首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Aim: Receptor-interacting protein 3 (RIP3) is involved in tumor necrosis factor receptor signaling, and results in NF-KB-mediated prosurvival signaling and programmed cell death. The aim of this study was to determine whether overexpression of the RIP3 gene could sensitize human breast cancer cells to parthenolide in vitro. Methods: The expression of RIP3 mRNA in human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435 and T47D) was detected using RT-PCR. Both MDA-MB-231 and MCF-7 cells were transfected with RIP3 expression or blank vectors via lentivirus. Cell viability was measured with MTT assay; intracellular ROS level and cell apoptosis were analyzed using flow cytometry. Results: RIP3 mRNA expression was not detected in the four human breast cancer cell lines tested. However, the transfection induced higher levels of RIP3 protein in MCF-7 and MDA-MB-231 cells. Furthermore, overexpression of RIP3 decreased the IC50 values of parthenolide from 17.6 to 12.6 μmol/L in MCF-7 cells, and from 16.6 to 9.9 μmol/L in MDA-MB-231 cells. Moreover, overexpression of RIP3 significantly increased parthenolide-induced apoptosis and ROS accumulation in MCF-7 and MDA-MB-231 cells. Pretreatment with N-acetyl-cysteine abrogated the increased sensitivity of RIP3-transfected MCF-7 and MDA-MB-231 cells to parthenolide. Conclusion: Overexpression of RIP3 sensitizes MCF-7 and MDA-MB-231 breast cancer cells to parthenolide in vitro via intracellular ROS accumulation.  相似文献   

2.

Aim:

To investigate the anticancer mechanisms of triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook F, against human breast cancer cells and the involvement of the estrogen receptor-α (ERα)-mediated signaling pathway in particular.

Methods:

Human breast cancer ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells were tested. PrestoBlue assay was used to evaluate the cell viability. The levels of ERα mRNA and protein were detected with real-time PCR and immunoblotting, respectively. Mouse models of MCF-7 or MDA-MB-231 xenograft tumors were treated with triptolide (0.4 mg·kg−1·d−1, po) or a selective estrogen receptor modulator tamoxifen (mg·kg−1·d−1, po) for 3 weeks, and the tumor weight and volume were measured.

Results:

Triptolide (5–200 nmol/L) dose-dependently inhibited the viability of both MCF-7 and MDA-MB-231 cells, with a more potent inhibition on MCF-7 cells. Knockdown of ERα in MCF-7 cells by siRNA significantly attenuated the cytotoxicity of triptolide, whereas overexpression of ERα in MDA-MB-231 cells markedly enhanced the cytotoxicity. Triptolide dose-dependently decreased the expression of ERα in MCF-7 cells and MCF-7 xenograft tumors. Furthermore, treatment of MCF-7 cells with triptolide inhibited the phosphorylation of ERK1/2 in dose- and time-dependent manners. In the mice xenografted with MCF-7 cells, treatment with triptolide or tamoxifen resulted in significant reduction in the tumor weight and volume. Similar effects were not obtained in the mice xenografted with MDA-MB-231 cells.

Conclusion:

The anticancer activity of triptolide against ERα-positive human breast cancer is partially mediated by downregulation of the ERα-mediated signaling pathway.  相似文献   

3.
PURPOSE: To evaluate pH-sensitive mixed micelles for multidrug resistant (MDR) ovarian tumor targeting and optical imaging of solid tumors. METHOD: Doxorubicin (DOX) encapsulated pH-sensitive mixed micelles composed of poly(L: -histidine)(MW 5K)-b-PEG(MW 2K) and poly(L: -lactic acid)(3K)-b-PEG (2K)-folate (PHSM-f) were prepared. Folate receptor-mediated endocytosis, drug uptake, endosomal disruption and cell viability were investigated at the cellular level. For in vivo tumor growth inhibition tests, multidrug resistant ovarian A2780/DOX(R) xenografted nude mice were used. Optical imaging was performed by using a Cy5.5 fluorescence dye-labeled mixed micelle system. Cy5.5 fluorescence intensity at the tumor site was measured in KB epidermoid xenografted nude mice. RESULTS: In vitro cell viability and drug distribution in the cytoplasm demonstrated the significantly superior efficacy of PHSM-f to free DOX and a control sample of DOX loaded pH-insensitive micelle composed of poly(L: -lactic acid)(3K)-b-PEG(2K)/poly(L: -lactic acid)(3K)-b-PEG(2K)-folate (80/20 wt/wt%) (PHIM-f). The mechanisms of these results were proved by folate receptor mediated endocytosis of micelle and endosomal disruption function by it. In addition, the optical imaging demonstrated the future application of the diagnositic area. PHSM-f inhibited the growth of multidrug resistant ovarian tumors efficiently in mice, with minimum weight loss. CONCLUSIONS: The pH-sensitive mixed micelle system demonstrates effective antitumor efficacy against the multidrug resistant ovarian tumor A2780/DOX(R).  相似文献   

