首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA-dependent RNA polymerase (Pol)IV in Arabidopsis exists in two isoforms (PolIVa and PolIVb), with NRPD1a and NRPD1b as their respective largest subunits. Both isoforms are implicated in production and activity of siRNAs and in RNA-directed DNA methylation (RdDM). Deep sequence analysis of siRNAs in WT Arabidopsis flowers and in nrpd1a and nrpd1b mutants identified >4,200 loci producing siRNAs in a PolIV-dependent manner, with PolIVb reinforcing siRNA production by PolIVa. Transposable element identity and pericentromeric localization are both features that predispose a locus for siRNA production via PolIV proteins and determine the extent to which siRNA production relies on PolIVb. Detailed analysis of DNA methylation at PolIV-dependent loci revealed unexpected deviations from the previously noted association of PolIVb-dependent siRNA production and RdDM. Notably, PolIVb functions independently in DNA methylation and siRNA generation. Additionally, we have uncovered siRNA-directed loss of DNA methylation, a process requiring both PolIV isoforms. From these findings, we infer that the role of PolIVb in siRNA production is secondary to a role in chromatin modification and is influenced by chromatin context.  相似文献   

3.
4.
5.
DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.DNA methylation plays an important role in the regulation of the expression of genes and the maintenance of transposable element (TE) silencing. In contrast to animals, in which methylation is often restricted to the CG context, plants exhibit robust methylation in every possible context CG, CHG (H is A, T, or C), and CHH. Previous research has identified different pathways responsible for the maintenance and establishment of DNA methylation patterns. In Arabidopsis thaliana, METHYLTRANSFERASE1 (MET1), a homolog of mammalian Dnmt1, mainly maintains methylation at the CG context, whereas CHROMOMETHYLASE3 (CMT3) mainly maintains CHG methylation. DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and CHROMOMETHYLASE2 (CMT2) maintain CHH methylation in the chromosome arms and pericentromeric regions, respectively (13). On the other hand, establishment of DNA methylation is performed by DRM2 through a complex pathway termed RNA-directed DNA methylation (RdDM) (4).To date, the majority of our knowledge about DNA methylation is derived from the model plant Arabidopsis. These studies have allowed the identification of different components involved in different methylation pathways, the genome-wide identification of methylation patterns, and the study of effects of DNA methylation on gene expression. The knowledge acquired from Arabidopsis can now be used as the basis for investigations of methylation in agronomically important plants. However, thus far very few crop species have been subjected to detailed DNA methylation studies (5). Cassava (Manihot esculenta) is cultivated for its starch-rich tuberous roots and is one of the world’s most important staple crops, especially in tropical America, Africa, and Asia (6). Cassava is a source of carbohydrates for nearly a billion people, but it is especially important for a large portion of Africa, where it serves as a subsistence crop because of its ability to tolerate drought and grow on poor soils, conditions unsuitable for rice and maize (6, 7). The genome sequence of cassava has been described recently with an estimated genome size of roughly 760 million base pairs (7). We have used bisulfite sequencing (BS-seq) to examine DNA methylation in cassava at single-base pair resolution. Broadly, the pattern of DNA methylation of both protein-coding genes and TEs is similar to other plants, although DNA methylation levels in cassava are higher than those in Arabidopsis. LTR retrotransposons, such as GYPSY and COPIA, tend to be more heavily methylated than other TEs. Interestingly, differentially expressed gene pairs derived from the last genome duplication tend to show differential gene body methylation, with the highly expressed paralogs displaying significantly higher gene body methylation. We also find that the most differentially gene body-methylated paralogs have distinct biological functions compared with genes that have maintained similar gene body methylation patterns.  相似文献   

