首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In some patients, COVID-19 is complicated with myocarditis. Early detection of myocardial injury and timely intervention can significantly improve the clinical outcomes of COVID-19 patients. Although endomyocardial biopsy (EMB) is currently recognized as the ‘gold standard’ for the diagnosis of myocarditis, there are large sampling errors, many complications and a lack of unified diagnostic criteria. In addition, the clinical methods of treating acute and chronic COVID-19-related myocarditis are different. Cardiac magnetic resonance (CMR) can evaluate the morphology of the heart, left and right ventricular functions, myocardial perfusion, capillary leakage and myocardial interstitial fibrosis to provide a noninvasive and radiation-free diagnostic basis for the clinical detection, efficacy and risk assessment, and follow-up observation of COVID-19-related myocarditis. However, for the diagnosis of COVID-19-related myocarditis, the Lake Louise Consensus Criteria may not be fully applicable. COVID-19-related myocarditis is different from myocarditis related to other viral infections in terms of signal intensity and lesion location as assessed by CMR, which is used to visualize myocardial damage, locate lesions and quantify pathological changes based on various sequences. Therefore, the standardized application of CMR to timely and accurately evaluate heart injury in COVID-19-related myocarditis and develop rational treatment strategies could be quite effective in improving the prognosis of patients and preventing potential late-onset effects in convalescent patients with COVID-19.  相似文献   

2.
An outbreak of coronavirus disease 2019 (COVID-19) occurred in December 2019 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a strain of SARS-CoV. Patients infected with the virus present a wide spectrum of manifestations ranging from mild flu-like symptoms, cough, fever and fatigue to severe lung injury, appearing as bilateral interstitial pneumonia or acute respiratory failure. Although SARS-CoV-2 infection predominantly offends the respiratory system, it has been associated with several cardiovascular complications as well. For example, patients with COVID-19 may either develop type 2 myocardial infarction due to myocardial oxygen demand and supply imbalance or acute coronary syndrome resulting from excessive inflammatory response to the primary infection. The incidence of COVID-19 related myocarditis is estimated to be accountable for an average of 7% of all COVID-19 related fatal cases, whereas heart failure (HF) may develop due to infiltration of the heart by inflammatory cells, destructive action of pro-inflammatory cytokines, micro-thrombosis and new onset or aggravated endothelial and respiratory failure. Lastly, SARS-CoV-2 can engender arrhythmias through direct myocardial damage causing acute myocarditis or through HF decompensation or secondary, through respiratory failure or severe respiratory distress syndrome. In this comprehensive review we summarize the COVID-19 related cardiovascular complications (acute coronary syndromes, myocarditis, HF, arrhythmias) and discuss the main underlying pathophysiological mechanisms.  相似文献   

3.
Severe acute respiratory syndrome coronavirus 2 infection affects not only the lungs, but also the cardiovascular system, having a major impact on patients’ outcomes. Myocardial injury (MI) occurs in the context of coronavirus infectious disease 2019 (COVID-19) and is associated with a higher risk of severe clinical outcome and mortality. COVID-19-related MI can have various clinical manifestations, of which the main ones are myocarditis, stress cardiomyopathy, acute coronary syndrome, and pulmonary embolism. The exact mechanisms of how MI occurs in these patients are not yet fully known. Direct injury, through direct viral myocardial invasion, and indirect injury, through interaction with angiotensin I converting enzyme 2, increased inflammation, and thrombocyte and endothelial dysfunction, could be involved in acute MI in patients with COVID-19. A better understanding of these multiple potential mechanisms may help to develop new targeted therapeutic strategies. The purpose of this review is to provide the current understanding of the potential mechanisms involved in MI induced by COVID-19 and to discuss the current progress in the therapeutic strategies.  相似文献   

4.
BackgroundThe coronavirus disease of 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While systemic inflammation and pulmonary complications can result in significant morbidity and mortality, cardiovascular complications may also occur.ObjectiveThis brief report evaluates cardiovascular complications in the setting of COVID-19 infection.DiscussionThe current COVID-19 pandemic has resulted in over one million infected worldwide and thousands of death. The virus binds and enters through angiotensin-converting enzyme 2 (ACE2). COVID-19 can result in systemic inflammation, multiorgan dysfunction, and critical illness. The cardiovascular system is also affected, with complications including myocardial injury, myocarditis, acute myocardial infarction, heart failure, dysrhythmias, and venous thromboembolic events. Current therapies for COVID-19 may interact with cardiovascular medications.ConclusionsEmergency clinicians should be aware of these cardiovascular complications when evaluating and managing the patient with COVID-19.  相似文献   