4.
Aim: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice.
Methods: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent protein-labeled MDA-MB-231SArfp cells were injected into the right tibia of female BALB/c-nu/nu mice. Three days after the inoculation, the mice were injected with plumbagin (2, 4, or 6 mg/kg, ip) 5 times per week for 7 weeks. The growth of the tumor cells was monitored using an in vivo imaging system. After the mice were sacrificed, the hind limbs were removed for radiographic and histological analyses.

Results: Plumbagin (2.5–20 μmol/L) concentration-dependently inhibited the cell viability and induced apoptosis of MDA-MB-231SA cells in vitro (the IC50 value of inhibition of cell viability was 14.7 μmol/L). Administration of plumbagin to breast cancer bearing mice delayed the tumor growth by 2–3 weeks and reduced the tumor volume by 44%–74%. The in vivo imaging study showed that plumbagin dose-dependently inhibited MDA-MB-231SArfp cell growth in bone microenvironment. Furthermore, X-ray images and micro-CT study demonstrated that plumbagin reduced bone erosion area and prevented a decrease in bone tissue volume. Histological studies showed that plumbagin dose-dependently inhibited the breast cancer cell growth, enhanced the cell apoptosis and reduced the number of TRAcP-positive osteoclasts.

Conclusion: Plumbagin inhibits the cell growth and induces apoptosis in human breast cancer cells in mice bone microenvironment, leading to significant reduction in osteolytic lesions caused by the tumor cells.  相似文献   

5.

Background

This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA).

Methods

Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.

Results

The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF) varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.

Conclusions

In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.  相似文献   

6.

Aim:

Stromelysin 1 (matrix metalloproteinase 3; MMP-3) is an enzyme known to be involved in tumor invasion and metastasis. In this study, flavonoids from vegetables and fruits, such as quercetin, kaempferol, genistein, genistin, and daidzein, were tested for their ability to modulate the secretion and activity of MMP-3 in the MDA-MB-231 breast cancer cell line. In addition, we investigated the in vitro effects of flavonoids on MDA-MB-231 cell invasion.

Methods:

The toxic concentration range of flavonoids was evaluated using the MTT assay. The ability of MDA-MB-231 cells to invade was evaluated using a modified Boyden chamber system. The activity of MMP-3 was determined by casein zymography. The secretion of MMP-3 was evaluated using Western blotting, casein zymography and confirmed by ELISA.

Results:

Some putative flavonoids, ie, quercetin and kaempferol (flavonols), significantly inhibited the in vitro invasion of MDA-MB-231 cells in a concentration-dependent manner, with IC50 values of 27 and 30 μmol/L, respectively. Quercetin and kaempferol also reduced MMP-3 activity in a dose-dependent manner, with IC50 values in the range of 30 μmol/L and 45 μmol/L, respectively. None of the flavonoids had a significant effect on the secretion of MMP-3.

Conclusion:

These data show that the flavonols quercetin and kaempferol have higher anti-invasion potency and higher MMP-3 inhibitory activity than isoflavones genistein, genistin and daidzein. In contrast, neither flavonols nor isoflavones have any effect on MMP-3 secretion.  相似文献   

