首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)–seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main camel-exporting countries, Sudan and Somalia, suggesting long-term virus circulation in these animals.  相似文献   

2.
In 2012, a novel coronavirus associated with severe respiratory disease in humans emerged in the Middle East. Epidemiologic investigations identified dromedary camels as the likely source of zoonotic transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Here we provide experimental support for camels as a reservoir for MERS-CoV. We inoculated 3 adult camels with a human isolate of MERS-CoV and a transient, primarily upper respiratory tract infection developed in each of the 3 animals. Clinical signs of the MERS-CoV infection were benign, but each of the camels shed large quantities of virus from the upper respiratory tract. We detected infectious virus in nasal secretions through 7 days postinoculation, and viral RNA up to 35 days postinoculation. The pattern of shedding and propensity for the upper respiratory tract infection in dromedary camels may help explain the lack of systemic illness among naturally infected camels and the means of efficient camel-to-camel and camel-to-human transmission.  相似文献   

3.
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein–specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV–neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.  相似文献   

4.
5.
We found serologic evidence for the circulation of Middle East respiratory syndrome coronavirus among dromedary camels in Nigeria, Tunisia, and Ethiopia. Circulation of the virus among dromedaries across broad areas of Africa may indicate that this disease is currently underdiagnosed in humans outside the Arabian Peninsula.  相似文献   

6.
Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992–2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance.  相似文献   

7.
Risk factors for primary Middle East respiratory syndrome coronavirus (MERS-CoV) illness in humans are incompletely understood. We identified all primary MERS-CoV cases reported in Saudi Arabia during March–November 2014 by excluding those with history of exposure to other cases of MERS-CoV or acute respiratory illness of unknown cause or exposure to healthcare settings within 14 days before illness onset. Using a case–control design, we assessed differences in underlying medical conditions and environmental exposures among primary case-patients and 2–4 controls matched by age, sex, and neighborhood. Using multivariable analysis, we found that direct exposure to dromedary camels during the 2 weeks before illness onset, as well as diabetes mellitus, heart disease, and smoking, were each independently associated with MERS-CoV illness. Further investigation is needed to better understand animal-to-human transmission of MERS-CoV.  相似文献   

8.
Middle East respiratory syndrome coronavirus (MERS-CoV) infects humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. Although some mutations found in camel-derived MERS-CoV strains have been characterized, most natural variation found across MERS-CoV isolates remains unstudied. We report on the environmental stability, replication kinetics, and pathogenicity of several diverse isolates of MERS-CoV, as well as isolates of severe acute respiratory syndrome coronavirus 2, to serve as a basis of comparison with other stability studies. Although most MERS-CoV isolates had similar stability and pathogenicity in our experiments, the camel-derived isolate C/KSA/13 had reduced surface stability, and another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that although betacoronaviruses might have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the need for continual global viral surveillance.  相似文献   

9.
We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.  相似文献   

10.
We identified the near-full-genome sequence (29,908 nt, >99%) of Middle East respiratory syndrome coronavirus (MERS-CoV) from a nasal swab specimen from a dromedary camel in Egypt. We found that viruses genetically very similar to human MERS-CoV are infecting dromedaries beyond the Arabian Peninsula, where human MERS-CoV infections have not yet been detected.  相似文献   

11.
We obtained the full genome of Middle East respiratory syndrome coronavirus (MERS-CoV) from a camel in Qatar. This virus is highly similar to the human England/Qatar 1 virus isolated in 2012. The MERS-CoV from the camel efficiently replicated in human cells, providing further evidence for the zoonotic potential of MERS-CoV from camels.  相似文献   

12.
A new type of coronavirus has been identified as the causative agent underlying Middle East Respiratory Syndrome (MERS). The MERS coronavirus (MERS-CoV) has spread in the Middle East, but cases originating in the Middle East have also occurred in the European Union and the USA. Eight hundred and thirty-seven cases of MERS-CoV infection have been confirmed to date, including 291 deaths. MERS-CoV has infected dromedary camel populations in the Middle East at high rates, representing an immediate source of human infection. The MERS-CoV spike (S) protein, a characteristic structural component of the viral envelope, is considered as a key target of vaccines against coronavirus infection. In an initial attempt to develop a MERS-CoV vaccine to ultimately target dromedary camels, we constructed two recombinant adenoviral vectors encoding the full-length MERS-CoV S protein (Ad5.MERS-S) and the S1 extracellular domain of S protein (Ad5.MERS-S1). BALB/c mice were immunized with both candidate vaccines intramuscularly and boosted three weeks later intranasally. All the vaccinated animals had antibody responses against spike protein, which neutralized MERS-CoV in vitro. These results show that an adenoviral-based vaccine can induce MERS-CoV-specific immune responses in mice and hold promise for the development of a preventive vaccine that targets the animal reservoir, which might be an effective measure to eliminate transmission of MERS-CoV to humans.  相似文献   

