首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hedgehog (Hh) pathway is a main regulation cascade in embryonic differentiation. It is also present in adult tissues and unusual expression has been associated with formation of benign and malignant lesions. We examined the presence of the Hedgehog pathway in normal and pathological human colon tissue. Components investigated include Sonic (Shh), Indian (Ihh), and Desert Hedgehog (Dhh), Gli1, Gli2, Gli3, and Patched (Ptch). Pathological tissue samples comprised 23 benign and 20 malignant lesions of human colon. The influence of the Hedgehog pathway on differentiation and proliferation has been investigated by analyzing the effect of the pathway inhibitor Cyclopamine on human colon cancer cell lines HT29 and CaCo2. In normal colon, we detected expression of Shh and Dhh within the lining epithelium and Patched, Gli1, and Gli2 along the whole crypts. Within all benign lesions, positive staining of Shh, Dhh, Gli1, Gli2, and Ptch was detected. Expression of Shh and Dhh was restricted to single cell aggregates. Malignant lesions also displayed focal staining pattern for Shh and Dhh but to a much lesser extent. We conclude that Hedgehog signaling is involved rather in constant differentiation and renewing of the colonic lining epithelium than in cancer formation, growth, or proliferation.  相似文献   

2.
Hh pathway expression in human gut tissues and in inflammatory gut diseases   总被引:4,自引:0,他引:4  
Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of gut epithelial stem or progenitor cells. Recent publications suggest a role for aberrant SHH/SHH expression in gut epithelial neoplasias. We hypothesized that the regenerating gut epithelium in inflammatory gut disorders would show an upregulation of SHH/SHH signaling and this abnormal signal may explain the increased incidence of neoplasia in these diseases. Archived healthy gut and inflammatory gut diseased tissues were analyzed by RNA in situ hybridization and immunohistochemistry to describe location and levels of SHH signaling. We show that SHH/SHH and its receptor PTCH1/PTCH1 expression is restricted to the glandular epithelium of the gut, in an antiluminal pattern (strongest in basal layers and weak to absent in luminal epithelium). Inflammatory diseases of the gut show dramatic increases in epithelial SHH signaling. Expression increases in inflamed glandular epithelium (including metaplastic glandular epithelium), losing its radial (crypt-villous) polarity, and expression appears upregulated and present in all epithelial cells. We also describe strong SHH/SHH and PTCH1/PTCH1 expression in intraepithelial and mucosal inflammatory cells. We suggest that SHH signaling in inflammatory diseases of the gut acts to ensure stem cell restitution of damaged mucosal epithelium. However, such signaling may also present a risk for neoplastic transformation.  相似文献   

3.
4.
Regulation of epithelial cell proliferation and apoptosis are important determinants of colonic crypt homeostasis, and their dysregulations are key features of colon cancer. In this study, we investigated whether CD44, an adhesion protein overexpressed in colon cancer, plays a role in colonocyte proliferation and apoptosis, and the molecular mechanisms involved in these processes. Using a CD44 knockout mouse model devoid of a gross phenotype, we found that CD44 null colonocytes have alterations at the ultrastructural and molecular levels. Mitochondria in CD44 null colonocytes at the top of the crypt have disrupted cristae. The ratio of anti-apoptotic Bcl-xl to pro-apoptotic Bak was shifted toward apoptosis in CD44 null colon due to decreased Bcl-xl expression. Caspase 9 was upregulated and active in CD44 null colon. Its expression shifted from a location restricted to the top of the control crypts to the whole crypt axis in CD44 null colon. Caspase 3 was also activated in CD44 null colon suggesting that CD44 null colonocytes are apoptotic via the intrinsic pathway. Cell cycle regulators, cyclin A, p21, and pRb protein were abrogated in CD44 null mice. Overall, CD44 negatively regulates apoptosis via the mitochondrial pathway in the colonic epithelium through the regulators/effectors of cell cycle and apoptosis.  相似文献   