7.
Aim: To investigate the effects of a novel dithiocarbamate derivative TM208 on human breast cancer cells as well as the pharmacoki- netic characteristics of TM208 in human breast cancer xenograft mice. Methods: Human breast cancer MCF-7 and MDA-MB-231 cells were treated with TM208 or a positive control drug tamoxifen. Cell pro- liferation was examined using SRB and colony formation assays. Cell apoptosis was analyzed with Annexin V-FITC/PI staining assay. Protein expression was examined with Western blot, ELISA and immunohistochemical analyses. MCF-7 breast cancer xenograft nude mice were orally administered TM208 (50 or 150 mg.k$1〈1-1) or tamoxifen (50 mg.kgl〈t-~) for 18 d. On d 19, the tumors were collected for analyses. Blood samples were collected from the mice treated with the high dose of TM208, and plasma concentrations of TM208 were measured using LC-MS/MS. Results: Treatment of MCF-7 and MDA-MB-231 cells with TM208 dose-dependently inhibited the cell proliferation and colony formation in vitro (the IC~o values were 36.38+3.77 and 18.13+0.76 pmol/L, respectively). TM208 (20-150pmol/L) dose-dependently induced apoptosis of both the breast cancer cells in vitro. In MCF-7 breast cancer xenograft nude mice, TM208 administration dose-depend- ently reduced the tumor growth, but did not result in the accumulation of TM208 or weight loss. TM208 dose-dependently inhibited the phosphorylation of EGFR and ERK1/2 in both the breast cancer cells in vitro as well as in the MCF-7 xenograft tumor. Conclusion: Inhibition of EGFR autophosphorylation plays an important role in the anticancer effect of TM208 against human breast cancer.  相似文献   

8.

Background and Purpose

Induction of multidrug resistance by doxorubicin (DOX), together with non-specific toxicities, has restricted DOX-based chemotherapy. Recently, we demonstrated that DOX conjugated with an EGF receptor-binding peptide (DOX-EBP) had enhanced anticancer efficacy and reduced systemic toxicity when targeting EGF receptor-overexpressing tumours. Here we investigated whether DOX-EBP is able to overcome drug resistance and the underlying molecular mechanisms.

Experimental Approach

DOX-resistant SW480/DOX cells were derived from non-resistant SW480 cells by stepwise exposure to increasing concentrations of DOX, and P-glycoprotein overexpression induced by DOX was confirmed by Western blotting. Cytotoxicity and intracellular distribution of drugs were evaluated by MTT assay and fluorescence microscopy respectively. EGF receptor-mediated endocytosis was determined in EGF receptor and endocytosis inhibition assays. Drug accumulation in tumour cells and murine xenografts was determined by HPLC.

Key Results

The cytotoxicity and accumulation of DOX-EBP in SW480/DOX cells were almost the same as in SW480 cells, but those of free DOX were reduced. DOX-EBP accumulation was prevented by inhibitors of both EGF receptors and endocytosis, suggesting EGF receptors mediate endocytotic uptake. Tumour accumulation of DOX-EBP was significantly higher than free DOX in mice, and the levels of DOX-EBP were similar in DOX-resistant and non-resistant tumour tissues. Importantly, DOX-EBP, but not free DOX, was effective at inhibiting solid tumour growth and increased survival rate in both sensitive and resistant models.

Conclusion and Implications

DOX-EBP can overcome DOX resistance of tumour cells and increase in vivo antitumour efficacy. Therefore, it has the potential to be a potent therapeutic agent for treating drug-resistant cancers.  相似文献   

9.

Background

Selective delivery of anticancer agents to target areas in the body is desirable to minimize the side effects while maximizing the therapeutic efficacy. Anthracycline antibiotics such as doxorubicin (DOX) are widely used for treatment of a wide variety of solid tumors.This study evaluated the potential of a polymeric micellar formulation of doxorubicin as a nanocarrier system for targeted therapy of a folate-receptor positive human ovarian cancer cell in line.

Results

DOX-conjugated targeting and non-targeting micelles prepared by the dialysis method were about 188 and 182 nm in diameter, respectively and their critical micelle concentration was 9.55 μg/ml. The DOX-conjugated micelles exhibited a potent cytotoxicity against SKOV3 human ovarian cancer cells. Moreover, the targeting micelles showed higher cytotoxicity than that of non-targeting ones (IC50 = 4.65 μg/ml vs 13.51 μg/ml).

Conclusion

The prepared micelle is expected to increase the efficacy of DOX against cancer cells and reduce its side effects.  相似文献   

10.

