首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Basal forebrain cholinergic neurons respond in vitro and in vivo to nerve growth factor (NGF) and to brain-derived neurotrophic factor (BDNF). It is not clear to what extent the neurons that respond to these two factors, or to neurotrophin-3 or−45 (NT-3;NT-45) are identical or only partially overlapping populations. We have addressed this issue in cultures of basal forebrain neurons derived from 2-week-old postnatal rats, using choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) as cholinergic markers. Cholinergic neuron survival was enhanced in the presence of NGF, BDNF andNT-45.NT-45 was as effective as BDNF. NT-3 was without effect at this age, although in cultures derived from embryonic forebrain, cholinergic differentiation was induced by NT-3. Cotreatment with NGF and BDNF resulted in small, but consistent, increases in the number of ChAT-positive neurons, compared with either factor alone.NT-45 was also found to be additive with NGF, whereas cotreatment with BDNF andNT-45 showed no addivity. NT-3 had no additive effects with any other neurotrophin on any cholinergic parameters in postnatal cultures. Taken together, the results indicate the existence in postnatal rat brain of a large overlapping population of cholinergic neurons that are responsive to ligands for the neurotrophin receptors TrkA (NGF) and TrkB (BDNF andNT-45), but not TrkC (NT-3), and small distinct populations that show specificity for NGF or BDNF but not both. We hypothesize that cholinergic neurons projecting into different regions of the hippocampus may derive trophic support from distinct neurotrophins.  相似文献   

2.
Several groups have suggested that transplantation of marrow stromal cells (MSCs) promotes functional recovery in animal models of brain trauma. Recent studies indicate that tissue replacement by this method may not be the main source of therapeutic benefit, as transplanted MSCs have only limited ability to replace injured central nervous system (CNS) tissue. To gain insight into the mechanisms responsible for such effects, we systematically investigated the therapeutic potential of MSCs for treatment of brain injury. Using in vitro studies, we detected the synthesis of various growth factors, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT-3). Enzyme-linked immunosorbent assay (ELISA) demonstrated that MSCs cultured in Dulbecco's modified Eagle medium (DMEM) produced substantial amounts of NGF for at least 7 weeks, whereas the levels of BDNF, GDNF and NT-3 remained unchanged. In studies in mice, after intraventricular injection of MSCs, NGF levels were increased significantly in cerebrospinal fluid by ELISA, confirming our cell culture results. Further studies showed that treatment of traumatic brain injury with MSCs could attenuate the loss of cholinergic neuronal immunostaining in the medial septum of mice. These studies demonstrate for the first time that by increasing the brain concentration of NGF, intraventricularly transplanted MSCs might play an important role in the treatment of traumatic brain injury.  相似文献   

3.
Different subpopulations of adult primary sensory neurons in the dorsal root ganglia express receptors for different trophic factors, and are therefore potentially responsive to distinct trophic signals. We have compared the effect of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and NT-3, and of glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth in dissociated cultures of sensory neurons from the lumbar ganglia of young adult rats, and attempted to establish subset-specific effects of these trophic factors. We analysed three parameters of neurite growth (percentage of process-bearing neurons, length of longest neurite and total neurite length), which may correlate with particular types of axon growth in vivo, and may therefore respond differently to trophic factor presence. Our results showed that percentage of process-bearing neurons and total neurite length were influenced by trophic factors, whilst the length of the longest neurite was trophic factor independent. Only NGF and GDNF were found to enhance significantly the proportion of process-bearing neurons in vitro. GDNF was more effective than NGF on small, IB4- neurons, which are known to develop GDNF responsiveness early in postnatal development. NGF, and to a much lesser extent GDNF, enhanced the total length of the neurites produced by neurons in culture. BDNF exerted an inhibitory effect on growth, and both BDNF and NT-3 could partially block some of the growth-promoting effects of NGF on specific neuronal subpopulations.  相似文献   