5.
6.
The hedgehog (Hh)-signaling pathway plays an essential role in normal development. Deregulation of this pathway is responsible for several types of cancers. The aim of this study was to determine the expression pattern and the extent of Hh-signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions. A total of 106 uterine cervical cancers and related lesions (37 squamous cell carcinomas, 23 cervical intraepithelial neoplasia (CIN) III, 10 CIN II, four CIN I, 32 normal cervical epithelia) were immunohistochemically analyzed with anti-Shh, Indian Hh (Ihh), Patched (PTCH), Smoothened (Smo), Gli-1, Gli-2, Gli-3 antibodies on paraffin blocks. The results showed that the expression of all the Hh-signaling molecules was greatly enhanced in uterine cervical tumors, including carcinoma and its precursor lesions. The staining pattern was mainly cytoplasmic except for Gli-1/2, whose expression was observed in both cytoplasm and nucleus. In case of Ihh, PTCH, Smo and Gli-1, their expression in normal epithelium was completely absent or rare. The expression of all the seven Hh-signaling molecules mentioned above was significantly increased in CIN II/III and carcinoma, compared with that in normal epithelium (P < 0.05). The expression of Shh was increased by double; the first increase occurred in normal epithelium-CIN transition, and the second, during the progression of CIN to carcinoma. These results strongly suggest that the Hh-signaling pathways were extensively activated in carcinoma and CIN of uterine cervix. In conclusion, the Hh-signaling pathways may be involved in carcinogenesis of squamous cell carcinoma of uterine cervix and can be considered as a potential therapeutic target.  相似文献   

7.
8.
9.
10.
11.
Fas ligand upregulation is an early event in colonic carcinogenesis   总被引:11,自引:0,他引:11       下载免费PDF全文
BACKGROUND/AIMS: Fas ligand (FasL) is a mediator of apoptosis via the Fas receptor (Fas/CD95/APO-1). Normal colonic epithelium expresses Fas, and appears to be relatively sensitive to Fas mediated apoptosis. Colonic adenocarcinomas coexpress FasL and Fas without undergoing widespread apoptosis. This study investigates the expression of FasL in colonic carcinogenesis from the earliest stages of the adenoma-carcinoma sequence. METHODS: FasL expression was determined in colonic adenomas (n = 38) of varying degrees of dysplasia and histological type by immunohistochemistry. Adenomas that contained areas of carcinomatous change were included (n = 12 of 38). Normal colonic epithelium (n = 10), hyperplastic polyps (n = 8), and serrated adenomas (n = 3) from patients without colonic adenocarcinomas were used for comparison. Cell death was detected in situ in adenomas using TUNEL (terminal transferase mediated dUTP nick end labelling). RESULTS: In normal colonic epithelium and hyperplastic polyps, FasL expression was restricted to the luminal surface of the crypts, where Fas-FasL coexpression was coincident with a high frequency of TUNEL positive epithelial cells. All adenomas (n = 38) had an altered distribution of positive FasL staining; FasL expression was found in most cells (> 70% of neoplastic cells). Expression of Fas was also detected throughout the adenomas, but coexpression of FasL and Fas was not associated with TUNEL positivity in most cells. CONCLUSIONS: FasL upregulation occurs early in the adenoma-carcinoma sequence of colon carcinogenesis, and is evident at the level of mild dysplasia. The lack of pronounced apoptosis in areas of adenomas coexpressing Fas and FasL suggests that colonocytes acquire resistance to Fas mediated apoptosis early in the transformation process.  相似文献   

12.
13.
BACKGROUND/AIMS: In vivo autofluorescence endoscopic imaging and spectroscopy have been used to detect and differentiate benign (hyperplastic) and preneoplastic (adenomatous) colonic lesions. This fluorescence is composed of contributions from the epithelium, lamina propria, and submucosa. Because epithelial autofluorescence in normal and diseased tissues is poorly understood, this was the focus of the present study. METHODS: Whole colonic crypts were isolated, and short term primary cultures of epithelial cells were established from biopsies of normal, hyperplastic, and adenomatous colon. Autofluorescence (488 nm excitation) was examined by confocal fluorescence microscopy. Fluorescently labelled organelle probes and transmission electron microscopy were used to identify subcellular sources of fluorescence. RESULTS: Mitochondria and lysosomes were identified as the main intracellular fluorescent components in all cell types. Normal and hyperplastic epithelial cells were weakly autofluorescent and had similar numbers of mitochondria and lysosomes, whereas adenomatous (dysplastic) epithelial cells showed much higher autofluorescence, and numerous highly autofluorescent lysosomal (lipofuscin) granules. CONCLUSIONS: Short term primary cell cultures from endoscopic biopsies provide a novel model to understand differences in colonic tissue autofluorescence at the glandular (crypt) and cellular levels. The differences between normal, hyperplastic, and adenomatous epithelial cells are attributed in part to differences in the intrinsic numbers of mitochondria and lysosomes. This suggests that the detection of colonic epithelial fluorescence alone, if possible, may be sufficient to differentiate benign (hyperplastic) from preneoplastic and neoplastic (adenomatous) colonic intramucosal lesions during in vivo fluorescence endoscopy. Furthermore, highly orange/red autofluorescent intracellular granules found only in dysplastic epithelial cells may serve as a potential biomarker.  相似文献   