13.
Middle East respiratory Syndrome Coronavirus (MERS-CoV) has caused at least 1118 reported cases in 24 countries with at least 423 deaths worldwide. All cases are epidemiologically linked to the Arabian Penninsula with most cases reported from the Kingdom of Saudi Arabia. MERS-CoV has three patterns of presentation: sporadic isolated cases, small clusters of intra-familial transmission and large healthcare-associated infections. The disease presentation varies from asymptomatic/mild cases to severe and fatal cases. The source of the virus has focused on bats and dromedary camels but the exact mode of disease transmission continues to be debated. Current data indicate that the virus spreads from human to human through droplet and contact routes, while performing aerosole-generating procedures predispose to airborne transmission. The best diagnostic tests rely on the identification of MERS-CoV by PCR, and lower respiratory tract samples should be favoured for the diagnosis whenever this is possible in order to avoid false negative results. Recently, the World Health Organization added serology to the list of confirmatory tests. Currently, there is no proven therapy, with supportive treatment being the mainstay of treatment.  相似文献   

14.
We detected Middle East respiratory syndrome coronavirus (MERS-CoV) RNA in 305/1,131 (27%) camels tested at an abattoir in Al Hasa, Eastern Province, Saudi Arabia, during January 2016–March 2018. We characterized 48 full-length MERS-CoV genomes and noted the viruses clustered in MERS-CoV lineage 5 clade B.  相似文献   

15.
In May 2015 in United Arab Emirates, asymptomatic Middle East respiratory syndrome coronavirus infection was identified through active case finding in 2 men with exposure to infected dromedaries. Epidemiologic and virologic findings suggested zoonotic transmission. Genetic sequences for viruses from the men and camels were similar to those for viruses recently detected in other countries.  相似文献   

16.
Free-roaming camels, especially those crossing national borders, pose a high risk for spreading Middle East respiratory syndrome coronavirus (MERS-CoV). To prevent outbreaks, active surveillance is necessary. We found that a high percentage of dromedaries in Tunisia are MERS-CoV seropositive (80.4%) or actively infected (19.8%), indicating extensive MERS-CoV circulation in Northern Africa.  相似文献   

17.
《Vaccine》2017,35(30):3780-3788
The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected more than 1900 humans, since 2012. The syndrome ranges from asymptomatic and mild cases to severe pneumonia and death. The virus is believed to be circulating in dromedary camels without notable symptoms since the 1980s. Therefore, dromedary camels are considered the only animal source of infection. Neither antiviral drugs nor vaccines are approved for veterinary or medical use despite active research on this area. Here, we developed four vaccine candidates against MERS-CoV based on ChAdOx1 and MVA viral vectors, two candidates per vector. All vaccines contained the full-length spike gene of MERS-CoV; ChAdOx1 MERS vaccines were produced with or without the leader sequence of the human tissue plasminogen activator gene (tPA) where MVA MERS vaccines were produced with tPA, but either the mH5 or F11 promoter driving expression of the spike gene. All vaccine candidates were evaluated in a mouse model in prime only or prime-boost regimens. ChAdOx1 MERS with tPA induced higher neutralising antibodies than ChAdOx1 MERS without tPA. A single dose of ChAdOx1 MERS with tPA elicited cellular immune responses as well as neutralising antibodies that were boosted to a significantly higher level by MVA MERS. The humoral immunogenicity of a single dose of ChAdOx1 MERS with tPA was equivalent to two doses of MVA MERS (also with tPA). MVA MERS with mH5 or F11 promoter induced similar antibody levels; however, F11 promoter enhanced the cellular immunogenicity of MVA MERS to significantly higher magnitudes. In conclusion, our study showed that MERS-CoV vaccine candidates could be optimized by utilising different viral vectors, various genetic designs of the vectors, or different regimens to increase immunogenicity. ChAdOx1 and MVA vectored vaccines have been safely evaluated in camels and humans and these MERS vaccine candidates should now be tested in camels and in clinical trials.  相似文献   

18.
On March 19, 2013, a patient from United Arab Emirates who had severe respiratory infection was transferred to a hospital in Germany, 11 days after symptom onset. Infection with Middle East respiratory syndrome coronavirus (MERS-CoV) was suspected on March 21 and confirmed on March 23; the patient, who had contact with an ill camel shortly before symptom onset, died on March 26. A contact investigation was initiated to identify possible person-to-person transmission and assess infection control measures. Of 83 identified contacts, 81 were available for follow-up. Ten contacts experienced mild symptoms, but test results for respiratory and serum samples were negative for MERS-CoV. Serologic testing was done for 53 (75%) of 71 nonsymptomatic contacts; all results were negative. Among contacts, the use of FFP2/FFP3 face masks during aerosol exposure was more frequent after MERS-CoV infection was suspected than before. Infection control measures may have prevented nosocomial transmission of the virus.  相似文献   

19.
We determined the presence of neutralizing antibodies to Middle East respiratory syndrome coronavirus in persons in Qatar with and without dromedary contact. Antibodies were only detected in those with contact, suggesting dromedary exposure as a risk factor for infection. Findings also showed evidence for substantial underestimation of the infection in populations at risk in Qatar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号