首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the leading causes of death worldwide is heart failure. Despite advances in the treatment and prevention of heart failure, the number of affected patients continues to increase. We have recently developed 3D‐bioprinted biomaterial‐free cardiac tissue that has the potential to improve cardiac function. This study aims to evaluate the in vivo regenerative potential of these 3D‐bioprinted cardiac patches. The cardiac patches were generated using 3D‐bioprinting technology in conjunction with cellular spheroids created from a coculture of human‐induced pluripotent stem cell‐derived cardiomyocytes, fibroblasts, and endothelial cells. Once printed and cultured, the cardiac patches were implanted into a rat myocardial infarction model (n = 6). A control group (n = 6) without the implantation of cardiac tissue patches was used for comparison. The potential for regeneration was measured 4 weeks after the surgery with histology and echocardiography. 4 weeks after surgery, the survival rates were 100% and 83% in the experimental and the control group, respectively. In the cardiac patch group, the average vessel counts within the infarcted area were higher than those within the control group. The scar area in the cardiac patch group was significantly smaller than that in the control group. (Figure S1 ) Echocardiography showed a trend of improvement of cardiac function for the experimental group, and this trend correlated with increased patch production of extracellular vesicles. 3D‐bioprinted cardiac patches have the potential to improve the regeneration of cardiac tissue and promote angiogenesis in the infarcted tissues and reduce the scar tissue formation.  相似文献   

2.
Fat grafting is an established clinical intervention to promote tissue repair. The role of the fat's extracellular matrix (ECM) in regeneration is largely neglected. We investigated in vitro the use of human adipose tissue‐derived ECM hydrogels as release platform for factors secreted by adipose‐derived stromal cells (ASCs). Lipoaspirates from nondiabetic and diabetic donors were decellularized. Finely powdered acellular ECM was evaluated for cell remainders and DNA content. Acellular ECM was digested, and hydrogels were formed at 37°C and their viscoelastic relaxation properties investigated. Release of ASC‐released factors from hydrogels was immune assessed, and bio‐activity was determined by fibroblast proliferation and migration and endothelial angiogenesis. Acellular ECM contained no detectable cell remainders and negligible DNA contents. Viscoelastic relaxation measurements yielded no data for diabetic‐derived hydrogels due to gel instability. Hydrogels released several ASC‐released factors concurrently in a sustained fashion. Functionally, released factors stimulated fibroblast proliferation and migration as well as angiogenesis. No difference between nondiabetic and diabetic hydrogels in release of factors was measured. Adipose ECM hydrogels incubated with released factors by ASC are a promising new therapeutic modality to promote several important wound healing‐related processes by releasing factors in a controlled way.  相似文献   

3.
Tissue engineering is a promising solution for meniscal regeneration after meniscectomy. However, in situ reconstruction still poses a formidable challenge due to multifunctional roles of the meniscus in the knee. In this study, we fabricate a silk sponge from 9% (w/v) silk fibroin solution through freeze drying and then coat its internal space and external surface with collagen sponge. Subsequently, various characteristics of the silk‐collagen scaffold are evaluated, and cytocompatibility of the construct is assessed in vitro and subcutaneously. The efficacy of this composite scaffold for meniscal regeneration is evaluated through meniscus reconstruction in a rabbit meniscectomy model. It is found that the internally coated collagen sponge enhances the cytocompatibility of the silk sponge, and the external layer of collagen sponge significantly improves the initial frictional property. Additionally, the silk‐collagen composite group shows more tissue ingrowth and less cartilage wear than the pure silk sponge group at 3 months postimplantation in situ. These findings thus demonstrate that the composite scaffold had less damage to the joint surface than the silk alone through promoting functional meniscal regeneration after meniscectomy, which indicates its clinical potential in meniscus reconstruction.  相似文献   

4.
