首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
Mutations of the mismatch repair (MMR) genes MLH1 and MSH2 are associated with hereditary nonpolyposis colorectal cancer (HNPCC), a highly penetrant autosomal dominant condition characterized by hypermutability of short tandemly repeated sequences in tumor DNA. Mutations of another MMR gene, MSH6, seem to be less common than MLH1 and MSH2 defects, and have been mostly observed in atypical HNPCC families, characterized by a weaker tumor family history, higher age at disease onset, and low degrees of microsatellite instability (MSI), predominantly involving mononucleotide runs. We have investigated the MSH6 gene sequence in the peripheral blood of 4 HNPCC and 20 atypical HNPCC probands. Two frameshift mutations within exon 4 were detected in 2 patients. One mutation was found in a proband from a typical HNPCC family, who had developed a colorectal cancer (CRC), a gastric cancer and a rectal adenoma. The CRC and the adenoma showed mild MSI limited to mononucleotide tracts, while the gastric carcinoma was microsatellite stable. The other mutation was detected in an atypical HNPCC proband, whose CRC showed widespread MSI involving both mono- and dinucleotide repeats. The phenotypic variability associated with MSH6 constitutional mutations represents a complicating factor for the optimization of strategies aimed at identifying candidates to MSH6 genetic testing.  相似文献   

2.
Hereditary non-polyposis colorectal cancer (HNPCC) represents 1-3% of all colorectal cancers. HNPCC is caused by a constitutional defect in a mismatch repair (MMR) gene, most commonly affecting the genes MLH1, MSH2 and MSH6. The MMR defect results in an increased cancer risk, with the greatest lifetime risk for colorectal cancer and other cancers associated to HNPCC. The HNPCC-associated tumor phenotype is generally characterized by microsatellite instability (MSI) and immunohistochemical loss of expression of the affected MMR protein. The aim of this study was to determine the sensitivity of IHC for MLH1, MSH2 and MSH6, and MSI analysis in tumors from known MMR gene mutation carriers. Fifty-eight paired normal and tumor samples from HNPCC families enrolled in our high-risk colorectal cancer registry were studied for the presence of germline mutations in MLH1, MSH2 and MSH6 by DGGE and direct sequencing. MSI analysis and immunostaining for MLH1, MSH2 and MSH6 were evaluated. Of the 28 patients with a real pathogenic mutation, loss of immunohistochemical expression for at least 1 of these MMR proteins was found, and all except 1 have MSI-H. Sensitivity by MSI analysis was 96%. IHC analysis had a sensitivity of 100% in detecting MMR deficiency in carriers of a pathogenic MMR mutation, and can be used to predict which gene is expected to harbor the mutation for MLH1, MSH2 and MSH6. This study suggests that both analyses are useful for selecting high-risk patients because most MLH1, MSH2 and MSH6 gene carriers will be detected by this 2-step approach. This practical method should have immediate application in the clinical work of patients with inherited colorectal cancer syndromes.  相似文献   

3.
The microsatellite instability (MSI) pathway is found in most cases of hereditary nonpolyposis colorectal cancer (HNPCC) and in 12 % of sporadic colorectal cancer (CRC). It involves inactivation of deoxyribonucleic acid mismatch repair (MMR) genes MLH1, MSH2, PMS2, and MSH6. MMR germline mutation detections are an important supplement to HNPCC clinical diagnosis. It enables at-risk and mutation-positive relatives to be informed about their cancer risks and to benefit from intensive surveillance programs that have been proven to reduce the incidence of CRC. In this study, we analyzed for the first time in Tunisia the potential value of immunohistochemical assessment of MMR protein to identify microsatellite instability in CRC. We evaluate by immunohistochemistry MMR protein expression loss in tumoral tissue compared to positive expression in normal mucosa. Immunohistochemistry revealed loss of expression for MLH1, MSH2, MSH6, and PMS2 in 15, 21, 13, and 15 % of cases, respectively. Here, we report a more elevated frequency of MSI compared to data of the literature. In fact, by immunohistochemistry, 70 % of cases were shown to be MSS phenotype, whereas 30 % of cases, in our set, were instable. Moreover, according to molecular investigation, 71 % of cases were instable (MSI-H) and remaining cases were stable (29 %). Thus, we found a perfect association between MMR immunohistochemical analyses and MSI molecular investigation. Immunohistochemical analysis of MMR gene product expression may allow one to specifically identify MSI phenotype of patients with colorectal carcinomas.  相似文献   