5.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can give rise to different clinical manifestations that are directly related to viral tissue damage or indirectly induced by the antiviral immune response. Hyper-activation of the immune system in an attempt to eradicate the infection may trigger autoimmunity. Several immune-mediated disorders have been described in SARS-CoV-2-infected individuals. These include cutaneous rashes and vasculitis, autoimmune cytopenia, anti-phospholipid syndrome, central or peripheral neuropathy, myositis and myocarditis. On the other hand, rheumatic patients were reported to have similar coronavirus disease 2019 (COVID-19) incidence, morbidity and mortality rates compared to general population. This opinion review will summarize the crucial immunologic steps which occur during SARS-CoV-2-infection that may link autoimmunity to COVID-19 and provides an opportunity for further discussion regarding this association.  相似文献   

6.
A healthy 35-year-old man was admitted to a rural hospital with coronavirus disease (COVID-19). During 14 days of hospitalization, he had no symptoms and was not given supplemental oxygen. About 3 weeks after discharge, he was re-admitted to the same hospital with new-onset continuous fever and general weakness. At the time of his second admission, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RT-PCR was performed on a retro-nasal swab and the result was negative. Four days after admission, the patient was transferred to our intensive care unit (ICU) following deterioration of his respiratory and haemodynamic conditions, where he received mechanical ventilation, intra-aortic balloon pumping, and veno-arterial extracorporeal membrane oxygenation. A nasopharyngeal swab was obtained again at ICU admission, but RT-PCR was negative for SARS-CoV-2. All antibody titres measured against other viruses were low. Blood cultures were negative, and no bacteria were observed in sputum samples. However, SARS-CoV-2 RNA was detected by RT-PCR from sections obtained by myocardial biopsy. The patient's final diagnosis was delayed-onset SARS-CoV-2-induced fulminant myocarditis (FM). We strongly suggested that one of the proposed mechanisms of COVID-19-related myocardial injury will be the direct invasion of SARS-CoV-2 into cardiomyocytes even if delayed-onset. And this is the first case of delayed-onset FM in which diagnosis of active myocarditis was proven by pathological examination following endomyocardial biopsy and SARS-CoV-2 was detected in the myocardium by RT-PCR.  相似文献   

7.
The role of cardiac magnetic resonance (CMR) in coronary artery disease is prominent. CMR provides functional and structural heart disease assessment with high accuracy. It allows accurate cardiac volume and flow quantification and wall motion analysis both at rest and at stress. CMR myocardial perfusion studies detect myocardial ischemia and provide insights into the morphology of the myocardial tissue. CMR imaging noninvasively differentiates causes of myocardial injury such as ischemia or inflammation; stages of myocardial injury, such as acute or chronic; grade of myocardial damage, such as reversible or irreversible; myocardial fibrosis or scar. There is an emerging role of CMR in patients with acute chest presentation since it can demonstrate causes of chest pain other than coronary artery disease such as myocarditis, pericarditis, aortic dissection and pulmonary embolism. CMR is noninvasive and radiation-free. It’s combined approach of functional and structural cardiac assessment makes it unique compared with other imaging modalities.  相似文献   

8.
Coronavirus disease 2019 (COVID-19), caused by the infection of a novel coronavirus [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], has become a pandemic. The infection has resulted in about one hundred million COVID-19 cases and millions of deaths. Although SARS-CoV-2 mainly spreads through the air and impairs the function of the respiratory system, it also attacks the gastrointestinal epithelial cells through the same receptor, angiotensin converting enzyme 2 receptor, which results in gastroenteric symptoms and potential fecal-oral transmission. Besides the infection of SARS-CoV-2, the treatments of COVID-19 also contribute to the gastroenteric manifestations due to the adverse drug reactions of anti-COVID-19 drugs. In this review, we update the clinical features, basic studies, and clinical practices of COVID-19-associated gastroenteric manifestations.  相似文献   

9.
During the early phase of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), diagnosis was difficult due to the diversity in symptoms and imaging findings and the variability of disease presentation. Pulmonary manifestations are reportedly the main clinical presentations of COVID-19 patients. Scientists are working hard on a myriad of clinical, epidemiological, and biological aspects to better understand SARS-CoV-2 infection, aiming to mitigate the ongoing disaster. Many reports have documented the involvement of various body systems and organs apart from the respiratory tract including the gastrointestinal, liver, immune system, renal, and neurological systems. Such involvement will result in diverse presentations related to effects on these systems. Other presentations such as coagulation defects and cutaneous manifestation may also occur. Patients with specific comorbidities including obesity, diabetes, and hypertension have increased morbidity and mortality risks with COVID-19.  相似文献   