Aim:

To evaluate a mixed micellar drug delivery system composed of sodium cholate and phospholipid for oral administration of silybin, a promising hepatoprotectants.

Methods:

The optimum formulation of sodium cholate/phospholipid-mixed micelles containing silybin was obtained based on the study of pseudo-ternary phase diagram. The dissolution of silybin-mixed micelles was investigated. The pharmacokinetic characteristics and bioavailability after oral administration of silybin-mixed micelles and silybin-N-methylglucamine were compared in dogs.

Results:

The mean particle size of prepared mixed micelles was 75.9±4.2 nm. The largest solubility of silybin was found to be 10.0±1.1 mg/mL in the optimum formulation of mixed micelles. The silybin-sodium cholate/phospholipid-mixed micelles showed a very slow release of silybin 17.5% (w/w) within 72 h in phosphate buffer (pH 7.4) and 15.6% (w/w) in HCl solution (pH 1.2). After oral administration to dogs, the relative bioavailability of mixed micelles versus silybin-N-methylglucamine in dogs was 252.0%.

Conclusion:

Sodium cholate/phospholipid-mixed micelles are promising carriers in orally delivery of silybin, considering their capability of enhancing bioavailability and large-scale production.  相似文献   

11.

BACKGROUND AND PURPOSE

Hydrogen sulphide (H2S) and prostaglandins are both involved in inflammation, cancer and bone turnover, and non-steroidal anti-inflammatory drugs (NSAIDs) and H2S donors exhibit anti-inflammatory and anti-tumour properties. H2S-releasing diclofenac (S-DCF) derivatives are a novel class of NSAIDs combining the properties of a H2S donor with those of a conventional NSAID.

EXPERIMENTAL APPROACH

We studied the effects of the S-DCF derivatives ACS15 and ACS32 on osteoclast and osteoblast differentiation and activity in vitro, human and mouse breast cancer cells support for osteoclast formation and signalling in vitro, and osteolysis ex vivo.

KEY RESULTS

The S-diclofenac derivatives ACS15 and ACS32 inhibited the increase in osteoclast formation induced by human MDA-MB-231 and MCF-7 and mouse 4T1 breast cancer cells without affecting breast cancer cell viability. Conditioned media from human MDA-MB-231 cells enhanced IκB phosphorylation and osteoclast formation and these effects were significantly inhibited following treatment by ACS15 and ACS32, whereas the parent compound diclofenac had no effects. ACS15 and ACS32 inhibited receptor activator of NFκB ligand-induced osteoclast formation and resorption, and caused caspase-3 activation and apoptosis in mature osteoclasts via a mechanism dependent on IKK/NFκB inhibition. In calvaria organ culture, human MDA-MB-231 cells caused osteolysis, and this effect was completely prevented following treatment with ACS15 and ACS32.

CONCLUSIONS AND IMPLICATIONS

S-diclofenac derivatives inhibit osteoclast formation and activity, suppress breast cancer cell support for osteoclastogenesis and prevent osteolysis. This suggests that H2S-releasing diclofenac derivatives exhibit anti-resorptive properties, which might be of clinical value in the treatment of osteolytic bone disease.  相似文献   

12.
In the present study, we designed and fabricated pH-sensitive polymeric micelles based on the conjugate of poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) (PEOz-PLA) with doxorubicin (PEOz-PLA-imi-DOX) to efficiently inhibit tumor cell growth. Hence, PEOz-PLA-imi-DOX was successfully synthesized by connecting DOX to the hydrophobic end of pH-sensitive PEOz-PLAvia acid cleavable benzoic imine linker and characterized by 1H NMR spectrum and thin layer chromatography. The critical micelle concentration of PEOz-PLA-imi-DOX was determined to be (14.84±3.85) mg/L. The conjugate micelles (denoted as PP-DOX-PM) formed by PEOz-PLA-imi-DOX using film-hydration method were characterized to have a nano-scaled size of about 21 nm in diameter, and the drug loading content was 1.67%. PP-DOX-PM showed pH-dependent drug release behavior with gradually accelerated release of DOX with decrease of pH value, illustrating the micelles’ distinguishing feature of endo/lysosomal pH from physiological pH by accelerating drug release. As anticipated, PP-DOX-PM maintained the cytotoxicity of DOX against MDA-MB-231 cells. Collectively, PP-DOX-PM might have great potential for effective suppression of tumor growth.  相似文献   

13.