4.
Patients suspected on clinical grounds to have hereditary non-polyposis colorectal cancer (HNPCC) may be offered laboratory testing in order to confirm the diagnosis and to facilitate screening of pre-symptomatic family members. Tumours from an affected family member are usually pre-screened for microsatellite instability (MSI) and/or loss of immunohistochemical expression of mismatch repair (MMR) genes prior to germline MMR gene mutation testing. The efficiency of this triage process is compromised by the more frequent occurrence of sporadic colorectal cancer (CRC) showing high levels of MSI (MSI-H) due to epigenetic loss of MLH1 expression. Somatic BRAF mutations, most frequently V600E, have been described in a significant proportion of sporadic MSI-H CRC but not in HNPCC-associated cancers. BRAF mutation testing has therefore been proposed as a means to more definitively identify and exclude sporadic MSI-H CRC cases from germline MMR gene testing. However, the clinical validity and utility of this approach have not been previously evaluated in a familial cancer clinic setting. Testing for the V600E mutation was performed on MSI-H CRC samples from 68 individuals referred for laboratory investigation of suspected HNPCC. The V600E mutation was identified in 17 of 40 (42%) tumours showing loss of MLH1 protein expression by immunohistochemistry but in none of the 28 tumours that exhibited loss of MSH2 expression (P < 0.001). The assay was negative in all patients with an identified germline MMR gene mutation. Although biased by the fact that germline testing was not pursued beyond direct sequencing in many cases lacking a high clinical index of suspicion of HNPCC, BRAF V600E detection was therefore considered to be 100% specific and 48% sensitive in detecting sporadic MSI-H CRC amongst those cases showing loss of MLH1 protein expression, in a population of patients with MSI-H CRC and clinical features suggestive of HNPCC. Accordingly, we recommend the incorporation of BRAF V600E mutation testing into the laboratory algorithm for pre-screening patients with suspected HNPCC, whose CRCs show loss of expression of MLH1. In such tumours, the presence of a BRAF V600E mutation indicates the tumour is not related to HNPCC and that germline testing of MLH1 in that individual is not warranted. We also recommend that in families where the clinical suspicion of HNPCC is high, germline testing should not be performed on an individual whose CRC harbours a somatic BRAF mutation, as this may compromise identification of the familial mutation.  相似文献   

5.
Little evidence for involvement of MLH3 in colorectal cancer predisposition   总被引:3,自引:0,他引:3  
Mutations in the DNA MMR genes MSH2, MLH1, MSH6 and PMS2 underlie a large subset of HNPCC cases, and a hallmark of the tumors is MSI. In many HNPCC families, however, a causative mutation has not been found. Therefore, the involvement of additional, thus far unknown, genes in MSI as well as MSS colorectal tumor predisposition is possible. The role of a relatively recently cloned MMR gene, MLH3, in familial CRC has been studied; but the results appear somewhat conflicting. To further evaluate the role of MLH3 in CRC predisposition, we analyzed 30 Finnish CRC cases for germline mutations by sequencing. These cases were selected from a large series of Finnish CRC patients, to match features previously proposed to associate with MLH3 germline defects. We found 5 missense variants, 4 of which were also found in Finnish cancer-free controls. The only remaining variant does not appear to be an attractive candidate for a disease-associated mutation because the amino acid change is located outside the conserved residues. We also screened for the previously reported variants, including a frameshift change, the most likely pathogenic MLH3 mutation observed so far. The frameshift was not present in the 30 CRC cases or in 700 cancer-free controls. While it is a difficult task to exclude a role of MLH3 in HNPCC, our study could not confirm a role for MLH3 in CRC predisposition.  相似文献   