4.
Abstract

Background: Recent evidence suggests that neurotrophic growth factor systems, including brain-derived neurotrophic factor, might be involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). Glial cell line-derived neurotrophic factor (GDNF) is from the transforming growth factor-β family and is abundantly expressed in the central nervous system, where it plays a role in the development and function of hippocampal cells. To date, no association studies have been done between ADHD and GDNF. Thus, here we investigate the hypothesis that there are differences in plasma GDNF levels between children with ADHD and healthy controls. Methods: Plasma GDNF levels were measured in 86 drug-naïve children with ADHD and 128 healthy children. The severity of ADHD symptoms was determined by scores on the Korean ADHD Rating Scale (K-ARS) in patients and healthy controls. Results: The median plasma GDNF levels in ADHD patients was 74.0 (IQR: 23.4–280.1) pg/ml versus 24.6 (IQR: 14.5–87.3) pg/ml in healthy controls; thus the median plasma GDNF levels in ADHD patients were significantly higher than in healthy controls (Mann–Whitney U-test, P < 0.01). Plasma GDNF levels were correlated positively with K-ARS subscale scores (inattention, hyperactivity–impulsivity and total), determined by Spearman's correlation test in ADHD patients and healthy controls (r = 0.371, P < 0.01; r = 0.331, P < 0.01; and r = 0.379, P < 0.01, respectively). Conclusions: These findings suggest increased plasma GDNF levels in untreated ADHD patients. In addition, plasma GDNF levels had a significant positive correlation with inattention, hyperactivity–impulsivity and K-ARS total scores in ADHD patients and healthy controls. Further studies are required to determine the source and role of circulating GDNF in ADHD.  相似文献   

5.
The aim of this study is to measure serum levels of neurotropic factor (NF) in patients with dementia. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) were determined in Alzheimer's dementia patients without medication (AD; n: 22), Alzheimer's dementia patients receiving cholinesterase inhibitor (CEI) treatment (AD?+?CEI; n: 32) and vascular dementia patients receiving CEI treatment (VaD?+?CEI; n: 27) and the age-matched control group (n: 20). NGF levels were detected to be significantly higher in the control group than in AD group (P?相似文献   

6.
Abstract

Objective: The aim of this study was to identify potential differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and neurotrophin-3 (NTF3) levels in adolescents with major depressive disorder (MDD) compared to healthy controls. The possible relationship between serum neurotrophin levels and suicidality in adolescents with MDD was also addressed.

Methods: A total of 70 treatment-free adolescents with MDD and 40 healthy controls aged 11 to 19?years were enrolled. The severity of suicidality was determined using the Columbia-Suicide Severity Rating Scale, and the severity of depression and anxiety symptoms were evaluated by self-report inventories. Serum levels of neurotrophins were measured using an enzyme-linked immunosorbent assay.

Results: The mean serum BDNF levels were significantly higher in adolescents with MDD than in control subjects; no significant difference was found between the groups for serum GDNF, NGF and NTF3 levels. No correlations were found between the levels of serum neurotrophins and the severity of depression or suicidality.

Conclusions: The study results suggest that elevated serum BDNF levels may be related to MDD in adolescents. However, our findings did not support a role for neurotrophins in suicidality.
  • Key points
  • Serum BDNF levels were higher in adolescents with MDD than in controls.

  • No significant alterations of serum levels of GDNF, NGF and NTF3 were evident in adolescents with MDD.

  • Neurotrophin levels were not associated with suicidal ideation and behaviours.

  相似文献   

7.
A growing body of evidence suggests that neurotrophic factors can protect neurons against neuronal death. In the present study we examined whether systemic administration of members of the neurotrophin family, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3) and neurotrophin 5 (NT-5) and basic fibroblast growth factor (bFGF) could protect against 1-methyl-4-phenylpyridinium (MPP+) induced striatal damage in neonatal rats. Systemic administration of NGF, BDNF and NT-5 produced significant neuroprotective effects, whereas NT-3 was ineffective. Systemic administration of bFGF had significant neuroprotective effects as assessed by T2-weighted magnetic resonance imaging and measurements of n-acetylaspartate and lactate using chemical shift magnetic resonance imaging. Systemic administration of NGF, BDNF and bFGF, but not NT-3 attenuated MPP+ induced increases in hydroxyl radical generation as assessed by the conversion of salicylate to 2,3- or 2,5-dihydroxybenzoic acid (DHBA). These results show that systemic administration of several neurotrophins and bFGF can attenuate neuronal damage induced by chemical hypoxia in vivo by a mechanism which may involve attenuation of oxidative stress.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is one of several endogenous proteins that play key roles in neuronal development and homeostasis. We describe here the characterization and use of a sensitive and specific enzyme-linked immunoassay (EIA) for BDNF protein. Recombinant BDNF was detected at concentrations as low as 10 pg/ml, whereas the EIA did not detect NT-3, NT-4/5, or NGF at concentrations as high as 100 ng/ml. Because BDNF protein sequences are identical among humans, mice, and rats, we utilized the BDNF EIA to detect BDNF in the circulation or brain regions of these species. High concentrations of BDNF were detected in human and rat serum, and up to 50-fold lower BDNF levels were present in citrated human or rat plasma. The BDNF signal (66–141 pg/ml) in 20% human plasma was completely blocked by pre-exposure of plasma to a monoclonal antibody (Mab) specific for BDNF but not by exposure to 5-fold greater concentrations of an irrelevant Mab of the same isotype (IgGl). There was a significant and positive correlation (r = +0.86) between plasma levels of BDNF and serotonin, an indoleamine that is specifically released from activated platelets. These results are consistent with the view that the BDNF detected in human and rat plasma is derived from platelet degranulation, and that circulating levels of BDNF are negligible. In contrast to human or rat serum, mouse serum contained no detectable BDNF. However, BDNF protein was readily detectable at 108–256 ng/g of tissue in hippocampus, frontal cortex, and neostriatum of mice and rats. Thus, the failure to detect BDNF in murine serum was not due to an assay defect but highlights a significant species difference in the tissue-specific expression of BDNF that may be of biological importance. The presence of BDNF protein in blood and brain regions at quantities which greatly exceed those described for NGF confirm the abundant distribution of this broadly-acting neurotrophic factor.  相似文献   