10.
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)所致冠状病毒疾病2019(COVID-19)已构成国际关注的突发公共卫生事件。COVID-19传染性强,可导致患者出现严重呼吸道感染和多器官系统功能损害。COVID-19发病机制尚不明确,我们推测SARS-CoV-2直接致宿主靶细胞损伤及机体免疫炎症反应紊乱可能是COVID-19的主要致病机制。本文基于相关研究领域的进展,对COVID-19发病机制中的若干热点问题进行分析和讨论,并提出思考。  相似文献   

11.
Novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. SARS-CoV-2 is an RNA virus and has a glycosylated spike (S) protein used for genome encoding. COVID-19 can lead to a cytokine storm and patients usually have early respiratory signs and further secondary infections, which can be fatal. COVID-19 has entered an emergency phase, but there are still no specific effective drugs for this disease. Mesenchymal stem cells (MSCs) are multipotent stromal cells, which cause antiapoptosis and can repair damaged epithelial cells. Many clinical trials have proved that MSC therapy could be a potential feasible therapy for COVID-19 patients, especially those with acute respiratory distress syndrome, without serious adverse events or toxicities. However, more studies are needed in the future, in order to confirm the effect of this therapy.  相似文献   

12.
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is spreading at an alarming rate, and it has created an unprecedented health emergency threatening tens of millions of people worldwide. Previous studies have indicated that SARS-CoV-2 ribonucleic acid could be detected in the feces of patients even after smear-negative respiratory samples. However, demonstration of confirmed fecal-oral transmission has been difficult. Clinical studies have shown an incidence rate of gastrointestinal (GI) symptoms ranging from 2% to 79.1% in patients with COVID-19. They may precede or accompany respiratory symptoms. The most common GI symptoms included nausea, diarrhea, and abdominal pain. In addition, some patients also had liver injury, pancreatic damage, and even acute mesenteric ischemia/thrombosis. Although the incidence rates reported in different centers were quite different, the digestive system was the clinical component of the COVID-19 section. Studies have shown that angiotensin-converting enzyme 2, the receptor of SARS-CoV-2, was not only expressed in the lungs, but also in the upper esophagus, small intestine, liver, and colon. The possible mechanism of GI symptoms in COVID-19 patients may include direct viral invasion into target cells, dysregulation of angiotensin-converting enzyme 2, immune-mediated tissue injury, and gut dysbiosis caused by microbiota. Additionally, numerous experiences, guidelines, recommendations, and position statements were published or released by different organizations and societies worldwide to optimize the management practice of outpatients, inpatients, and endoscopy in the era of COVID-19. In this review, based on our previous work and relevant literature, we mainly discuss potential fecal-oral transmission, GI manifestations, abdominal imaging findings, relevant pathophysiological mechanisms, and infection control and prevention measures in the time of COVID-19.  相似文献   

13.
IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging viral pathogen that causes the novel coronavirus disease of 2019 (COVID-19) and may result in hypoxemic respiratory failure necessitating invasive mechanical ventilation in the most severe cases.ObjectiveThis narrative review provides evidence-based recommendations for the treatment of COVID-19 related respiratory failure requiring invasive mechanical ventilation.DiscussionIn severe cases, COVID-19 leads to hypoxemic respiratory failure that may meet criteria for acute respiratory distress syndrome (ARDS). The mainstay of treatment for ARDS includes a lung protective ventilation strategy with low tidal volumes (4–8 mL/kg predicted body weight), adequate positive end-expiratory pressure (PEEP), and maintaining a plateau pressure of < 30 cm H2O. While further COVID-19 specific studies are needed, current management should focus on supportive care, preventing further lung injury from mechanical ventilation, and treating the underlying cause.ConclusionsThis review provides evidence-based recommendations for the treatment of COVID-19 related respiratory failure requiring invasive mechanical ventilation.  相似文献   

14.
15.
BACKGROUNDAlthough coronavirus disease 2019 (COVID-19) presents primarily as a lower respiratory tract infection, increasing data suggests multiorgan, including the gastrointestinal (GI) tract and liver, involvement in patients who are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).AIMTo provide a comprehensive overview of COVID-19 in gastroenterology and hepatology.METHODSRelevant studies on COVID-19 related to the study aim were undertaken through a literature search to synthesize the extracted data.RESULTSWe found that digestive symptoms and liver injury are not uncommon in patients with COVID-19 and varies in different individuals. The most common GI symptoms reported are diarrhea, nausea, vomiting, and abdominal discomfort. Other atypical GI symptoms, such as loss of smell and taste and GI bleeding, have also been reported along with the evolvement of COVID-19. Liver chemistry abnormalities mainly include elevation of aspartate transferase, alanine transferase, and total bilirubin. It is postulated to be related to the binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus to the angiotensin converting enzyme-2 receptor located on several different human cells. CONCLUSIONStandardized criteria should be established for diagnosis and grading of the severity of GI symptoms in COVID-19 patients. Gastroenterology and hepatology in special populations, such as children and elderly, should be the focus of further research. Future long-term data regarding GI symptoms should not be overlooked.  相似文献   

