首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quercetin (QUER) and luteolin (LUTE) are dietary flavonoids capable of regulating the production of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). However, their mechanisms of action are not fully understood. In lipopolysaccharide-triggered (LPS)-triggered signaling via Toll-like receptor 4 (TLR4), QUER and LUTE suppresses not only the degradation of the inhibitor of kappaB (IkappaB), with resultant activation of nuclear factor-kappaB (NF-kappaB), but also the phosphorylation of p38 and Akt in bone marrow-derived macrophages that have been stimulated with LPS. We report here that, in TNF-alpha-induced signaling, QUER and LUTE significantly suppressed the production of IL-6 and activation of NF-kappaB. Accumulation of lipid rafts, the initial step in the signaling pathway, was significantly inhibited when macrophages were treated with QUER or with LUTE prior to exposure to LPS. Similarly, the accumulation of lipid rafts was inhibited by the flavonoids when B cells were activated via the membrane IgM and when T cells were activated via CD3. In contrast, QUER and LUTE did not inhibit the activation of phorbol myristate acetate-induced NF-kappaB in macrophages. Our observations suggest that QUER and LUTE interact with receptors on the cell surface and suppress the accumulation of lipid rafts that occurs downstream of the activation of the receptors.  相似文献   

2.
3.
The present study was designed to investigate the effects of p-cymene on lipopolysaccharide (LPS)-induced inflammatory cytokine production both in vitro and in vivo. The production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) in LPS-stimulated RAW 264.7 cells and C57BL/6 mice was evaluated by sandwich ELISA. Meanwhile, the mRNA levels of cytokine genes were examined in vitro by semiquantitative RT-PCR. In a further study, we analyzed the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by western blotting. We found that p-cymene significantly regulated TNF-α, IL-1β, and IL-6 production in LPS-stimulated RAW 264.7 cells. Furthermore, the levels of relative mRNAs were also found to be downregulated. In in vivo trail, p-cymene markedly suppressed the production of TNF-α and IL-1β and increased IL-10 secretion. We also found that p-cymene inhibited LPS-induced activation of extracellular signal receptor-activated kinase 1/2, p38, c-Jun N-terminal kinase, and IκBα. These results suggest that p-cymene may have a potential anti-inflammatory action on cytokine production by blocking NF-κB and MAPK signaling pathways.  相似文献   

4.
5.
Lipopolysaccharide (LPS) can activate endothelial cells and induce inflammatory injury. Toll-like receptor-4 (TLR-4) is integrally involved in LPS signaling and has a requisite role in the activation of nuclear factor (NF)-κB. A number of studies have demonstrated the cytoprotective action of perfluorocarbon (PFC) both in vivo and in vitro, but the exact mechanisms have yet to be elucidated. In this study, we examined in an in vitro model the cytoprotective effect of PFC on LPS-stimulated pulmonary vascular endothelial cells (PMVECs). Intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) were significantly increased in the LPS-stimulated PMVECs groups. The expression of TLR-4 mRNA and protein in LPS groups was markedly increased. Meanwhile, NF-κB was activated. There were no significant effects of PFC alone on any of the factors studied while the coculture group showed significant downregulation of the secretion of ICAM-1, TNF-α, and IL-8; the expression of TLR-4 mRNA; and the activity of NF-κB. LPS can induce PMVEC inflammatory injury via the activation of TLR-4 and subsequent activation of NF-κB. PFC is able to protect PMVECs from LPS-induced inflammatory injury by blocking the initiation of the LPS signaling pathway.  相似文献   

6.
7.
Physalin E is a naturally occurring seco-steroid isolated from the stems and aerial parts of Physalis angulata L. (Solanaceae). This study was aimed to explore the anti-inflammatory effects of physalin E on RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS) and the potential underlying mechanisms. The results showed that physalin E significantly inhibited LPS-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression and secretion in a dose-dependent manner. Unlike dexamethasone, these effects could not be blocked by miferstone (RU486). Meanwhile, physalin E reduced the degradation of I-kappa B protein in the cytoplasm and downregulated the nuclear factor-κB (NF-κB) p65 protein in the nuclear, which resulted in the inhibition of the NF-κB nuclear translocation. In conclusion, physalin E exerts its anti-inflammatory activities in LPS-induced macrophages. Physalin E can inhibit the production of inflammatory cytokines by targeting the NF-κB signaling pathway.  相似文献   