9.
Neurotrophic factors regulate the developmental survival and differentiation of specific neuronal populations. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the nerve growth factor (NGF) protein family, also known as the neurotrophins. Insights into the different roles of neurotrophins can be gained by studying the expression of their functional receptors. Here we report the development of procedures for their radiolabeling and efficient crosslinking to specific cell-surface receptors. BDNF and NT-3 receptors in cell lines and tissue preparations expressing receptors for the 2 neurotrophins have been identified using this affinity crosslinking procedure. Like NGF, BDNF and NT-3 crosslinking to the low affinity NGF receptor (p75NGFR) on PC12 cells. BDNF and NT-3 also crosslinked to cells expressing p145trkB protein, producing an approximately 160 kD neurotrophin-receptor complex. Crosslinking of the 2 neurotrophins in vivo to specific trk family members in many areas of the central nervous system also produced a 160 kD receptor complex. However, in all brain regions a complex of approx. 100 kD could also be identified, all or most of which represents crosslinking to a truncated from of trkB. The broad distribution of BDNF and NT-3 receptors throughout the CNS suggests that neurotrophins may have yet unrecognized functions on specific neuronal populations. BDNF and NT-3 receptors were also found in brain areas in which the neurotrophins themselves are also synthesized, suggesting that beyond long-range trophic effects, these proteins may also act as autocrine or short-range paracrine regulators. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Rats received a unilateral lesion of the nucleus basalis magnocellularis (NBM) by infusion of ibotenic acid. Starting 2 weeks after the lesion, the animals were treated with nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) by intraparenchymal infusion of 3 μg per day for 4 weeks. Lesioned control animals received a similar amount of cytochromec. The activity of cholone acethyltransferase (ChAT) in the frontal neocortex was signigicantly reduced by the lesion (−39%). However, the intraparenchymal treatment with NGF or BDNF did not affect cortical ChAT activity. The number of p75 NGF receptor-immunoreactive neurons in the NBM was significantly decreased (−49%) by the lesion and was not affected by NGF or BDNF. The size of the remaining neurons was significantly increased by NGF (+32%), but not by BDNF (+12%). Similarly, in situ hybridization showed enhanced expression of the p75 NGF receptor following treatment with NGF, but not with BDNF. These results suggest that although BDNF occurs in the target area of cholinergic NBM neurons, its effects on these neurons are less pronounced than those of NGF.  相似文献   

11.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

12.
Children born to mothers with preeclampsia have consistently been suggested to be at risk for cognitive and behavioral disorders in later life. Breastfeeding is said to be associated with better neurodevelopment outcomes. Our earlier studies indicated higher levels of docosahexaenoic acid (DHA) in human milk in women with preeclampsia. DHA is known to regulate the expression of neurotrophins and together they play a vital role in neurodevelopment and cognitive performance. The present study examines the levels of maternal plasma and milk neurotrophins [(nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF)] in women with preeclampsia and compares them with normotensive women who served as controls. Singleton pregnant women diagnosed with preeclampsia (n = 72) and controls (n = 102) were recruited for this study from Bharati Hospital, Pune. Plasma and milk samples were analyzed for NGF and BDNF levels using the Emax Immuno Assay System using promega kits. Maternal plasma NGF and BDNF levels were lower (p < 0.01 for both) in women with preeclampsia as compared to the control women. Milk NGF levels were similar while milk BDNF levels were higher (p < 0.05) in the preeclampsia group as compared to controls. Plasma NGF levels were positively correlated with milk NGF levels in the control group. Our results indicate the differential regulation of milk NGF and BDNF levels in women with preeclampsia. The present study suggests a role for both NGF and BDNF in human milk for postnatal brain development. Further studies need to examine the associations of DHA and BDNF in human milk with cognition at later ages.  相似文献   