14.
During pulmonary development, Sonic hedgehog (Shh) and transforming growth factor beta1 (TGF-beta1) signalling both contribute to branching morphogenesis. In interstitial lung disease, the complex alveolar structure of the lung is disrupted and remodelled, which leads to fibrosis, loss of respiratory surface, morbidity, and mortality. It is well documented that TGF-beta1 is involved in fibrosis. However, little is known about Shh signalling in damaged epithelia. This study examined whether or not components of the Shh signalling pathway, as well as TGF-beta1, are expressed in human fibrotic lung disease (cryptogenic fibrosing alveolitis and bronchiectasis) and in murine experimental models of fibrotic and non-fibrotic chronic pulmonary inflammation. Using immunohistochemistry, it was observed that Shh, like TGF-beta1, is up-regulated in epithelial cells at sites of fibrotic disease but not non-fibrotic inflammation. The Shh receptor patched was detected in infiltrating mononuclear cells and alveolar macrophages, as well as normal resting peripheral blood T lymphocytes. Neither Shh nor patched is expressed by hyperproliferative goblet cells in inflammatory epithelium. This study demonstrates that patched is present in human peripheral CD4 and CD8 lymphocytes at both protein and mRNA levels. Taken together, these results suggest that components of the highly conserved Shh signalling pathway may play a role in the remodelling of damaged pulmonary epithelium and that damaged epithelium and cells of the immune system may communicate via this pathway.  相似文献   

15.
The Hedgehog (HH) signaling pathway is involved in patterning and development of a variety of organ systems, including the nervous system, the skeletal system, the craniofacial structures, and the gastrointestinal tract. Recent evidence also implicates this signaling pathway in the postembryonic regulation of stem-cell number in epithelia and blood. The family of HH proteins consists of at least three different members, i.e., sonic HH (SHH), Indian HH (IHH), and desert HH (DHH). SHH is the most broadly expressed member of this family and is probably responsible for the major effects of this signaling pathway. The HH signal is received and transduced via a specific receptor complex composed of patched (PTCH) and smoothened (SMOH) transmembrane proteins. Abnormalities in this signaling cascade have been found in various developmental pathologies and neoplasms such as basal cell carcinoma. The abnormalities are associated with congenital or sporadic genetic alteration affecting function of different components of the HH signaling pathway, including SHH, PTCH, SMOH and GLI proteins.  相似文献   

16.
Apoptosis, anoikis and their relevance to the pathobiology of colon cancer   总被引:9,自引:0,他引:9  
The maintenance of a constant number of cells in an adult organism is a tightly regulated process. This is particularly important in organs where cells are in a constant rate of renewal during the entire lifespan. In these organs, cell number homeostasis is the direct consequence of a balance between cell proliferation and apoptosis. The colonic epithelium is an example of such a site and the high prevalence of colon cancer makes the understanding of cell number homeostasis more important to define. Normal colonic epithelium is organized in crypts where cell proliferation, migration, differentiation and apoptosis are topographically organized in a linear fashion along the crypt axis. Normal colonic crypts are composed of stem cells at the base, a proliferation and a differentiation zone in the lower third of the crypt, a migration zone in the upper two-thirds, and the surface epithelium where senescent cells are eliminated by apoptosis. Globally, apoptosis can be defined as a normal process of cell suicide, critical for development and tissue homeostasis. Colonic epithelial cells migrate from the base of the crypt to the surface epithelium in 6-7 days. The normal architecture of the crypt is maintained by a balance between cell proliferation at the base and apoptosis at the top of the crypt and surface epithelium.  相似文献   