6.
Identification and characterization of the genetic background in patients with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome is important since control programmes can in a cost-effective manner prevent cancer development in high-risk individuals. HNPCC is caused by germline mismatch repair (MMR) gene mutations and the genetic analysis of HNPCC therefore includes assessment of microsatellite instability (MSI) and immunohistochemical MMR protein expression in the tumor tissue. MSI is found in >95% of the HNPCC-associated tumors and immunostaining using antibodies against the MMR proteins MLH1, MSH2, and MSH6 has been found to correctly pinpoint the affected gene in about 90% of the cases. The PMS2 antibody was the most recently developed and we have in a clinical material assessed the added value of PMS2 immunostaining in 213 patients with suspected hereditary colorectal cancer. All 119 MSS tumors showed retained expression for all four antibodies and PMS2 did thus not identify any underlying MMR defect in these cases. However, PMS2 immunostaining contributed to the characterization of the MMR defect in a subset of the MSI tumors. Concomitant loss of MLH1 and PMS2, which functionally interact in the MutLα complex, was found in 98% of the tumors from patients with germline MLH1 mutations. Among the 12 MSI-high tumors with retained expression of MLH1, MSH2 and MSH6, 8 tumors showed loss of PMS2 staining, and mutations in MLH1 were identified in 2 and mutations in PMS2 in 3 of these individuals. In summary, isolated loss of PMS2 was found in 8% of the MSI-high tumors in our series, including 8/12 previously unexplained MSI-high tumors, in which mutations either in MLH1 or in PMS2 were identified in five cases.  相似文献   

7.
Endometrial cancer is the second most common cancer in hereditary nonpolyposis colorectal cancer (HNPCC). It has often been overlooked to explore the possibility of HNPCC in endometrial cancer patients. Our study was to investigate how many HNPCC patients existed among endometrial cancer patients. Among patients who underwent hysterectomy for endometrial cancer at Seoul National University Hospital from 1996 to 2004, 113 patients were included, whose family history and clinical data could be obtained and tumor specimens were available for microsatellite instability (MSI) testing and immunohistochemical (IHC) staining of MLH1, MSH2 and MSH6 proteins. There were 4 (3.5%) clinical HNPCC patients fulfilling the Amsterdam criteria II, and 2 (2/4, 50%) of them carried MSH2 germline mutations. There were also 8 (7.1%) suspected HNPCC (s-HNPCC) patients fulfilling the revised criteria for s-HNPCC, and one (1/8, 12.5%) of them revealed MLH1 germline mutation. In 101 patients, who were not clinical HNPCC or s-HNPCC, 11 patients showed both MSI-high and loss of expression of MLH1, MSH2 or MSH6 proteins, and 2 (2/11, 18.2%) of them showed MSH6 germline mutations. In 113 patients with endometrial cancer, we could find 5 (4.4%) HNPCC patients with MMR germline mutation and 2 (1.8%) clinical HNPCC patients without identified MMR gene mutation. Family history was critical in detecting 3 HNPCC patients with MMR germline mutation, and MSI testing with IHC staining for MLH1, MSH2 and MSH6 proteins was needed in the diagnosis of 2 HNPCC patients who were not clinical HNPCC or s-HNPCC, especially for MSH6 germline mutation.  相似文献   

8.
Introduction Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is an autosomal dominant inherited disease predisposing to the development of colorectal cancers and several other malignancies (endometrium, ovaries, stomach, small bowel, hepatobiliary and urinary tract). HNPCC is caused by germline mutations in any of the MisMatch Repair (MMR) genes. Mutations in MLH1 and MSH2 account for almost 90% of all identified ones. About 15% of mutations identified in MSH2 are missense ones. Patients and methods We studied one family, fulfilling Amsterdam II criteria, referred to our Center for genetic counselling. The proband, and some of her relatives, have been investigated for microsatellite instability (MSI), immunohistochemical MMR protein staining and by direct sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). Results All patients carried the same novel MSH2 germline missense mutation (R359S) in exon 7, which determines the substitution of an Arginine, which is a basic amino acid, with a polar Serine residue (R359S). The mutation was associated with lack of expression of MSH2 protein and high microsatellite instability in tumour tissues. The same mutation has been detected in one healthy relative. Conclusions The mutation here reported shows a high correlation with phenotype. The mutation is located in an evolutionary conserved domain. Taken together, our findings suggest evidence that the amino acid substitution can be interpreted as pathogenetic.  相似文献   