8.
Yu PJ  Jin H  Zhang JY  Wang GF  Li JR  Zhu ZG  Tian YX  Wu SY  Xu W  Zhang JJ  Wu SG 《Inflammation》2012,35(3):967-977
Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.  相似文献   

9.
Chikusetsusaponin V (CsV), a saponin from Panax japonicus, has been reported to inhibit inflammatory responses in lipopolysaccharide (LPS)-induced macrophage cells. However, whether CsV could alleviate LPS-induced liver injury in vivo and the potential mechanisms involved remain unclear. In the present study, we investigated the anti-inflammatory effects of CsV on LPS-induced acute liver injury in mice and further explored the potential mechanisms involved. Our results showed that CsV significantly attenuated elevation of alanine transaminase (ALT) and aspartate aminotransferase (AST) levels and improved liver histopathological changes in LPS-induced mice. In addition, CsV decreased serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and inhibited mRNA expressions of inducible nitric oxide synthase (iNOS), TNF-α and IL-1β in LPS challenged mice. Furthermore, CsV inhibited nuclear factor kappa B (NF-κB) activation by downregulating phosphorylated NF-κB, IκB-α, ERK, c-Jun N-terminal kinase (JNK) and p38 levels in the liver tissue, which ultimately decreased nucleus NF-κB protein level. In conclusion, our data suggested that CsV could be a promising drug for preventing LPS challenged liver injury since it attenuated LPS-induced inflammatory responses, partly via inhibiting NF-κB and MAPK signaling pathways.  相似文献   

10.
Toll-like receptors (TLRs) are the primary sensors detecting conserved molecular patterns on microorganisms, thus acting as important components of innate immunity against invading pathogens. Many positive and negative regulators of TLR-triggered signaling have been identified. The Rho GTPase RhoB plays a key role in cell migration, division and polarity; however, the function and regulatory mechanisms of RhoB in TLR ligand-triggered innate immune responses remain to be investigated. Here, we report that the expression of RhoB is induced by TLR agonists (lipopolysaccharide (LPS), CpG, poly(I:C)) in macrophages. Knockdown of RhoB expression markedly decreased TLR ligand-induced activation of mitogen activated protein kinases and nuclear factor-κB (NF-κB), and the production of tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-1β in macrophages stimulated with TLR ligands. Furthermore, we demonstrated that RhoB interacts with major histocompatibility complex class II (MHCII) α chain, but not β chain, in endosomes of macrophages. Knockdown of MHCII expression greatly reduced the interaction of RhoB with Btk, and attenuated the induction of NF-κB and interferon β activity by RhoB upon LPS stimulation. These findings suggest that RhoB is a positive physiological regulator of TLRs signaling via binding to MHCII in macrophages, and therefore RhoB may be a potential therapeutic target in inflammatory diseases.  相似文献   

11.
Thymol is a natural monoterpene phenol primarily found in thyme, oregano, and tangerine peel. It has been shown to possess anti-inflammatory property both in vivo and in vitro. In the present paper, we studied the anti-inflammatory effect of thymol in lipopolysaccharide (LPS)-stimulated mouse mammary epithelial cells (mMECs). The mMECs were stimulated with LPS in the presence or absence of thymol (10, 20, 40 μg/mL). The concentrations of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β in the supernatants of culture were determined using enzyme-linked immunosorbent assay. Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), nuclear factor-κB (NF-κB), and inhibitor protein of NF-κB (IκBα) were measured using western blot. The results showed that thymol markedly inhibited the production of TNF-α and IL-6 in LPS-stimulated mMECs. The expression of iNOS and COX-2 was also suppressed by thymol in a dose-dependent manner. Furthermore, thymol blocked the phosphorylation of IκBα, NF-κB p65, ERK, JNK, and p38 mitogen-activated protein kinases (MAPKs) in LPS-stimulated mMECs. These results indicate that thymol exerted anti-inflammatory property in LPS-stimulated mMECs by interfering the activation of NF-κB and MAPK signaling pathways. Thereby, thymol may be a potential therapeutic agent against mastitis.  相似文献   