Numerous growth factor delivery systems have been developed for tissue engineering. However, little is known about how the dose of a specific protein will influence tissue regeneration, or how different patients will respond to altered levels of growth factor presentation. The objective of the present study was to assess stem cell chondrogenesis within extracellular‐matrix (ECM)‐derived scaffolds loaded with escalating levels of transforming growth factor (TGF)‐β3. It was also sought to determine if stem cells display a donor‐dependent response to different doses of TGF‐β3, from low (5 ng) to high (200 ng), released from such scaffolds. It was found that ECM‐derived scaffolds possess the capacity to bind and release increasing amounts of TGF‐β3, with between 60% and 75% of this growth factor released into the media over the first 12 days of culture. After seeding these scaffolds with human infrapatellar fat pad‐derived stem cells (FPSCs), it was found that cartilage‐specific ECM accumulation was greatest for the higher levels of growth factor loading. Importantly, soak‐loading cartilage ECM‐derived scaffolds with high levels of TGF‐β3 always resulted in at least comparable levels of chondrogenesis to controls where this growth factor was continuously added to the culture media. Similar results were observed for FPSCs from all donors, although the absolute level of secreted matrix did vary from donor to donor. Therefore, while no single growth factor release profile will be optimal for all patients, the results of this study suggest that the combination of a highly porous cartilage ECM‐derived scaffold coupled with appropriate levels of TGF‐β3 can consistently drive chondrogenesis of adult stem cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A partial or total loss of the meniscus leads to development of arthritis as already described in previous studies. Therefore a form of therapy which adequately reconstructs or substitutes the meniscus is important for the treatment of meniscal tears. Attempts at replacing the meniscus by means of autografts or artificial Dacron or Teflon implants achieved insufficient results. Another approach was to develop a scaffold of bovine collagen or polyurethane. According to the results of several studies implantation of a collagen meniscus led to good results overall, however a remodeling into real meniscal tissue could not be demonstrated. Implants of polyurethane result in partly unsatisfactory outcomes in animal experiments, but short-term results of implantations in human knees have so far shown a functional improvement. Collagen meniscus implants are as yet the only valid long-term method besides meniscal allografts to sufficiently substitute meniscal defects. Latest efforts are aimed at conditioning meniscal scaffolds with suitable cells or growth factors to obtain a better regeneration of meniscal tissue.  相似文献   

6.
Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue‐engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte‐like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow‐derived MSCs and nasal chondrocytes (NCs) to modified gellan gum‐based hydrogels was investigated. Both ionic‐ (iGG–MA) and photo‐crosslinked (phGG–MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro‐inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG–MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG–MA. Altogether, the data endorse the potential use of modified gellan gum‐based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
To advance molecular and cellular therapy into the clinic for peripheral nerve injury, modification of neural scaffolds with the extracellular matrix (ECM) of peripheral nerves has been established as a promising alternative to direct inclusion of support cells and/or growth factors within a neural scaffold, while cell‐derived ECM proves to be superior to tissue‐derived ECM in the modification of neural scaffolds. Based on the fact that bone marrow mesenchymal stem cells (BMSCs), just like Schwann cells, are adopted as support cells within a neural scaffold, in this study we used BMSCs as parent cells to generate ECM for application in peripheral nerve tissue engineering. A chitosan nerve guidance conduit (NGC) and silk fibroin filamentous fillers were respectively prepared for co‐culture with purified BMSCs, followed by decellularization to stimulate ECM deposition. The ECM‐modified NGC and lumen fillers were then assembled into a chitosan–silk fibroin‐based, BMSC‐derived, ECM‐modified neural scaffold, which was implanted into rats to bridge a 10 mm‐long sciatic nerve gap. Histological and functional assessments after implantation showed that regenerative outcomes achieved by our engineered neural scaffold were better than those achieved by a plain chitosan–silk fibroin scaffold, and suggested the benefits of BMSC‐derived ECM for peripheral nerve repair. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Commercially available skin substitutes lack essential non‐immune cells for adequate tissue regeneration of non‐healing wounds. A tissue‐engineered, patient‐specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose‐derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal‐like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast‐conditioned medium and growth factors, were used as a fibroblast‐specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast‐specific protein‐1 (FSP‐1) and a panel of ECM molecules specific to the dermis, such as fibrillin‐1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal‐specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal‐like fibroblasts for regenerative medicine, a matrix‐directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The ultimate aim of this study was to assess the feasibility of using human bone marrow stromal cells (BMSCs) to supplement meniscus cells for meniscus tissue engineering and regeneration. Human menisci were harvested from three patients undergoing total knee replacements. Meniscus cells were released from the menisci after collagenase treatment. BMSCs were harvested from the iliac crest of three patients and were expanded in culture until passage 2. Primary meniscus cells and BMSCs were co‐cultured in vitro in three‐dimensional (3D) pellet culture at three different cell–cell ratios for 3 weeks under normal (21% O2) or low (3% O2) oxygen tension in the presence of serum‐free chondrogenic medium. Pure BMSCs and pure meniscus cell pellets served as control groups. The tissue generated was assessed biochemically, histochemically and by quantitative RT–PCR. Co‐cultures of primary meniscus cells and BMSCs resulted in tissue with increased (1.3–1.7‐fold) deposition of proteoglycan (GAG) extracellular matrix (ECM) relative to tissues derived from BMSCs or meniscus cells alone under 21% O2. GAG matrix formation was also enhanced (1.3–1.6‐fold) under 3% O2 culture conditions. Alcian blue staining of generated tissue confirmed increased deposition of GAG‐rich matrix. mRNA expression of type I collagen (COL1A2), type II collagen (COL2A1) and aggrecan were upregulated in co‐cultured pellets. However, SOX9 and HIF‐1α mRNA expression were not significantly modulated by co‐culture. Co‐culture of primary meniscus cells with BMSCs resulted in increased ECM formation. Co‐delivery of meniscus cells and BMSCs can, in principle, be used in tissue engineering and regenerative medicine strategies to repair meniscus defects. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We showed previously that 1‐ethyl‐3‐(3‐dimethylamino‐propyl)‐carbodiimide hydrochloride (EDC) cross‐linked recombinant human collagen III hydrogels promoted stable regeneration of the human cornea (continued nerve and stromal cell repopulation) for over 4 years. However, as EDC cross linking kinetics were difficult to control, we additionally tested a sterically bulky carbodiimide. Here, we compared the effects of two carbodiimide cross linkers—bulky, aromatic N‐cyclohexyl‐N0‐(2‐morpholinoethyl)‐carbodiimide (CMC), and nonbulky EDC—in a mouse corneal graft model. Murine corneas undergoing full‐thickness implantation with these gels became opaque due to dense retro‐corneal membranes (RCM). Corneal epithelial cytokeratin 12 and alpha smooth muscle actin indicative of functional tissue regeneration and wound contraction were observed in RCM surrounding both hydrogel types. However, quantitatively different levels of infiltrating CD11c+ dendritic cells (DC) were found, suggesting a hydrogel‐specific innate immune response. More DC infiltrated the stroma surrounding EDC‐N‐hydroxysuccinimide (NHS) hydrogels concurrently with higher fibrosis‐associated tenascin c expression. The opposite was true for CMC‐NHS gels that had previously been shown to be more tolerising to DC. In vitro studies showed that DC cultured with transforming growth factor β1 (TGF‐β1) induced fibroblasts to secrete more tenascin c than those cultured with lipopolysaccharide and this effect was blocked by TGF‐β1 neutralisation. Furthermore, tenascin c staining was found in 40‐ to 50μm long membrane nanotubes formed in fibroblast/DC cocultures. We suggest that TGF‐β1 alternatively activated (tolerising) DC regulate fibroblast‐mediated tenascin c secretion, possibly via local production of TGF‐β1 in early wound contraction, and that this is indirectly modulated by different hydrogel chemistries.  相似文献   

11.