Background

Homoisoflavonoids are naturally occurring compounds belong to flavonoid classes possessing various biological properties such as cytotoxicity. In this work, an efficient strategy for the synthesis of novel homoisoflavonoids, [1,3]dioxolo[4,5-g]chromen-8-ones, was developed and all compounds were evaluated for their cytotoxic activities on three breast cancer cell lines.

Methods

Our synthetic route started from benzo[d][1,3]dioxol-5-ol which was reacted with 3-bromopropanoic acid followed by the reaction of oxalyl chloride to afford 6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one. The aldol condensation of the later compound with aromatic aldehydes led to the formation of the title compounds. Five novel derivatives 4a-e were tested for their cytotoxic activity against three human breast cancer cell lines including MCF-7, T47D, and MDA-MB-231 using the MTT assay.

Results

Among the synthesized compounds, 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) exhibited the highest activity against three cell lines. Also the analysis of acridine orange/ethidium bromide staining results revealed that 7-benzylidene-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4a) and 7-(2-methoxybenzylidene)-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (4b) induced apoptosis in T47D cell line.

Conclusion

Finally, the effect of methoxy group on the cytotoxicity of compounds 4b-4d was investigated in and it was revealed that it did not improve the activity of [1,3]dioxolo[4,5-g]chromen-8-ones against MCF-7, T47D, and MDA-MB-231.  相似文献   

14.

Aim:

Photodynamic therapy (PDT) is an emerging treatment used to eradicate premalignant and early-stage cancers and to reduce tumor size in end-stage cancers. In this study, we investigated the effects of a combination of benzoporphyrin derivative monoacid ring A (BPD-MA)-mediated PDT with adriamycin (ADM) on 4T1 breast carcinoma cells in vivo and the mechanisms underlying this effect.

Methods:

Normal BALA/c female mice bearing 4T1 breast carcinoma xenografts were tested. The animals were treated with PDT (BPD-MA 1 mg/kg, iv, plus single-dose laser irradiation) or ADM (5 mg/kg, iv) alone, or a combination of PDT with ADM. The tumor growth rate was determined by measuring the tumor weight. Cell apoptosis was measured with flow cytometry, and the expression of apoptosis-related molecules was assessed using Western blot. Microvessel density (MVD) was determined with immunohistochemical staining.

Results:

Compared to PDT or ADM alone, PDT plus ADM produced a combined inhibition on the tumor growth, prolonged life span, and enhanced apoptosis in the mice bearing 4T1 subcutaneously xenografted tumors. The combination of PDT and ADM exerted additive effects on the upregulation of Bax and the downregulation of Bcl-2, and on the reduction of MVD in 4T1 xenografted tumors.

Conclusion:

Our results demonstrate that PDT plus ADM exerts enhanced in vivo antitumor effect on breast cancer, which is closely associated with the cooperative regulation of extrinsic apoptotic pathways and the inhibition of tumor angiogenesis. Thus, PDT plus ADM is a promising combined treatment strategy for breast carcinoma.  相似文献   

15.

Background

Artemisinin is the major sesquiterpene lactones in sweet wormwood (Artemisia annua L.), and its combination with transferrin exhibits versatile anti-cancer activities. Their non-selective targeting for cancer cells, however, limits their application. The aim of this study was to prepare the artemisinin and transferrin-loaded magnetic nanoliposomes in thermosensitive and non-thermosensitive forms and evaluate their antiproliferative activity against MCF-7 and MDA-MB-231 cells for better tumor-targeted therapy.

Methods

Artemisinin and transferrin-loaded magnetic nanoliposomes was prepared by extrusion method using various concentrations of lipids. These formulations were characterized for particle size, zeta potential, polydispersity index and shape morphology. The artemisinin and transferrin-loading efficiencies were determined using HPLC. The content of magnetic iron oxide in the nanoliposomes was analysed by spectrophotometry. The in vitro release of artemisinin, transferrin and magnetic iron oxide from vesicles was assessed by keeping of the nanoliposomes at 37°C for 12 h. The in vitro cytotoxicity of prepared nanoliposomes was investigated against MCF-7 and MDA-MB-231 cells using MTT assay.