12.
This study investigated the underlying mechanism by which C-X-C motif chemokine ligand 16 (CXCL16)/C-X-C motif chemokine receptor 6 (CXCR6) signaling is activated by tumor-associated macrophages and assists in regulating the metastasis of ovarian carcinoma. Specimens of ovarian carcinoma tissue and adjacent tissue were collected from 20 ovarian carcinoma patients. Human THP-1 cells were induced to differentiate into macrophages, which were then co-cultured with SKOV3 cells and low concentrations of tumor necrosis factor-α (TNF-α) to simulate the inflammatory microenvironment of ovarian carcinoma. Additionally, small interfering RNA (siRNA) targeting CXCR6 was transfected into SKOV3 cells; after which, the levels of nuclear factor kappa B p65 (NF-κB p65) protein and phosphorylated PI3K and Akt were measured. The migration and invasion abilities of the SKOV3 cells were also tested. The levels of TNF-α, interluekin-6 (IL-6), NF-κB p65, CXCL16, and CXCR6 expression in the ovarian carcinoma tissues were higher than those in the precancerous tissues. CXCR6 expression was positively correlated with TNF-α, IL-6, and CXCL16 expression. Co-culture of SKOV3 cells with macrophages significantly promoted CXCL16, CXCR6, NF-κB, and p65 expression by the SKOV3 cells, increased their levels of phosphorylated PI3K and Akt, and increased the migration and invasion abilities of SKOV3 cells. Silencing of CXCR6 or blocking the PI3K/Akt signal pathway markedly attenuated the expression of NF-κB p65 and phosphorylation of PI3K and Akt, as well as the migration and invasion abilities of SKOV3 cells. These findings demonstrate that macrophages can promote the migration and invasion of ovarian carcinoma cells by affecting the CXCL16/CXCR6 pathway.  相似文献   

13.
目的 探讨三七皂苷Rg1(Rg1)对脂多糖(LPS)诱导的小胶质细胞系BV-2细胞炎性因子释放的抑制作用.方法 用LPS刺激BV-2细胞构建炎症模型,采用四甲基偶氮唑盐比色法检测Rg1对BV-2细胞活力的影响,免疫荧光染色和反转录PCR方法检测不同浓度Rg1(10、20、40μmol/L)对细胞炎性蛋白酶诱导型一氧化氮合酶(iNOS)和环氧合酶-2 (COX-2)、细胞炎性因子肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)、炎性信号分子NF-κB蛋白与mRNA的表达变化.结果 不同浓度的Rg1在转录水平和翻译水平上明显抑制了LPS诱导的细胞炎性蛋白酶iNOS和COX-2、细胞炎性因子TNF-α和IL-1β与炎性信号分子NF-κB的上调,并且iNOS、COX-2和NF-κB的表达呈剂量依赖性.结论 Rg1可通过调控LPS诱导的小胶质细胞系BV-2细胞炎性因子释放从而抑制小胶质细胞激活,发挥抗神经炎症的作用.  相似文献   

