of Escherichia coli DNA consistently gave a visible band after amplification. This method should be useful for increasing the amounts of bacterial 16S ribosomal DNA sequences for the purposes of sequencing and probing. It should have a broad range of applications, including the detection and identification of known pathogens that are difficult to culture. This approach may make it possible to identify new, nonculturable bacterial pathogens.  相似文献   

7.
Studies that detected an association between Streptococcus bovis endocarditis and colon carcinoma have not taken into account the recently identified genetic diversity among organisms historically classified as S. bovis. With near full-length 16S ribosomal DNA sequence analysis, organisms cultured from the blood of endocarditis patients at the Mayo Clinic from 1975 to 1985 and previously identified as S. bovis or streptococcus group D nonenterococci were shown to represent S. bovis biotypes I (11 isolates) and II/2 (1 isolate), S. salivarius (1 isolate), and S. macedonicus (1 isolate). Two of the S. bovis biotype I cases were associated with colon cancer. Whether S. bovis biotype II or other organisms closely related to and historically identified as S. bovis (e.g., S. macedonicus) are associated with malignant (or premalignant) colon lesions in humans remains to be definitively determined.  相似文献   

8.
9.
We compared and analyzed 16S rRNA and tuf gene sequences for 97 clinical isolates of coagulase-negative staphylococci (CNS) by use of the GenBank, MicroSeq, EzTaxon, and BIBI databases. Discordant results for definitive identification were observed and differed according to the different databases and target genes. Although higher percentages of sequence identity were obtained with GenBank and MicroSeq for 16S rRNA analysis, the BIBI and EzTaxon databases produced less ambiguous results. Greater discriminatory power and fewer multiple probable identifications were observed with tuf gene analysis than with 16S rRNA analysis. The most pertinent results for tuf gene analysis were obtained with the GenBank database when the cutoff values for the percentage of identity were adjusted to be greater than or equal to 98.0%, with >0.8% separation between species. Analysis of the tuf gene proved to be more discriminative for certain CNS species; further, this method exhibited better distinction in the identification of CNS clinical isolates.  相似文献   

10.
Sequence analysis of the 16S rRNA gene represents a highly accurate and versatile method for bacterial classification and identification, even when the species in question is notoriously difficult to identify by phenotypic means. However, its use for identification based on public sequence databases is not without limitation due to the presence of ambiguous data in the databases. In this study, we evaluated the utility of 16S ribosomal DNA sequencing as a means of identifying clinically important gram-positive anaerobic cocci (GPAC) by sequencing 13 type strains of established GPAC species and 156 clinical isolates that had been studied only by phenotypic tests. Among the 13 type strains of GPAC species we tested, only 4 gave a "perfect" match with their corresponding sequences in GenBank, whereas the other 9 had lower sequence similarities (<98%). This indicates that data in the public database may be inaccurate at times. Based on the sequences of the 13 type strains obtained in this study, 84% (131 of 156) of the clinical isolates were accurately identified to species level, with the remaining 25 clinical strains revealing nine unique sequences that may represent eight novel species. This finding is in contrast to the phenotypic identification results, by which only 56% of isolates were correctly identified to species level.  相似文献   

11.
Many central vascular catheters (CVCs) are removed unnecessarily because current diagnostic methods for CVC-associated infection are unreliable. A quantitative PCR assay using primers and probe targeted to bacterial 16S ribosomal DNA was used to measure the levels of bacterial DNA in blood samples drawn through the CVC in a population of patients receiving intravenous nutrition. Bacterial DNA concentrations were raised in 16 of 16 blood samples taken during episodes of probable bacterial CVC-associated infection. Bacterial DNA concentrations were raised in 4 of 29 episodes in which bacterial CVC-associated infection was unlikely. The use of this technique has the potential to substantially reduce the unnecessary removal of CVCs.  相似文献   

12.
The feasibility of sequence analysis of the 16S-23S ribosomal DNA (rDNA) intergenic spacer (ITS) for the identification of clinically relevant viridans group streptococci (VS) was evaluated. The ITS regions of 29 reference strains (11 species) of VS were amplified by PCR and sequenced. These 11 species were Streptococcus anginosus, S. constellatus, S. gordonii, S. intermedius, S. mitis, S. mutans, S. oralis, S. parasanguinis, S. salivarius, S. sanguinis, and S. uberis. The ITS lengths (246 to 391 bp) and sequences were highly conserved among strains within a species. The intraspecies similarity scores for the ITS sequences ranged from 0.98 to 1.0, except for the score for S. gordonii strains. The interspecies similarity scores for the ITS sequences varied from 0.31 to 0.93. Phylogenetic analysis of the ITS regions revealed that evolution of the regions of some species of VS is not parallel to that of the 16S rRNA genes. One hundred six clinical isolates of VS were identified by the Rapid ID 32 STREP system (bioMérieux Vitek, Marcy l'Etoile, France) and by ITS sequencing, and the level of disagreement between the two methods was 18% (19 isolates). Most isolates producing discrepant results could be unambiguously assigned to a specific species by their ITS sequences. The accuracy of using ITS sequencing for identification of VS was verified by 16S rDNA sequencing for all strains except strains of S. oralis and S. mitis, which were difficult to differentiate by their 16S rDNA sequences. In conclusion, identification of species of VS by ITS sequencing is reliable and could be used as an alternative accurate method for identification of VS.  相似文献   