During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co‐cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self‐assembled on top of CC‐laden agarose gels (structured co‐culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co‐culture). Porcine infrapatellar fat pad‐derived stem cells (FPSCs) and bone marrow‐derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co‐culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co‐culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co‐culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co‐culture for both MSC sources. In conclusion, assembling MSCs onto CC‐laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Vascular‐derived endothelial cell (EC) network prefabrication in three‐dimensional (3D) tissue constructs before transplantation is useful for inducing functional anastomosis with the host vasculature. However, the clinical application of ECs is limited by cell isolation from the existing vasculature, because of the requirement for invasive biopsies and difficulty in obtaining a sufficient number of cells. Endothelial colony‐forming cells (ECFCs), which are a subtype of endothelial progenitor cells in the blood, have a strong proliferative and vasculogenic potential. This study attempted to fabricate prevascular 3D cell‐dense tissue constructs using cord blood‐derived ECFCs and evaluate the in vivo angiogenic potential of these constructs. Human umbilical vascular endothelial cells (HUVECs) were also used in comparison with ECFCs, which were sandwiched between two human dermal‐derived fibroblast (FB) sheets using a fibrin‐coated cell‐sheet manipulator. The inserted ECFCs in double‐layered FB sheets were cultured for 3 days, resulting in the formation of network structures similar to those of HUVECs. Additionally, when ECFCs were sandwiched with three FB sheets, a lumen structure was found in the triple‐layered cell‐sheet constructs at 3 days after co‐culture. These constructs containing ECFCs were transplanted into the subcutaneous tissue of immune‐deficient rats. One week after transplantation, ECFC‐lined functional microvessels containing rat erythrocytes were observed in the same manner as transplanted HUVEC‐positive grafts. These results suggest that ECFCs might become an alternative cell source for fabricating a prevascular structure in 3D cell‐dense tissue constructs for clinical application. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Cell‐derived extracellular matrix (ECM) consists of a complex assembly of fibrillary proteins, matrix macromolecules, and associated growth factors that mimic the composition and organization of native ECM micro‐environment. Therefore, cultured cell‐derived ECM has been used as a scaffold for tissue engineering settings to create a biomimetic micro‐environment, providing physical, chemical, and mechanical cues to cells, and support cell adhesion, proliferation, migration, and differentiation. Here, we present a new strategy to produce different combinations of decellularized cultured cell‐derived ECM (dECM) obtained from different cultured cell types, namely, mesenchymal stem/stromal cells (MSCs) and human umbilical vein endothelial cells (HUVECs), as well as the coculture of MSC:HUVEC and investigate the effects of its various compositions on cell metabolic activity, osteogenic differentiation, and angiogenic properties of human bone marrow (BM)‐derived MSCs, vital features for adult bone tissue regeneration and repair. Our findings demonstrate that dECM presented higher cell metabolic activity compared with tissue culture polystyrene. More importantly, we show that MSC:HUVEC ECM enhanced the osteogenic and angiogenic potential of BM MSCs, as assessed by in vitro assays. Interestingly, MSC:HUVEC (1:3) ECM demonstrated the best angiogenic response of MSCs in the conditions tested. To the best of our knowledge, this is the first study that demonstrates that dECM derived from a coculture of MSC:HUVEC impacts the osteogenic and angiogenic capabilities of BM MSCs, suggesting the potential use of MSC:HUVEC ECM as a therapeutic product to improve clinical outcomes in bone regeneration.  相似文献   

15.