9.
BACKGROUND: Microsatellite instability (MSI) is due to defective DNA mismatch repair (MMR) and has been detected at various rates in colorectal carcinoma (CRC). The role of MSI in colorectal tumorigenesis was assessed further in this study by both microsatellite analysis of two CRC subsets [unselected patients (n = 215) and patients <50 years of age (n = 95)], and mutation screening of the two major MMR genes MLH1 and MSH2 among familial CRC cases. PATIENTS AND METHODS: PCR-based microsatellite analysis was performed on paraffin-embedded tissues. In CRC families, MLH1/MSH2 mutation analysis and MLH1/MSH2 immunostaining were performed on germline DNA and MSI+ tumour tissues, respectively. RESULTS: The MSI+ phenotype was detected in 75 (24%) patients, with higher incidence in early-onset or proximally located tumours. Among 220 patients investigated for family cancer history, MSI frequency was markedly higher in familial [18/27 (67%)] than in sporadic [32/193 (17%)] cases. Three MLH1 and six MSH2 germline mutations were identified in 14 out of 36 (39%) CRC families. Prevalence of MLH1/MSH2 mutations in CRC families was significantly increased by the presence of: (i) fulfilled Amsterdam criteria; (ii) four or more CRCs; or (iii) one or more endometrial cancer. While MSH2 was found mostly mutated, almost all [8/9 (89%)] familial MSI+ cases with loss of the MLH1 protein were negative for MLH1 germline mutations. CONCLUSIONS: Both genetic (for MSH2) and gene-silencing (for MLH1) alterations seem to be involved in CRC pathogenesis.  相似文献   

10.
Hereditary non-polyposis colorectal cancer (HNPCC) is caused by mutations in one of the mismatch repair genes MLH1, MSH2, MSH6, or PMS2 and results in high-level microsatellite instability (MSI-high) in tumours of HNPCC patients. The MSI test is considered reliable for indicating mutations in MLH1 and MSH2, but is questioned for MSH6. Germline mutation analysis was performed in 19 patients with an MSI-high tumour and absence of MSH2 and/or MSH6 protein as determined by immunohistochemistry (IHC), without an MLH1 or MSH2 mutation, and in 76 out of 295 patients suspected of HNPCC, with a non-MSI-high colorectal cancer (CRC). All 295 non-MSI-high CRCs were analysed for presence of MSH6 protein by IHC. In 10 patients with an MSI-high tumour without MSH2 and/or MSH6 expression, a pathogenic MSH6 mutation was detected, whereas no pathogenic MSH6 mutation was detected in 76 patients with a non-MSI-high CRC and normal MSH6 protein expression. In none of the 295 CRCs loss of MSH6 protein expression was detected. The prevalence of a germline MSH6 mutation is very low in HNPCC suspected patients with non-MSI-high CRC. Microsatellite instability analysis in CRCs is highly sensitive to select patients for MSH6 germline mutation analysis.  相似文献   

11.
PURPOSE: Microsatellite instability (MSI) testing of colorectal cancer tumors is used as a screening tool to identify patients most likely to be mismatch repair (MMR) gene mutation carriers. We wanted to examine which microsatellite markers currently used to detect MSI best predict early-onset colorectal cancer caused by germ-line mutations in MMR genes. EXPERIMENTAL DESIGN: Invasive primary tumors from a population-based sample of 107 cases of colorectal cancer diagnosed before age 45 years and tested for germ-line mutations in MLH1, MSH2, MSH6, and PMS2 and MMR protein expression were screened for MSI using the National Cancer Institute panel and an expanded 10-microsatellite marker panel. RESULTS: The National Cancer Institute five-marker panel system scored 31 (29%) as (NCI)MSI-High, 13 (12%) as (NCI)MSI-Low, and 63 (59%) as (NCI)MS-Stable. The 10-marker panel classified 18 (17%) as (10)MSI-High, 17 (16%) as (10)MSI-Low, and 72 (67%) as (10)MS-Stable. Of the 26 cancers that lacked the expression of at least one MMR gene, 24 (92%) were positive for some level of MSI (using either microsatellite panel). The mononucleotide repeats Bat26, Bat40, and Myb were unstable in all (10)MSI-High cancers and all MLH1 and MSH2 mutation carriers (100% sensitive). Bat40 and Bat25 were unstable in all tumors of MSH6 mutation carriers (100% sensitive). Bat40 was unstable in all MMR gene mutation carriers (100% sensitive). By incorporating seven mononucleotide repeats markers into the 10-marker panel, we were able to distinguish the carriers of MSH6 mutations (all scored (10)MSI-Low) from the MLH1 and MSH2 mutation carriers (all scored (10)MSI-High). CONCLUSIONS: In early-onset colorectal cancer, a microsatellite panel containing a high proportion of mononuclear repeats can distinguish between tumors caused by MLH1 and MSH2 mutations from those caused by MSH6 mutations.  相似文献   