13.
《Neurological research》2013,35(2):172-180
Abstract

It has been demonstrated that bone mesenchymal stromal cells (BMSCs) stimulate neurite outgrowth from dorsal root ganglion (DRG) neurons. The present in vitro study tested the hypothesis that BMSCs stimulate the neurite outgrowth from spinal neurons by secreting neurotrophic factors. Spinal neurons were cocultured with BMSCs, fibroblasts and control medium in a non-contact system. Neurite outgrowth of spinal neurons cocultured with BMSCs was significantly greater than the neurite outgrowth observed in neurons cultured with control medium or with fibroblasts. In addition, BMSC-conditioned medium increased the length of neurites from spinal neurons compared to those of neurons cultured in the control medium or in the fibroblasts-conditioned medium. BMSCs expressed brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). The concentrations of BDNF and GDNF in BMSC-conditioned medium were 132±12 and 70±6 pg ml?1, respectively. The addition of anti-BDNF and anti-GDNF antibodies to BMSC-conditioned medium partially blocked the neurite-promoting effect of the BMSC-conditioned medium. In conclusion, our results demonstrate that BMSCs promote neurite outgrowth in spinal neurons by secreting soluble factors. The neurite-promoting effect of BMSCs is partially mediated by BDNF and GDNF.  相似文献   

14.
This paper aims to investigate the possible roles of a set of neurotrophic factors (brain-derived neurotrophic factor-BDNF, nerve growth factor-NGF) and neuropeptides (neuropeptide Y-NPY, and galanin) in children with active epileptogenesis. The cerebrospinal fluid (CSF) levels of BDNF, NPY, NGF and galanin were measured with enzyme-linked immunosorbent assays in epileptic children (n = 73) and controls (n = 64). There were no significant alterations in the CSF levels of BDNF, NPY and NGF in epileptic children with active clinical seizures compared with the levels of controls. However profoundly depressed galanin levels were found in infants with epileptic encephalopathy (mean ± SD:0.63 ± 0.19 pg/ml) and significantly increased galanin levels were measured in children with drug resistant epilepsy during the period of status epilepticus (mean ± SD: 6.92 ± 1.19, pg/ml pg/ml) compared with the levels of controls. Depressed levels of galanin might reflect a defective anti-epileptogenic effect of galanin in infants with epileptic encephalopathy. On the contrary, increased CSF levels of galanin might be a result of anti-epileptogenic effects of this peptide in epileptic children with status epilepticus.  相似文献   

15.
16.
Although developing motor neurons express low-affinity nerve growth factor (NGF) receptors, there is no known biological effect of NGF on developing or adult motor neurons. In this study, we found that, unlike NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) stimulated cholinergic phenotype by increasing choline acetyltransferase (CAT) activity in cultures enriched with embryonic rat motor neurons. Ciliary neurotrophic factor (CNTF) also stimulated CAT activity. The effects of BDNF and NT-4/5 on CAT activity appeared to be synergistic with that of CNTF. Cotreatment with BDNF and NT-3 resulted in an additive effect, suggesting that signal transduction was mediated through different high-affinity receptors tyrosine kinases B and C (Trk B and Trk C). However, cotreatment with BDNF and NT-4/5 did not result in an increase in CAT activity greater than that of either BDNF or NT-4/5 alone, suggesting that their effects were mediated via the same receptor Trk B. Supporting our findings that spinal cholinergic neurons are responsive to trophic actions of members of the neurotrophin family, motor neuron-enriched cultures were found to express mRNA for Trk B and Trk C, which have been identified as high-affinity receptors for BDNF and NT-4/5, and NT-3, respectively.  相似文献   