6.
7.
REPRESSOR OF SILENCING 1 (ROS1) is a DNA demethylation enzyme that was previously identified during a genetic screen for the silencing of both RD29A-LUC and 35S-NPTII transgenes on a T-DNA construct. Here we performed a genetic screen to identify additional mutants in which the 35S-NPTII transgene is silenced. We identified several alleles of ros1 and of the following components of the RNA-directed DNA methylation (RdDM) pathway: NRPD1 (the largest subunit of polymerase IV), RDR2, NRPE1 (the largest subunit of polymerase V), NRPD2, AGO4, and DMS3. Our results show that the silencing of 35S-NPTII in the RdDM pathway mutants is due to the reduced expression of ROS1 in the mutants. We also identified a putative histone acetyltransferase (ROS4) from the genetic screen. The acetyltransferase contains a PHD-finger domain that binds to unmethylated histone H3K4. The mutation in ROS4 led to reduction of H3K18 and H3K23 acetylation levels. We show that the silencing of 35S-NPTII and some transposable element genes was released by the ddm1 mutation but that this also required ROS4. Our study identifies a unique antisilencing factor, and reveals that the RdDM pathway has an antisilencing function due to its role in maintaining ROS1 expression.  相似文献   

8.
9.
Local DNA hypomethylation activates genes in rice endosperm   总被引:1,自引:0,他引:1  
Cytosine methylation silences transposable elements in plants, vertebrates, and fungi but also regulates gene expression. Plant methylation is catalyzed by three families of enzymes, each with a preferred sequence context: CG, CHG (H = A, C, or T), and CHH, with CHH methylation targeted by the RNAi pathway. Arabidopsis thaliana endosperm, a placenta-like tissue that nourishes the embryo, is globally hypomethylated in the CG context while retaining high non-CG methylation. Global methylation dynamics in seeds of cereal crops that provide the bulk of human nutrition remain unknown. Here, we show that rice endosperm DNA is hypomethylated in all sequence contexts. Non-CG methylation is reduced evenly across the genome, whereas CG hypomethylation is localized. CHH methylation of small transposable elements is increased in embryos, suggesting that endosperm demethylation enhances transposon silencing. Genes preferentially expressed in endosperm, including those coding for major storage proteins and starch synthesizing enzymes, are frequently hypomethylated in endosperm, indicating that DNA methylation is a crucial regulator of rice endosperm biogenesis. Our data show that genome-wide reshaping of seed DNA methylation is conserved among angiosperms and has a profound effect on gene expression in cereal crops.  相似文献   

10.
DNA methylation plays a critical role in controlling states of gene activity in most eukaryotic organisms, and it is essential for proper growth and development. Patterns of methylation are established by de novo methyltransferases and maintained by maintenance methyltransferase activities. The Dnmt3 family of de novo DNA methyltransferases has recently been characterized in animals. Here we describe DNA methyltransferase genes from both Arabidopsis and maize that show a high level of sequence similarity to Dnmt3, suggesting that they encode plant de novo methyltransferases. Relative to all known eukaryotic methyltransferases, these plant proteins contain a novel arrangement of the motifs required for DNA methyltransferase catalytic activity. The N termini of these methyltransferases contain a series of ubiquitin-associated (UBA) domains. UBA domains are found in several ubiquitin pathway proteins and in DNA repair enzymes such as Rad23, and they may be involved in ubiquitin binding. The presence of UBA domains provides a possible link between DNA methylation and ubiquitin/proteasome pathways.  相似文献   

11.
Two forms of a plant-specific RNA polymerase (Pol), PolIV(PolIVa) and PolV(PolIVb), currently defined by their respective largest subunits [NRPD1(NRPD1a) and NRPE1(NRPD1b)], have been implicated in the production and activity of 24-nt small RNAs (sRNAs) in RNA-directed DNA methylation (RdDM). Prevailing models support the view that PolIV(PolIVa) plays an upstream role in RdDM by producing the 24-nt sRNAs, whereas PolV(PolIVb) would act downstream at a structural rather than an enzymatic level to reinforce sRNA production by PolIV(PolIVa) and mediate DNA methylation. However, the composition and mechanism of action of PolIV(PolIVa)/PolV(PolIVb) remain unclear. In this work, we have identified a plant-specific PolV(PolIVb) subunit, NRPE5a, homologous to NRPB5a, a common subunit shared by PolI-III and shown here to be present in PolIV(PolIVa). Our results confirm the combinatorial diversity of PolIV(PolIVa)/PolV(PolIVb) subunit composition and indicate that these plant-specific Pols are eukaryotic-type polymerases. Moreover, we show that nrpe5a-1 mutation differentially impacts sRNAs accumulation at various PolIV(PolIVa)/PolV(PolIVb)-dependent loci, indicating a target-specific requirement for NRPE5a in the process of PolV(PolIVb)-dependent gene silencing. We then describe that the triad aspartate motif present in the catalytic center of PolV(PolIVb) is required for recapitulation of all activities associated with this Pol complex in RdDM, suggesting that RNA polymerization is important for PolV(PolIVb) to perform its regulatory functions.  相似文献   