The purpose of this study was to assess how peripheral blood cells (PBCs) contribute to meniscus repair, using a parabiotic rat model. Wild‐type (WT) and green fluorescent protein (GFP) transgenic rats were conjoined at the torso. After 4 weeks, the anterior part of the medial meniscus of both groups of rats was removed. At 1, 2, 4, 8 and 12 weeks post‐meniscectomy, repaired tissue was evaluated using stereomicroscopy, histology with toluidine blue staining, and immunofluorescence microscopy. Stereomicroscopic observations and confocal laser microscopy revealed that a high number of GFP‐positive cells were present in the repaired meniscus of WT rats 1 week post‐meniscectomy, and the number of GFP‐positive cells decreased over time. Based on blood chimerism, the ratios of PBCs in the repaired meniscus were 20.5 ± 2.3% at 1 week, 8.3 ± 0.9% at 2 weeks, 4.4 ± 0.9% at 4 weeks, 2.1 ± 0.9% at 8 weeks, and 0.5 ± 0.4% at 12 weeks, post‐meniscectomy. Histologically, fibrochondrocytes were observed in the repaired meniscus of WT rats after 4 weeks, some of which were GFP‐positive. The chondrogenic marker, type II collagen, was merged within the PBCs in the repaired tissue. However, type‐II‐collagen‐positive cell ratio and metachromasia in the repaired meniscus were not equivalent in normal meniscal tissue. This indicated that PBCs were present within the repaired meniscus at an early phase, replacing the excised meniscal cells, suggesting PBCs contributed to meniscal healing. The tissue repair contribution by these cells decreased at later phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The availability of three‐dimensional bioactive scaffolds with enhanced angiogenic capacity that have the capability to recruit tissue specific resident progenitors is of great importance for the regeneration of impaired skeletal muscle. Here, we have investigated whether introduction of chemoattractant factors to tissue specific extracellular matrix promotes cellular behaviour in vitro as well as muscle progenitor recruitment and vascularization in vivo. We developed an interconnective macroporous sponge from decellularized skeletal muscle with maintained biochemical traits of the intact muscle. SDF‐1α, a potent cell homing factor involved in muscle repair, was physically adsorbed or chemically immobilized in these muscle‐derived sponges. The immobilized sponges showed significantly higher SDF‐1α conjugation efficiency along with improved metabolism and infiltration of muscle‐derived stem cells in vitro, and thus generated uniform cellular constructs. In vivo, femoral muscle implantation in rats revealed a negligible immune response in all scaffold groups. We observed enhanced engraftment, neovascularization, and infiltration of CXCR4+ cells in the immobilized‐SDF‐1α sponge compared with nonimmobilized controls. Although Pax7+ cells identified adjacent to the immobilized‐SDF‐1α implantation site, other factors appear to be necessary for efficient penetration of Pax7+ cells into the sponge. These findings suggest that immobilization of cell homing factors via chemical mediators can result in recruitment of cells to the microenvironment with subsequent improvement in angiogenesis.  相似文献   

17.
We have previously reported a natural, human cartilage ECM (extracellular matrix)‐derived three‐dimensional (3D) porous acellular scaffold for in vivo cartilage tissue engineering in nude mice. However, the in vivo repair effects of this scaffold are still unknown. The aim of this study was to further explore the feasibility of application of cell‐loaded scaffolds, using autologous adipose‐derived stem cells (ADSCs), for cartilage defect repair in rabbits. A defect 4 mm in diameter was created on the patellar groove of the femur in both knees, and was repaired with the chondrogenically induced ADSC–scaffold constructs (group A) or the scaffold alone (group B); defects without treatment were used as controls (group C). The results showed that in group A all defects were fully filled with repair tissue and at 6 months post‐surgery most of the repair site was filled with hyaline cartilage. In contrast, in group B all defects were partially filled with repair tissue, but only half of the repair tissue was hyaline cartilage. Defects were only filled with fibrotic tissue in group C. Indeed, histological grading score analysis revealed that an average score in group A was higher than in groups B and C. GAG and type II collagen content and biomechanical property detection showed that the group A levels approached those of normal cartilage. In conclusion, ADSC‐loaded cartilage ECM scaffolds induced cartilage repair tissue comparable to native cartilage in terms of mechanical properties and biochemical components. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The major limitation of large tissue‐engineered constructs used for bone regeneration is the lack of vasculature and, therefore, lack of transport of essential nutrients, chemical factors and progenitor cells. Research approaches to improve the transport properties of large scaffolds focus on using angiogenic factors and vasculogenic cells to create new vasculature; however, the slow rate of vessel formation and reliance on vessel self‐assembly in these approaches is problematic. In this study, a novel approach has been proposed, using proprietary engineered ‘wicking’ fibres of non‐circular cross‐section that provide highly efficient transport for fluid and cells. The effect of wicking fibres on the movement of fluorescein isothiocyanate (FITC)‐conjugated protein in a three‐dimensional (3D) hydrogel system was analysed. The results indicated that the rate of diffusion of the fluorescent protein was greatly enhanced in hydrogels that contained wicking fibres in comparison to those that did not. The movement of progenitor cells along wicking fibres and round fibres was assessed. This study demonstrated that wicking fibres enhance the movement of critical growth factors and progenitor cells central for bone regeneration. The results suggested that the incorporation of wicking fibres into large tissue‐engineered constructs may improve the transport of growth factors and progenitor cells essential for bone formation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The meniscus is a fibrocartilaginous tissue that is critically important to the loading patterns within the knee joint. If the meniscus structure is compromised, there is little chance of healing, due to limited vascularity in the inner portions of the tissue. Several tissue‐engineering techniques to mimic the complex geometry of the meniscus have been employed. Of these, a self‐assembly, scaffoldless approach employing agarose moulds avoids drawbacks associated with scaffold use, while still allowing the formation of robust tissue. In this experiment two factors were examined, agarose percentage and mould surface roughness, in an effort to consistently obtain constructs with adequate geometric properties. Co‐cultures of ACs and MCs (50:50 ratio) were cultured in smooth or rough moulds composed of 1% or 2% agarose for 4 weeks. Morphological results showed that constructs formed in 1% agarose moulds, particularly smooth moulds, were able to maintain their shape over the 4 week culture period. Significant increases were observed for the collagen II:collagen I ratio, total collagen, GAG and tensile and compressive properties in smooth wells. Cell number per construct was higher in the rough wells. Overall, it was observed that the topology of an agarose surface may be able to affect the phenotypic properties of cells that are on that surface, with smooth surfaces supporting a more chondrocytic phenotype. In addition, wells made from 1% agarose were able to prevent construct buckling potentially, due to their higher compliance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The present investigation explores the microscopic aspects of cell‐laden hydrogels at high resolutions, using three‐dimensional cell cultures in semi‐synthetic constructs that are of very high water content (>98% water). The study aims to provide an imaging strategy for these constructs, while minimizing artefacts. Constructs of poly(ethylene glycol)‐fibrinogen and fibrin hydrogels containing embedded mesenchymal cells (human dermal fibroblasts) were first imaged by confocal microscopy. Next, high‐resolution scanning electron microscopy (HR‐SEM) was used to provide images of the cells within the hydrogels, at submicron resolutions. Because it was not possible to obtain artefact‐free images of the hydrogels using room‐temperature HR‐SEM, a cryogenic HR‐SEM imaging methodology was employed to visualize the sample while preserving the natural hydrated state of the hydrogel. The ultrastructural details of the constructs were observed at subcellular resolutions, revealing numerous cellular components, the biomaterial in its native configuration, and the uninterrupted cell membrane as it relates with the biomaterial in the hydrated state of the construct. Constructs containing microscopic albumin microbubbles were also imaged using these methodologies to reveal fine details of the interaction between the cells, the microbubbles, and the hydrogel. Taken together with the confocal microscopy, this imaging strategy provides a more complete picture of the hydrated state of the hydrogel network with cells inside. As such, this methodology addresses some of the challenges of obtaining this information in amorphous hydrogel systems containing a very high water content (>98%) with embedded cells. Such insight may lead to better hydrogel‐based strategies for tissue engineering and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号