12.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant condition due to heterozygous germline mutations in DNA mismatch repair genes, in particular MLH1, MSH2 and MSH6. Recently, a syndrome was recognized in which children develop haematological malignancies, solid tumours and signs of neurofibromatosis type 1 due to bi-allelic MMR gene mutations in MLH1, MSH2 and PMS2. Here we describe the child of healthy consanguineous parents who had café-au-lait spots, oligodendroglioma, and rectal cancer. The patient was homozygous for the MSH6 mutation c.3386_3388delGTG in exon 5 which has a predicted pathogenic effect. Germline NF1 gene mutation testing was negative. The rectal tumour showed microsatellite instability and absence of MSH6 staining, whereas the brain tumour was MSI stable and showed normal immunohistochemical expression of MSH6. Apparently, not only MLH1, MSH2 and PMS2, but also MSH6 is involved in the syndrome of childhood cancer and signs of neurofibromatosis type 1.  相似文献   

13.
Recently, the 1100delC variant of cell cycle checkpoint kinase 2 (CHEK2) has been reported to confer a colorectal cancer risk in hereditary non‐polyposis‐colorectal cancer (HNPCC) and HNPCC‐related families in the Netherlands. To investigate whether CHEK2 mutations confer increased cancer risk in HNPCC and HNPCC‐related families in Poland, we genotyped 463 probands from HNPCC and HNPCC‐related families, and 5,496 controls for 4 CHEK2 alleles (1100delC, IVS2+1G>A, del5395, I157T). All 463 probands were screened for mutations in the HNPCC‐related genes MSH2, MLH1 and MSH6. A positive association was observed for HNPCC‐related cancer and the I157T missense CHEK2 mutation (OR = 1.7; p = 0.007), but not for the truncating alleles (OR = 1.0; p = 1.0). The association with the I157T was seen both for the 117 cases who fulfill Amsterdam criteria (OR = 1.9; p = 0.1) and for the 346 cases who do not fulfill the criteria (OR = 1.6; p = 0.03). One hundred forty‐five of the 463 families had a mutation in MSH2, MLH1 or MSH6 (MMR‐positive families). A positive association between the CHEK2 I157T mutation and HNPCC‐related cancer was observed only for MMR‐negative cases (OR = 2.1; p = 0.0004), but not for MMR‐positive cases (OR = 0.8; p = 0.9). The association with I157T was particularly strong for MMR‐negative cases with familial colorectal cancer (2 or more first‐degree relatives affected) (OR = 2.5; p < 0.0001). We conclude that the I157T variant of CHEK2 increases the risk of colorectal cancer among MMR‐negative, HNPCC/HNPCC‐related families in Poland.  相似文献   

14.
Hereditary nonpolyposis colorectal cancer (HNPCC) is primarily linked to colorectal and endometrial cancer, but is associated with a broad tumor spectrum. Though not formally part of the syndrome, occasional sarcomas have been reported in individuals with HNPCC. We used the national Danish HNPCC-register to identify HNPCC families in which sarcomas had been diagnosed. Fourteen sarcomas were identified in families with mutations in MSH2, MSH6, and MLH1. The median age at sarcoma diagnosis was 43 (15–74) years. Soft tissue sarcomas predominated followed by uterine sarcomas and eight histopathological subtypes were represented with recurrent diagnoses of liposarcoma, leiomyosarcoma, and carcinosarcoma. Tumor tissue from eight cases was available for analysis of mismatch-repair (MMR) status using immunohistochemical staining and analysis of microsatellite instability, which revealed MMR defects in six of the eight tumors investigated. This suggests that sarcomas may be part of the HNPCC tumor spectrum and that colorectal cancer should be considered in the family history of sarcoma patients.  相似文献   