16.
Even in patients without a history of liver disease, liver injury caused by coronavirus disease 2019 (COVID-19) is gradually becoming more common. However, the precise pathophysiological mechanisms behind COVID-19's liver pathogenicity are still not fully understood. We hypothesize that inflammation may become worse by cytokine storms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Elevated ferritin levels can initiate ferritinophagy mediated by nuclear receptor coactivator 4 (NCOA4), which leads to iron elevation, and ferroptosis. In COVID-19 patients, ferroptosis can be restricted to reduce disease severity and liver damage by targeting NCOA4-mediated ferritinophagy. To confirm the role of ferritinophagy-mediated ferroptosis in SARS-CoV-2 infection, further research is required.  相似文献   

17.
In December 2019 in Wuhan (China), a bat-origin coronavirus (2019-nCoV), also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified, and the World Health Organization named the related disease COVID-19. Its most severe manifestations are pneumonia, systemic and pulmonary thromboembolism, acute respiratory distress syndrome (ARDS), and respiratory failure. A swab test is considered the gold standard for the diagnosis of COVID-19 despite the high number of false negatives. Radiologists play a crucial role in the rapid identification and early diagnosis of pulmonary involvement. Lung ultrasound (LUS) and computed tomography (CT) have a high sensitivity in detecting pulmonary interstitial involvement. LUS is a low-cost and radiation-free method, which allows a bedside approach and needs disinfection of only a small contact area, so it could be particularly useful during triage and in intensive care units (ICUs). High-resolution computed tomography (HRCT) is particularly useful in evaluating disease progression or resolution, being able to identify even the smallest changes.  相似文献   

18.
IntroductionCoronavirus disease of 2019 (COVID-19) is a lower respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease can impact the cardiovascular system and lead to abnormal electrocardiographic (ECG) findings. Emergency clinicians must be aware of the ECG manifestations of COVID-19.ObjectiveThis narrative review outlines the pathophysiology and electrocardiographic findings associated with COVID-19.DiscussionCOVID-19 is a potentially critical illness associated with a variety of ECG abnormalities, with up to 90% of critically ill patients demonstrating at least one abnormality. The ECG abnormalities in COVID-19 may be due to cytokine storm, hypoxic injury, electrolyte abnormalities, plaque rupture, coronary spasm, microthrombi, or direct endothelial or myocardial injury. While sinus tachycardia is the most common abnormality, others include supraventricular tachycardias such as atrial fibrillation or flutter, ventricular arrhythmias such as ventricular tachycardia or fibrillation, various bradycardias, interval and axis changes, and ST segment and T wave changes. Several ECG presentations are associated with poor outcome, including atrial fibrillation, QT interval prolongation, ST segment and T wave changes, and ventricular tachycardia/fibrillation.ConclusionsThis review summarizes the relevant ECG findings associated with COVID-19. Knowledge of these findings in COVID-19-related electrocardiographic presentations may assist emergency clinicians in the evaluation and management of potentially infected and infected patients.  相似文献   

19.
ABSTRACT

Introduction: COVID-19 is causing considerable morbidity and mortality worldwide. Serious respiratory complications aside, the heart is also frequently involved. The mechanisms and the extent of the myocardial injury, along with the short and long-term cardiovascular (CV) outcomes in COVID-19 survivors remain unclear.

Areas covered: myocardial injury has been found in a considerable proportion of hospitalized COVID-19 patients and is associated with a worse prognosis. The late onset of CV complications with myocarditis-like changes revealed by CMR has been reported in COVID-19 survivors. Previous observational studies on viral myocarditis provide evidence of a significant incomplete recovery with residual dysfunction and remodeling of left ventricle. Incomplete recovery is thought to be the result of persistent myocardial inflammation due to a post-viral autoimmune response. Considering the significant inflammatory nature of COVID-19, COVID-19 survivors may be at risk of developing persistent residual myocardial injury, the sequelae of which are unclear.

Expert commentary: COVID-19 is an emerging threat for the heart. The extent of CV injury, along with the short and long-term sequelae, requires further investigation. The early detection of residual myocardial changes in COVID-19 survivors is of utmost importance in order to identify those patients at risk of CV complication development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号