14.
Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.  相似文献   

15.
16.
The aim of this study was to investigate the protective effects of cepharanthine (CEP) on inflammation in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in vitro and a LPS-induced lung injury model in vivo. RAW264.7 cells were treated with various concentrations of CEP for 1 h followed by incubation with or without 1 μg/ml LPS for 18 h. TNF-α, IL-6, and IL-1β in the supernatants were measured by ELISA. Nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways were analyzed by Western blot. Mice were randomly divided into control group, LPS group, CEP?+?LPS group, and dexamethasone?+?LPS group. A male BALB/c mouse model of acute lung injury was induced by LPS. Bronchoalveolar lavage fluid was collected for inflammatory cell count and cytokine assays. Histopathologic examination was performed on mice that were not subjected to bronchoalveolar lavage fluid collection. CEP dose-dependently inhibited the release of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 cells. Significantly, CEP dose-dependently suppressed NF-κB activation, IκBα degradation, and phosphorylation of ERK, JNK, and p38 induced by LPS. In vivo, it was also observed that CEP attenuated lung histopathologic changes and down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in the mouse acute lung injury model. These results suggest that CEP potentially decreases inflammation in vitro and in vivo and might be a therapeutic agent against inflammatory diseases.  相似文献   

17.
18.
目的:探讨黄芪总皂苷(TAS)对脂多糖(LPS)诱导的BV2小胶质细胞炎症损伤的抗炎作用机制.方法:用CCK-8法筛选出对细胞活力无抑制的药物浓度;用浓度为1 mg/L的LPS刺激BV2细胞24 h,建立细胞炎症模型;实验分为正常组、LPS组、高剂量(75 mg/L)TAS组和低剂量(50 mg/L)TAS组;应用流式...  相似文献   

19.
TLRs mediate host defense against microbial pathogens by eliciting production of inflammatory mediators and activating expression of MHC, adhesion, and costimulatory molecules. Endotoxin tolerance limits excessive TLR-driven inflammation during sepsis and reprograms macrophage responses to LPS, decreasing expression of proinflammatory cytokines without inhibiting anti-inflammatory and antimicrobial mediators. Molecular mechanisms of reprogramming of TLR4 signaling upon in vivo induction of endotoxin tolerance are incompletely understood. We used an in vivo model of endotoxin tolerance, whereby C57BL/6 mice were i.p.-inoculated with LPS or PBS, followed by in vitro challenge of peritoneal or splenic macrophages with LPS to examine activation of IRAK4 and expression of negative regulatory molecules. Administration of LPS in vivo-induced endotoxin tolerance in peritoneal and splenic macrophages, as evidenced by decreased degradation of IκBα, suppressed phosphorylation of p38 and reduced expression of TNF-α, IL-6, and KC mRNA upon in vitro LPS challenge. Macrophages from control and endotoxin-tolerant mice exhibited comparable TLR4 mRNA levels and similar expression of IL-1RA and IL-10 genes. Endotoxin tolerization in vivo blocked TLR4-driven IRAK4 phosphorylation and activation in macrophages, while increasing expression of IRAK-M, SHIP-1, A20 mRNA, and A20 protein. Thus, induction of endotoxin tolerance in vivo inhibits expression of proinflammatory mediators via impaired activation of IRAK4, p38, and NF-κB and increases expression of negative regulators of TLR4 pathways.  相似文献   

20.
LPS致大鼠肺泡巨噬细胞NF-κB促进TNF-α分泌   总被引:3,自引:1,他引:3       下载免费PDF全文
目的: 观察脂多糖(LPS)致大鼠肺泡巨噬细胞(AMs)中核因子NF-κB活性及其调控肿瘤坏死因子-α(TNF-α)分泌的作用。 方法: LPS作用大鼠AMs后,用电泳迁移率改变分析法(EMSA)测NF-κB活性;用特异的反义寡核苷酸阻断NF-κB亚基(p65)后,Western blotting检测p65表达变化;ELISA法检测细胞上清中TNF-α的含量。 结果: 于LPS作用AMs后4 h,NF-κB活性达到峰值,24 h仍维持在高水平;作用后4 h上清中TNF-α的含量达到峰值。反义寡核苷酸阻断NF-κB亚基(p65)表达后,LPS致AMs上清中TNF-α的含量显著低于未阻断组(P<0.01)。结论: LPS致大鼠AMs中NF-κB正向调控TNF-α分泌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号