13.
14.
Papillomatous digital dermatitis (PDD), an emerging infectious disease of cattle, is characterized by painful, ulcerative foot lesions. The detection of high numbers of invasive spirochetes in PDD lesions suggests an important role for these organisms in the pathogenesis of PDD. PDD-associated spirochetes have phenotypic characteristics consistent with members of the genus TREPONEMA: Partial 16S ribosomal DNA (rDNA) sequence analysis of clonal isolates from California cattle showed that they comprise three phylotypes which cluster closely with human-associated Treponema spp. of the oral cavity (T. denticola and T. medium/T. vincentii) or genital area (T. phagedenis). The goal of our study was to apply 16S-23S rDNA intergenic spacer region (ISR) sequence analysis to the molecular typing of U.S. PDD-associated Treponema isolates. This methodology has potentially greater discriminatory power for differentiation of closely related bacteria than 16S rDNA analysis. We PCR amplified, cloned, and sequenced the ISRs from six California PDD-associated Treponema isolates and, for comparative purposes, one strain each of T. denticola, T. medium, T. vincentii, and T. phagedenis. Two ISRs that varied in length and composition were present in all the PDD-associated Treponema isolates and in T. denticola, T. medium, and T. phagedenis. ISR1 contained a tRNA(Ala) gene, while ISR2 contained a tRNA(Ile) gene. Only a single ISR (ISR1) was identified in T. vincentii. Comparative analyses of the ISR1 and ISR2 sequences indicated that the California PDD-associated Treponema isolates comprised three phylotypes, in agreement with the results of 16S rDNA analysis. PCR amplification of the 16S-tRNA(Ile) region of ISR2 permitted rapid phylotyping of California and Iowa PDD-associated Treponema isolates based on product length polymorphisms.  相似文献   

15.
To establish an improved ribosomal gene sequence database as part of the Ribosomal Differentiation of Microorganisms (RIDOM) project and to overcome the drawbacks of phenotypic identification systems and publicly accessible sequence databases, both strands of the 5' end of the 16S ribosomal DNA (rDNA) of 81 type and reference strains comprising all validly described staphylococcal (sub)species were sequenced. Assuming a normal distribution for pairwise distances of all unique staphylococcal sequences and choosing a reporting criterion of > or =98.7% similarity for a "distinct species," a statistical error probability of 1.0% was calculated. To evaluate this database, a 16S rDNA fragment (corresponding to Escherichia coli positions 54 to 510) of 55 clinical Staphylococcus isolates (including those of the small-colony variant phenotype) were sequenced and analyzed by the RIDOM approach. Of these isolates, 54 (98.2%) had a similarity score above the proposed threshold using RIDOM; 48 (87.3%) of the sequences gave a perfect match, whereas 83.6% were found by searching National Center for Biotechnology Information (NCBI) database entries. In contrast to RIDOM, which showed four ambiguities at the species level (mainly concerning Staphylococcus intermedius versus Staphylococcus delphini), the NCBI database search yielded 18 taxon-related ambiguities and showed numerous matches exhibiting redundant or unspecified entries. Comparing molecular results with those of biochemical procedures, ID 32 Staph (bioMerieux, Marcy I'Etoile, France) and VITEK 2 (bioMerieux) failed to identify 13 (23.6%) and 19 (34.5%) isolates, respectively, due to incorrect identification and/or categorization below acceptable values. In contrast to phenotypic methods and the NCBI database, the novel high-quality RIDOM sequence database provides excellent identification of staphylococci, including rarely isolated species and phenotypic variants.  相似文献   

16.
Background: The genus Acinetobacter is a diverse group of Gram-negative bacteria involve at least 33 species using the molecular methods. Although the genus Acinetobacter comprises a number of definite bacterial species, some of these species are of clinical importance. Therefore, it is of vital importance to use a method which is able to reliably and efficiently differentiate the numerous Acinetobacter species. Objectives: This study aims to identify Acinetobacter of clinical isolates from Assir region to the species level by 16S-23S intergenic spacers internal transcribed spacer (ITS) of ribosomal ribonucleic acid (rRNA). Materials and Methods: Deoxyribonucleic acid extraction, polymerase chain reaction amplification of 16S-23S intergenic spacer sequences (ITS) was performed using the bacterium-specific universal primers. Results: Based on the 16S-23S intergenic spacers (ITS) of rRNA sequences, all isolates tested were identified as Acinetobacter baumannii. The isolates shared a common ancestral lineage with the prototypes A. baumannii U60279 and U60280 with 99% sequence similarities. Conclusion: These findings confirmed 16S-23S rRNA ITS for the identification of A. baumannii of different genotypes among patients.  相似文献   