12.
Cytosine DNA methylation is considered to be a stable epigenetic mark, but active demethylation has been observed in both plants and animals. In Arabidopsis thaliana, DNA glycosylases of the DEMETER (DME) family remove methylcytosines from DNA. Demethylation by DME is necessary for genomic imprinting, and demethylation by a related protein, REPRESSOR OF SILENCING1, prevents gene silencing in a transgenic background. However, the extent and function of demethylation by DEMETER-LIKE (DML) proteins in WT plants is not known. Using genome-tiling microarrays, we mapped DNA methylation in mutant and WT plants and identified 179 loci actively demethylated by DML enzymes. Mutations in DML genes lead to locus-specific DNA hypermethylation. Reintroducing WT DML genes restores most loci to the normal pattern of methylation, although at some loci, hypermethylated epialleles persist. Of loci demethylated by DML enzymes, >80% are near or overlap genes. Genic demethylation by DML enzymes primarily occurs at the 5' and 3' ends, a pattern opposite to the overall distribution of WT DNA methylation. Our results show that demethylation by DML DNA glycosylases edits the patterns of DNA methylation within the Arabidopsis genome to protect genes from potentially deleterious methylation.  相似文献   

13.
14.
15.
The Arabidopsis genome project assembled 15 megabases of heterochromatic sequence, facilitating investigations of heterochromatin assembly, maintenance, and structure. In many species, large quantities of methylcytosine decorate heterochromatin; these modifications are typically maintained by methyltransferases that recognize newly replicated hemimethylated DNA. We assessed the extent and patterns of Arabidopsis heterochromatin methylation by amplifying and sequencing genomic DNA treated with bisulfite, which converts cytosine, but not methylcytosine, to uracil. This survey revealed unexpected asymmetries in methylation patterns, with one helix strand often exhibiting higher levels of methylation. We confirmed these observations both by immunoprecipitating methylated DNA strands and by restriction enzyme digestion of amplified, bisulfite-treated DNA. We also developed a primer-extension assay that can monitor the methylation status of an entire chromosome, demonstrating that strand-specific methylation occurs predominantly in the centromeric regions. Conventional models for methylation maintenance do not explain these unusual patterns; instead, new models that allow for strand specificity are required. The abundance of Arabidopsis strand-specific modifications points to their importance, perhaps as epigenetic signals that mark the heterochromatic regions that confer centromere activity.  相似文献   

16.
17.
18.
19.
Genomic imprinting refers to the functional non-equivalence of parental genomes in mammals that results from the parent-of-origin allelic expression of a subset of genes. Parent-specific expression is dependent on the germ line acquisition of DNA methylation marks at imprinting control regions (ICRs), coordinated by the DNA-methyltransferase homolog DNMT3L. We discuss here how the gender-specific stages of DNMT3L expression may have influenced the various sexually dimorphic aspects of genomic imprinting: (1) the differential developmental timing of methylation establishment at paternally and maternally imprinted genes in each parental germ line, (2) the differential dependence on DNMT3L of parental methylation imprint establishment, (3) the unequal duration of paternal versus maternal methylation imprints during germ cell development, (4) the biased distribution of methylation-dependent ICRs towards the maternal genome, (5) the different genomic organization of paternal versus maternal ICRs, and finally (6) the overwhelming contribution of maternal germ line imprints to development compared to their paternal counterparts.  相似文献   