15.
Hereditary non-polyposis colorectal cancer (HNPCC or Lynch syndrome) is caused by the inheritance of a mutant allele of a DNA mismatch repair gene. We aimed to investigate types and frequencies of mismatch repair (MMR) gene mutations in Turkish patients with HNPCC and to identify specific biomarkers for early diagnosis of their non-symptomatic kindred’s. The molecular characteristics of 28 Turkish colorectal cancer patients at high-risk for HNPCC were investigated by analysis of microsatellite instability (MSI), immunohistochemistry and methylation-specific PCR in order to select tumors for mutation analysis. Ten cases (35.7%) were classified as MSI (+). Lack of expression of the main MMR proteins was observed in MSI (+) tumors. Hypermethylation of the MLH1 promoter region was observed in one tumor. Nine Lynch syndrome cases showed novel germ-line alterations of the MMR gene: two frame-shifts (MLH1 c.1843dupC and MLH1 c.1743delG) and three missense mutations (MLH1 c.293G>C, MLH1 c.954_955delinsTA and MSH2 c.2210G>A). Unclassified variants were evaluated as likely to be pathogenic by using the in-silico analyses. In addition, the MSH2 c.2210G>A alteration could be considered as a founder mutation for the Turkish population due to its identification in five different Lynch syndrome families and absence in control group. The present study adds new information about MMR gene mutation types and their role in Lynch syndrome. This is the first detailed research on Turkish Lynch syndrome families.  相似文献   

16.
Clinical and pathological features were evaluated to predict tumor microsatellite instability (MSI) and germline mutations in MLH1 and MSH2 DNA mismatch repair genes in two patient groups with sporadic colorectal cancer (CRC): 38 young patients (age /=60 years). Nine (25.7%) young patients out of 35 and five (16%) old patients out of 31 exhibited MSI in their cancers. MSI+ cancers were related to proximal cancer and mucinous carcinoma independently of the age at cancer onset. Three (7.9%) out of 38 young patients had mutations in MLH1 and MSH2 genes that led to truncated protein products; they were all at age <35 years and showed MSI in their tumors, with mucinous histotype in two cases. In conclusion, histopathological and clinical features of CRC allow identification of cancers showing DNA microsatellite instability. MSI in CRC at very early onset (age <35 years) appears useful to predict germline MMR gene defects.  相似文献   

17.
BACKGROUND: Carcinomas of the small intestine are rare, but the risk is greatly increased in patients with hereditary nonpolyposis colorectal cancer (HNPCC) due to an inherited mismatch repair (MMR) gene mutation, most commonly affecting the genes MLH1 or MSH2. Defective MMR is characterized by microsatellite instability (MSI) and loss of MMR protein expression in the tumor tissue. However, a subset of several sporadic tumor types, including about 15% of colon cancers, also evolve through defective MMR. METHODS: The authors have assessed the frequency of MSI and analyzed the immunohistochemical expression of MLH1 and MSH2 in a population-based series of 89 adenocarcinomas of the small intestine. To study the contribution of MSI and defective MMR protein expression in young patients, 43 cancers of the small intestine from patients below age 60 years (including 24 tumors from the population-based series and an additional 19 tumors from young individuals) were also analyzed. RESULTS: MSI was detected in 16/89 tumors (18%) in the population-based series, and immunohistochemistry revealed loss of expression for MLH1 in 7/16 MSI tumors and in 2/73 MSS tumors, whereas all tumors showed normal expression for MSH2. Among the young patients, the authors identified MSI in 10/43 tumors (23%), and 6 of these 10 MSI tumors showed immunohistochemical loss of MMR protein expression, which affected MLH1 in 3 cases and MSH2 in 3 cases. CONCLUSIONS: The frequency of MSI (18%) in adenocarcinomas of the small intestine equals that of colon cancer. However, silencing of MLH1 seems to explain the MSI status in only about half of the MSI tumors. Among patients with cancer of the small intestine before age 60 years, MSI is found in 23% of the cases, with MLH1 and MSH2 being affected at equal frequencies, indicating that HNPCC may underly a subset of such cases.  相似文献   