17.
We have evaluated the use of a broad-range PCR aimed at the 16S rRNA gene in detecting bacterial meningitis in a clinical setting. To achieve a uniform DNA extraction procedure for both gram-positive and gram-negative organisms, a combination of physical disruption (bead beating) and a silica-guanidiniumthiocyanate procedure was used for nucleic acid preparation. To diminish the risk of contamination as much as possible, we chose to amplify almost the entire 16S rRNA gene. The analytical sensitivity of the assay was approximately 1 x 10(2) to 2 x 10(2) CFU/ml of cerebrospinal fluid (CSF) for both gram-negative and gram-positive bacteria. In a prospective study of 227 CSF samples, broad-range PCR proved to be superior to conventional methods in detecting bacterial meningitis when antimicrobial therapy had already started. Overall, our assay showed a sensitivity of 86%, a specificity of 97%, a positive predictive value of 80%, and a negative predictive value of 98% compared to culture. We are currently adapting the standard procedures in our laboratory for detecting bacterial meningitis; broad-range 16S ribosomal DNA PCR detection is indicated when antimicrobial therapy has already started at time of lumbar puncture or when cultures remain negative, although the suspicion of bacterial meningitis remains.  相似文献   

18.
Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the "gold standard," we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification system is useful for identification of most clinically important bacterial strains with ambiguous biochemical profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in bacterial identification.  相似文献   

19.
We characterized 22 human clinical strains of Streptococcus bovis by genotypic (16S rRNA gene sequence analysis [MicroSeq]; Applied Biosystems, Foster City, Calif.) and phenotypic (API 20 Strep and Rapid ID32 Strep systems (bioMerieux Vitek, Hazelton, Mo.) methods. The strains, isolated from blood, cerebrospinal fluid (CSF), and urine, formed two distinct 16S ribosomal DNA sequence clusters. Three strains which were associated with endocarditis urinary tract infection (UTI), and sepsis clustered with the S. bovis type strain ATCC 33317 (cluster 1); other closely related type strains were S. equinus and S. infantarius. Nineteen strains clustered at a distance of about 2.5% dissimilarity to the S. bovis type strain (cluster 2) and were associated with central nervous system (CNS) disease in addition to endocarditis, UTI, and sepsis. All strains were distinct from S. gallolyticus. Within cluster 2, a single strain grouped with ATCC strain 43143 (cluster 2a) and may be phenotypically distinct. All the other strains formed a second subgroup (cluster 2b) that was biochemically similar to S. bovis biotype II/2 (mannitol negative and beta galactosidase, alpha galactosidase, beta glucuronidase, and trehalose positive). The API 20 Strep system identified isolates of cluster 2b as S. bovis biotype II/2, those of cluster 1 as S. bovis biotype II/1, and that of cluster 2a as S. bovis biotype I. There was an excellent correlation of biotype and genotype: S. bovis biotype II/2 isolates form a separate genospecies distinct from the S. bovis, S. gallolyticus, and S. infantarius type strains and are the most common isolates in adult males.  相似文献   

20.
The discriminatory power of gyrB DNA sequence polymorphisms for differentiation of the species of the Mycobacterium tuberculosis complex (MTBC) was evaluated by sequencing and restriction fragment length polymorphism (RFLP) analysis of a 1,020-bp fragment amplified from clinical isolates of M. tuberculosis, Mycobacterium bovis (pyrazinamide [PZA] resistant as well as PZA susceptible), Mycobacterium africanum subtypes I and II, and Mycobacterium microti types vole and llama. We found sequence polymorphisms in four regions described previously and at one additional position. These differences in the gyrB sequences allow an accurate discrimination of M. bovis, M. microti, and M. africanum subtype I. The PZA-susceptible subtypes of M. bovis shared the M. bovis-specific substitution at position 756 with the PZA-resistant strains, but can be unambiguously differentiated by a characteristic substitution at position 1311. As a drawback, M. tuberculosis and M. africanum subtype II showed an identical gyrB sequence that facilitates discrimination from the other species, but not from each other. A PCR-RFLP technique applying three restriction enzymes could be shown to be a rapid and easy-to-perform tool for the differentiation of the members of the MTBC. Based on these results, we present a clear diagnostic algorithm for the differentiation of species of the MTBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号