20.
The maize genome is relatively large (∼2.3 Gb) and has a complex organization of interspersed genes and transposable elements, which necessitates frequent boundaries between different types of chromatin. The examination of maize genes and conserved noncoding sequences revealed that many of these are flanked by regions of elevated asymmetric CHH (where H is A, C, or T) methylation (termed mCHH islands). These mCHH islands are quite short (∼100 bp), are enriched near active genes, and often occur at the edge of the transposon that is located nearest to genes. The analysis of DNA methylation in other sequence contexts and several chromatin modifications revealed that mCHH islands mark the transition from heterochromatin-associated modifications to euchromatin-associated modifications. The presence of an mCHH island is fairly consistent in several distinct tissues that were surveyed but shows some variation among different haplotypes. The presence of insertion/deletions in promoters often influences the presence and position of an mCHH island. The mCHH islands are dependent upon RNA-directed DNA methylation activities and are lost in mop1 and mop3 mutants, but the nearby genes rarely exhibit altered expression levels. Instead, loss of an mCHH island is often accompanied by additional loss of DNA methylation in CG and CHG contexts associated with heterochromatin in nearby transposons. This suggests that mCHH islands and RNA-directed DNA methylation near maize genes may act to preserve the silencing of transposons from activity of nearby genes.The cytosine bases in a genome can be modified to 5-methylcytosine by adding a methyl group at the 5′ position. This process, called DNA methylation, is conserved from algae to animals and plants (1, 2). DNA methylation can be separated into different types based on the local sequence context. In plants DNA methylation is found at the symmetric CG or CHG (where H = A, C, or T) sites or at nonsymmetric CHH sites. CG and CHG methylation are maintained at high fidelity following DNA replication due to activity of maintenance methyltransferases such as MET1 or chromomethylase (CMT) 3 (3, 4), whereas CHH methylation (mCHH) requires targeting by either domains rearranged methylase 2 (DRM2) or CMT2 (36). The DRM2 targeting occurs via RNA-directed DNA methylation (RdDM) and requires the activity of polymerase IV (PolIV) and polymerase V (PolV) complexes (3, 4). There is evidence that recruitment of PolIV and PolV may require the presence of dimethylation of lysine 9 of histone H3 (H3K9me2) or DNA methylation at the targeted genomic regions (7, 8). The specific mechanisms that recruit CMT2 are not well characterized but may require specific histone modifications (5, 6).Much of our knowledge of DNA methylation in plants is derived from studies of the model plant Arabidopsis thaliana, which has a relatively small genome and relatively few examples of genes with nearby transposons (36.3%; ref. 9). The maize genome is much more complex, with the majority (85.5%) of genes positioned within 1 kb of transposons. In both species, transposons tend to have quite high levels of CG and CHG methylation whereas genes have much lower levels (10). mCHH is often thought to provide an important component for silencing transposons, yet the maize genome has relatively low levels of mCHH despite the high transposon context (11). This is partially attributed to the lack of a CMT2 ortholog in maize (5), which may explain the reduced levels of mCHH in the middle of larger transposons. Although mCHH is low in maize, there are still genomic regions with elevated mCHH (12). Genomic profiles of mCHH in maize revealed that this modification is often found near genes (termed mCHH islands) and is dependent upon RdDM activity (1214). This elevation of mCHH in regions surrounding genes is much less prevalent in Arabidopsis (10). A recent study showed that high mCHH can also be induced near genes that are up-regulated in plants subjected to phosphate starvation (15).In this study we further probed the basis and function of these mCHH islands. We found that mCHH islands are short regions of elevated mCHH that flank nearly half of the genes in maize and many conserved noncoding sequences (CNSs). These mCHH islands mark a transition for CG and CHG DNA methylation, several histone modifications, and chromatin accessibility. The mCHH islands are relatively stable across different tissues but show some variation among haplotypes that are often associated with sequence insertions/deletions (InDels). The loss of mCHH islands does not strongly affect gene expression, but instead leads to an additional loss of CG and CHG methylation in some transposons flanking maize genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号