Results

The entrapment efficiencies of artemisinin, transferrin and magnetic iron oxide in the non-thermosensitive nanoliposomes were 89.11% ± 0.23, 85.09% ± 0.31 and 78.10% ± 0.24, respectively. Moreover, the thermosensitive formulation showed a suitable condition for thermal drug release at 42°C and exhibited high antiproliferative activity against MCF-7 and MDA-MB-231 cells in the presence of a magnetic field.

Conclusions

Our results showed that the thermosensitive artemisinin and transferrin-loaded magnetic nanoliposomes would be an effective choice for tumor-targeted therapy, due to its suitable stability and high effectiveness.  相似文献   

16.
Aim: Abrus agglutinin (AGG) from the seeds of Indian medicinal plant Abrus precatorius belongs to the class II ribosome inactivating protein family. In this study we investigated the anticancer effects of AGG against human hepatocellular carcinoma in vitro and in vivo.
Methods: Cell proliferation, DNA fragmentation, Annexin V binding, immunocytofluorescence, Western blotting, caspase activity assays and luciferase assays were performed to evaluate AGG in human liver cancer cells HepG2. Immunohistochemical staining and TUNEL expression were studied in tumor samples of HepG2-xenografted nude mice.
Results: AGG induced apoptosis in HepG2 cells in a dose- and time-dependent manner. AGG-treated HepG2 cells demonstrated an increase in caspase 3/7, 8 and 9 activities and a sharp decrease in the Bcl-2/Bax ratio, indicating activation of a caspase cascade. Co-treatment of HepG2 cells with AGG and a caspase inhibitor or treatment of AGG in Bax knockout HepG2 cells decreased the caspase 3/7 activity in comparison to HepG2 cells exposed only to AGG. Moreover, AGG decreased the expression of Hsp90 and suppressed Akt phosphorylation and NF-κB expression in HepG2 cells. Finally, AGG treatment significantly reduced tumor growth in nude mice bearing HepG2 xenografts, increased TUNEL expression and decreased CD-31 and Ki-67 expression compared to levels observed in the untreated control mice bearing HepG2 cells.
Conclusion: AGG inhibits the growth and progression of HepG2 cells by inducing caspase-mediated cell death. The agglutinin could be an alternative natural remedy for the treatment of human hepatocellular carcinomas.  相似文献   

17.

Background and the purpose of the study

There has been increscent interest in the field of cancer chemotherapy by discovery and development of novel agents with high efficacy, low toxicity, and minimum side effects. In order to find new anticancer agents, we replaced the pyrazolone part of well-known cytotoxic agent SJ-172550 with 7-methoxychroman-4-one. Thus, a novel series of 3-benzylidene-4-chromanones were synthesized and tested in vitro against human cancer cell lines.

Methods

The title compounds were prepared by condensation of 7-methoxychroman-4-one with suitable aldehydes in appropriate alcohol in the presence of gaseous HCl. The antiproliferative activity of target compounds were evaluated against MDA-MB-231 (breast cancer), KB (nasopharyngeal epidermoid carcinoma) and SK-N-MC (human neuroblastoma) cell lines using MTT assay.

Results

Although the direct analog of SJ-172550 (compound 5d) did not show any cytotoxic activity against tested cell lines, but 2-(2-chloro-6-methoxyphenoxy)acetic acid methyl ester analog 5c showed some activity against MDA-MB-231 and SK-N-MC cells. Further modification of compound 5c resulted in the 3-chloro-4,5-dimethoxybenzylidene derivative 5b which demonstrated better cytotoxic profile against all tested cell lines (IC50 values = 7.56–25.04 μg/ml).

Conclusion

The results demonstrated that the cytotoxic activity of compound 5b against MDA-MB-231 and SK-N-MC cells is more than etoposide. Therefore, compound 5b prototype could be considered as novel cytotoxic agent for further developing new anticancer chemotherapeutics.  相似文献   

18.

Background

Breast cancer is the most common type of female cancer. One class of hormonal therapy for breast cancer drugs -non steroidal aromatase inhibitors- are triazole analogues. In this work, some derivatives of these drugs was designed and synthesized. All synthesized compounds were evaluated for their cytotoxic activities on breast cancer cell lines (MDA-MB-231, T47D and MCF-7).