17.
We report overexpression of the proto-oncogene bcl-2 in gastrointestinal adenocarcinoma and its precursor lesions. The bcl-2 proto-oncogene is centrally involved in the oncogenesis of human follicular lymphoma via a chromosomal translocation t(14;18)(q32;q21) and is also expressed in the epithelial regenerative compartment or the basal crypts of the normal colon and small intestine. We describe an immunohistochemical analysis of fixed, paraffin-embedded tissue using both a polyclonal rabbit and a monoclonal mouse antibody to the Bcl-2 protein. In addition to confirming bcl-2 expression in normal colonic and small intestinal crypts, we also observed expression in the gastric epithelial regenerative compartment, the mucous neck region. No increased expression was found in nonneoplastic or inflammatory gastrointestinal conditions, including ulcerative colitis, Crohn's disease, or inflammatory or hamartomatous polyps. Increased bcl-2 expression, however, was present in hyperplastic colonic polyps and in the majority of dysplastic lesions, from the earliest precursors through large adenomas, high grade flat dysplasia, and adenocarcinoma, all in comparison with adjacent internal control normal epithelium. Increased expression was present in dysplastic glandular lesions from all gastrointestinal sites, including colon, small bowel, and stomach. Furthermore, bcl-2 expression was frequently abnormal in nondysplastic epithelium surrounding dysplastic lesions, suggesting that altered expression occurred before the development of morphological dysplasia. Specifically, directly contiguous morphologically nondysplastic epithelium often showed abnormal bcl-2 expression throughout the full length of the crypt-villus axis. This expression pattern gradually diminished to involve only the crypt base (the normal pattern of expression), proceeding away from malignant or dysplastic lesions. Abnormal bcl-2 immunoreactivity in 1), the earliest precursor dysplastic lesions and its persistence throughout neoplastic progression and 2), contiguous morphologically unaltered nondysplastic epithelium suggests that bcl-2 alterations occur early during the morphological and molecular sequence of events leading to gastrointestinal epithelial neoplasia.  相似文献   

18.
Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa   总被引:41,自引:0,他引:41  
The regulation of apoptotic cell death may have a profound effect on the pathogenesis and progression of colon cancer. Survivin, a member of the inhibitor of apoptosis gene family, has been detected in fetal tissue and in a variety of human malignancies. In the current study, we investigated survivin expression by an immunohistochemical approach in benign, hyperplastic, premalignant, and malignant lesions of the colon. Survivin was detected in all cases of normal colonic mucosa (20/20), hyperplastic polyps (20/20), adenomatous polyps (20/20), and in both well differentiated and moderately differentiated colonic adenocarcinomas (20/20). In the normal colonic mucosa, survivin expression was mostly restricted to the base of the colonic crypts. All epithelial cells showed uniformly intense staining for survivin in hyperplastic polyps. By contrast, adenomas and adenocarcinomas showed a heterogeneous staining pattern with cell-to-cell, gland-to-gland, and regional variability in the intensity of survivin staining. In contrast to the basal preponderance of staining in normal colonic mucosa, numerous survivin positive cells were present at the luminal surface of hyperplastic polyps, adenomatous polyps, and adenocarcinomas. In conclusion, the expression of survivin is not a specific marker of adenocarcinoma of the colon but does show characteristic and reproducible patterns of expression in non-neoplastic proliferative lesions and in normal colonic mucosa.  相似文献   

19.
20.
 目的: 研究阻断Sonic Hedgehog (Shh)信号对不同人肝癌细胞生长的影响,探讨阻断Shh信号抑制肝癌细胞生长的机制。方法: RT-PCR法检测Shh信号分子在3株人肝癌细胞(BEL-7402、Huh7和HepG2)中的表达,并检测Shh阻断抗体作用后BEL-7402细胞Shh信号效应分子表达变化;MTT法检测人肝癌细胞增殖活性;流式细胞术检测人肝癌细胞凋亡;Western blot 检测凋亡相关蛋白表达。结果: Shh信号分子在3株人肝癌细胞中均有表达,Shh阻断抗体可以下调Shh信号效应分子patched (Ptch)、Gli1和Gli2的表达;Shh阻断抗体可以抑制3株肝癌细胞生长,增加G0/G1期细胞,并诱导细胞凋亡;Shh阻断抗体作用后,BEL-7402细胞pro-caspase-3、pro-caspase-8和pro-caspase-9蛋白表达水平下降,cleaved caspase-3、cleaved caspase-8和cleaved caspase-9蛋白表达水平升高。结论: 阻断Shh信号可抑制Shh高表达的人肝癌细胞生长,阻滞细胞周期于G0/G1期,并诱导肝癌细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号