17.
Aging impairs the competence of the hippocampus for synaptic reorganization after injury. This potentially is due to the inability of the aging hippocampus to up-regulate the critical neurotrophic factors for prolonged periods after injury to levels at which they can stimulate neurite outgrowth and facilitate synaptic reorganization. We hypothesize that the concentrations of neurotrophins in the hippocampus after injury depend on the age at the time of injury. We quantified the concentrations of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the hippocampus of young, middle-aged, and aged Fischer 344 rats at 4 days after kainic acid (KA)-induced injury. In comparison with the age-matched intact hippocampus, the KA-lesioned hippocampus exhibited increased levels of BDNF and NGF in all three age groups. In contrast, the NT-3 concentration was unaltered after KA lesion. Notwithstanding similar percentage increases in BDNF after injury, the lesioned middle-aged and aged hippocampus contained 45-52% less BDNF than the lesioned young hippocampus. NGF and NT-3 levels after injury were comparable across the three age groups, however. Furthermore, lower BDNF concentration in the injured aging hippocampus was associated with normal astrocytic response but significantly diminished microglial reaction. Thus, in comparison with the injured young hippocampus, the injured aging hippocampus contains considerably less BDNF but similar levels of NGF and NT-3. Lower BDNF levels in the injured aging hippocampus might underlie the diminished spontaneous healing response observed in the aging hippocampus after injury, particularly in terms of synaptic reorganization and dentate neurogenesis.  相似文献   

18.
Background Neurotrophic factors (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF] and glial-derived neurotrophic factor [GDNF]) are growth factors implicated in the growth and differentiation of brain nerve cells. An involvement of these factors in the biology and progression of some specific tumours has been suggested. In accordance with the role of neurotrophic factors in tumour behaviour the aim of the present study was to investigate their expression in two childhood brain neoplasms, namely low-grade astrocytomas and ependymomas.Materials and methods We investigated the NGF, BDNF, GDNF and NGF receptors (TrkA and p75) expression in the tumour tissues, cerebrospinal fluid (CSF) and plasma of ten children affected by low-grade astrocytomas and ependymomas. Control tissue samples (together with CSF and plasma samples) were obtained from patients who underwent surgery for cerebral vascular or epileptogenic lesions.Results The expression of NGF decreases both in tumour samples and in the CSF of affected children compared with controls. BDNF instead increases in CSF, while the expression of GDNF remains unchanged both in tissues and in CSF. No differences were found in neurotrophic factor plasma levels in patients or in controls. Gene expression of NGF and its high-affinity receptor (TrkA) are reduced in tumour tissues, whereas the number of cells immunopositive to the low-affinity NGF receptor (p75) is increased.Conclusion Reduced expression of NGF and TrkA has been shown in low-grade astrocytomas and ependymomas. These findings may be related to the role of this neurotrophin in cell differentiation and apoptosis. The different expression of NGF, BDNF, and GDNF in low-grade astrocytomas and ependymomas suggests that a different degree of redundancy exists among members of the neurotrophic factor family and that their expression may be correlated with the biology and the behaviour of these tumours.  相似文献   

19.
Proper placental development is essential during pregnancy since it forms the interface between the maternal–foetal circulations and is critical for foetal nutrition and oxygenation. Neurotrophins such as nerve growth factor (NGF), brain derived neurotrophin (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) are naturally occurring molecules that regulate development of the placenta and brain. BDNF and NGF also involved in the regulation of angiogenesis. Recent studies suggest that the levels of BDNF and NGF are regulated by docosahexaenoic acid (DHA) which is an important omega-3 fatty acid and is a structural component of the plasma membrane. Oxidative stress during pregnancy may lower the levels of DHA and affecting the fluidity of the membranes leading to the changes in the levels and expression of BDNF and NGF. Therefore altered levels and expression of NGF and BDNF may lead to abnormal foetal growth and brain development that may increase the risk for cardiovascular disease, metabolic syndromes and neurodevelopmental disorders in children born preterm. This review discuss about the neurotrophins and their role in the feto-placental unit during critical period of pregnancy.  相似文献   

20.
Objectives: Current evidence supports participation of neurotrophic and inflammatory factors in the pathogenesis of major depressive disorder (MDD). Some studies reported an association between the Val66Met polymorphism (rs6265) of brain-derived neurotrophic factor (BDNF) gene with MDD and peripheral BDNF levels. However, no previous studies have examined the association of this polymorphism with inflammation. The present study assessed the association of the Val66Met polymorphism with serum levels of BDNF and inflammatory markers among depressed outpatients.

Methods: All participants (n?=?73) met DSM-IV criteria for a unipolar depressive episode. The serum levels of BDNF and inflammatory biomarkers (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ) were compared between individuals presenting with at least one Met allele (Met-carriers) and those homozygous for the Val allele.

Results: In our sample (84.9% female, mean age 52.4?±?10.3 years), 24.7% (n?=?18) were Met-carriers. After Bonferroni correction, the Met allele was significantly associated with higher BDNF and lower TNF-α. These associations persisted after adjusting for potential confounders.

Conclusions: The pattern of low BDNF and high inflammation in MDD may be influenced by the Val66Met polymorphism. The association of a polymorphism in the BDNF gene with inflammatory markers in addition to BDNF levels suggests an interaction between these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号