Methods

Our synthetic route for designed compounds started from 4-bromotolunitrile which was reacted with 1H-1,2,4-triazole to afford 4-(4-cyanobenzyl)-1,2,4-triazole. The reaction of later compound with aromatic aldehydes led to formation of the designed compounds. Eleven novel derivatives 1a-k were tested for their cytotoxic activities on three human breast cancer cell lines.

Results

Among the synthesized compound, 4-[2-(3-chlorophenyl)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1c) showed the highest activity against MCF-7 and MDA-MB-231 cell lines and 4-[2-(4-methoxyphenyl)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1 h) exhibited highest activity against T47D cell line. According to cytotoxic activities results, compound 4-[2-(4-dimethylamino)-1-(1H-1,2,4-triazol-1-yl)ethenyl]benzonitrile (1 k) showed comparative activity against T47D and MDA-MB-231 cell lines with compound (1 h) and our reference drug Etoposide.

Conclusion

In the process of anti-cancer drug discovery, to find new potential anti-breast cancer agents, we designed and synthesized a novel series of letrozole analogs. Cytotoxicity evaluation revealed that compounds (1c) and (1 k) were the most potent compounds with comparative activity with Etoposide. The results revealed that π-π interactions are responsible for the enzyme inhibitions of compounds (1 c) and (1 k).Keyword: Breast cancer, Non-steroidal aromatase inhibitor, Cytotoxic activity  相似文献   

19.

Aim:

Zoledronic acid (ZA), a bisphosphonate, is currently used in combination with chemotherapeutic agents to suppress breast cancer cell proliferation or breast cancer-induced osteolysis. The aim of this study was to investigate the effects of ZA combined with a natural anticancer compound plumbagin (PL) against human breast cancer cells in vitro.

Methods:

Human breast cancer MDA-MB-231SArfp cells were treated with ZA, PL or a combination of ZA and PL. The cell growth, apoptosis and migration were evaluated using CCK-8 assay, flow cytometry and transwell assay, respectively. The expression of apoptosis-related proteins was measured using real-time PCR and Western blotting. Synergism was evaluated using Compusyn software, and the combination index (CI) and drug reduction index (DRI) values were determined.

Results:

PL or ZA alone caused mild cytotoxicity (the IC50 value at 24 h was 12.18 and above 100 μmol/L, respectively). However, the combination of ZA and PL caused a synergistic cytotoxicity (CI=0.26). The DRI values also showed a synergistic effect between PL and ZA, with actual values of 5.52 and 3.59, respectively. Furthermore, PL and ZA synergistically induced apoptosis and inhibited migration of the breast cancer cells. Moreover, the combination of ZA and PL decreased the expression of Notch-1, cleaved PARP, Bcl-2 and Bcl-xl, and increased the expression of cleaved caspase-3, CDKN1A and ID1. When the breast cancer cells were transfected with specific siRNA against Notch-1, the combination of ZA and PL markedly increased the expression of Bcl-2.

Conclusion:

Combination of ZA and PL synergistically suppresses human breast cancer MDA-MB-231SArfp cells in vitro. PL can inhibit ZA-induced activation of the Notch-1 signaling pathway and subsequently reduce the expression of Bcl-2, thus potentiating cancer cell apoptosis.  相似文献   

20.
In this study, doxorubicin (DOX) was physically incorporated into pH-sensitive micelles made from a mixture of poly(l-histidine)-b-poly(ethylene glycol)/poly(l-lactide)-b-poly(ethylene glycol) (75/25, wt.%). The DOX-loaded mixed micelles were formulated using dialysis methods and optimal DOX incorporation was achieved at a drug/polymer feed ratio of 0.2 (wt./wt.) when a proper amount of aqueous phase (0.2, v./v.) was added into the common solvent (DMSO) solution, followed by dialysis at 4 °C. Based on the results obtained from dynamic light scattering, UV-Vis absorption, and fluorescence experiments, it was demonstrated that the encapsulated drugs were mainly located inside the hydrophobic micelle cores, well protected and inaccessible to the exterior molecules. Under in vitro conditions, although the microstructure of the micelles was altered below pH 8.0 by the encapsulated drugs, the drug-loaded micelles still exhibited a desirable ability to control the drug release in response to tumor extracellular pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号