18.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease with high penetrance, caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, PMS2 and MLH3. Most reported pathogenic mutations are point mutations, comprising single base substitutions, small insertions and deletions. In addition, genomic rearrangements, such as large deletions and duplications not detectable by PCR and Sanger sequencing, have been identified in a significant proportion of HNPCC families, which do not carry a pathogenic MMR gene point mutation. To clarify whether genomic rearrangements in MLH1, MSH2 or MSH6 also occur in patients carrying a point mutation, we subjected normal tissue DNA of 137 colorectal cancer (CRC) patients to multiplex ligation-dependent probe amplification (MLPA) analysis. Patients fulfilled the following pre-requisites: all patients met at least one criterion of the Bethesda guidelines and their tumors exhibited high microsatellite instability (MSI-H) and/or showed loss of expression of MLH1, MSH2 or MSH6 proteins. PCR amplification and Sanger sequencing of all exons of at least one MMR gene, whose protein expression had been lost in the tumor tissue, identified 52 index patients without a point mutation (Group 1), 71 index patients with a pathogenic point mutation in MLH1 (n=38) or MSH2 (n=22) or MSH6 (n=11) (Group 2) and 14 patients with an unclassified variant in MLH1 (n=9) or MSH2 (n=3) or MSH6 (n=2) (Group 3). In 13 of 52 patients of group 1 deletions of at least one exon were identified. In addition, in group 3 one EX1_15del in MLH1 was found. No genomic rearrangement was identified in group 2 patients. Genomic rearrangements represent a significant proportion of pathogenic mutations of MMR genes in HNPCC patients. However, genomic rearrangements are rare in patients carrying point mutations in MMR genes. These findings suggest the use of genomic rearrangement tests in addition to Sanger sequencing in HNPCC patients.  相似文献   

19.
Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time‐consuming, clinical criteria and tumor‐tissue analysis are widely used as pre‐screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor‐tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability‐high (MSI‐H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI‐H small‐bowel cancer (p < 0.001). No MMR mutations were found among patients under 40‐years‐old with only colorectal adenoma. Familial clustering of Lynch syndrome‐related tumors, early age of onset, and familial occurrence of small‐bowel cancer were clinically relevant predictors for Lynch syndrome.  相似文献   

20.
PURPOSE: Germline mutations in mismatch repair genes predispose to hereditary nonpolyposis colorectal cancer (HNPCC). To address effective screening programs, the true incidence of the disease must be known. Previous clinical investigations reported estimates ranging between 0.5% and 13% of all the colorectal cancer (CRC) cases, whereas biomolecular studies in Finland found an incidence of 2% to 2.7% of mutation carriers for the disease. The aim of the present report is to establish the frequency of the disease in a high-incidence area for colon cancer. PATIENTS AND METHODS: Through the data of the local CRC registry, we prospectively collected all cases of CRC from January 1, 1996, through December 31, 1997 (N = 391). Three hundred thirty-six CRC cases (85.9% of the incident cases) were screened for microsatellite instability (MSI) with six to 12 mono- and dinucleotide markers. MSI cases were subjected to MSH2 and MLH1 germline mutation analysis and immunohistochemistry; the methylation of the promoter region was studied for MLH1. RESULTS: Twenty-eight cases (8.3% of the total) showed MSI. MSI cases differed significantly from microsatellite-stable (MSS) cases for their proximal location (P <.01), high mucinous component (P <.01), and poor differentiation (P =.002). Of MSI cases studied (n = 12), only one with a family history compatible with HNPCC had a germline mutation (in MSH2). Five other patients with a family history of HNPCC (two with MSI and three with MSS tumors) did not show germline mutations. CONCLUSION: We conclude that the incidence of molecularly confirmed HNPCC (one [0.3%] of 336) in a high-incidence area for CRC is lower than in previous biomolecular and clinical estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号