首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
The neurotoxic effect of methamphetamine (METH) on striatal dopaminergic neurons have been hypothesized to be mediated by excess dopamine (DA) release. In addition, N-methyl-D-aspartate (NMDA) receptor antagonists block METH-induced DA depletions. This suggests that glutamate also mediates the toxic effects of METH. The purpose of this study is to demonstrate that DA and glutamate efflux contribute to METH-inducted neurotoxicity. In vivo microdialysis in rats was used to measure extracellular concentrations of striatal DA and glutamate following 3 injections of METH (10 mg/kg, i.p.), each injection given 2 hours apart. One week following the dialysis experiment, rats were sacrificed and the ventral lateral striata were assayed for DA content. Glutamate concentrations in the dialysate increased by over 4-fold after the third METH injection. In these same animals, striatal DA tissue content was significantly depleted. In separate groups of rats, pretreatment with haloperidol (2 mg/kg at the first METH injection) significantly increased METH-induced DA efflux. The haloperidel pretreatment attenuated the extracellular increase in glutamate produced by METH and blocked subsequent neurotoxicity to DA neurons. In contrast, pretreatment with the DA uptake blocker, GBR-12909 (10 mg/kg, 30 min before each METH injection) significantly attenuated the increased DA release produced by METH but did not change glutamate efflux. However, pretreatment with GBR-12909 did protect against the tissue content depletion of DA in the striatum. Based on these findings, it appears that increased DA and glutamate release in the striatum are important and possibly interact in the development of METH-induced neurotoxicity. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [125I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.  相似文献   

3.
Yu J  Wang J  Cadet JL  Angulo JA 《Brain research》2004,1007(1-2):124-131
Several studies have documented the effect of methamphetamine (METH) on the toxicity of the dopamine (DA) terminals of the striatum but only a few studies have assessed the damaging effects of METH on striatal neurons postsynaptic to the nigrostriatal DA terminals. In the present study, we employed histological methods to study the effect of METH on DA terminals and striatal neurons. We also assessed the role of the striatal neurokinin-1 (NK-1) receptor on pre- and post-synaptic METH-induced damage. Male mice were treated with METH (10 mg/kg) four times at 2-h intervals and were sacrificed 3 days after the treatment. A number of animals received the non-peptide NK-1 receptor antagonist WIN-51,708 (10 mg/kg) 30 min before the first and fourth injections of METH. Immunocytochemical staining for tyrosine hydroxylase (TH) showed significant deficits throughout all aspects of the caudate-putamen in animals exposed to METH. Pretreatment with WIN-51,708 prevented the METH-induced loss of TH immunostaining. Sections from a separate set of mice were stained with Fluoro-Jade B (FJB), a fluorochrome that binds specifically to degenerating fibers and cell bodies of neurons. Treatment with METH shows Fluoro-Jade B positive cell bodies in the striatum and pretreatment with WIN-51,708 abolished Fluoro-Jade B staining. Moreover, double labeling with Fluoro-Jade B and glial fibrillary acidic protein (GFAP) shows reactive astrocytosis in the area adjacent to the Fluoro-Jade B-positive cells but no Fluoro-Jade B staining of the astrocytes. This observation suggests that the degenerating cells must be striatal neurons and not astrocytes. The data demonstrate that METH induces pre- and post-synaptic damage in the striatum and the damage can be prevented with pharmacological blockade of the NK-1 receptor. These findings represent a new direction in the study of the mechanism of toxicity to METH and could be useful in the treatment of some neurological disorders.  相似文献   

4.
5.
6.
Methamphetamine (METH) causes deleterious effects in brain monoaminergic systems. Evidence has accumulated to suggest that these effects may be mediated via the overproduction of the superoxide radicals. We have recently shown that METH-induced dopamine (DA) depletion is attenuated in copper-zinc superoxide dismutase (CuZnSOD) transgenic (Tg) mice. In the present study, we have used receptor autoradiographic studies of [125I]RTI-55 labeled serotonin (5-HT) uptake sites to evaluate the effect of a two dosing schedule (5 mg/kg or 10 mg/kg×4) of METH on striatal 5-HT uptake sites in nontransgenic (Non-Tg), heterozygous (Hetero) and homozygous (Homo) SOD-Tg mice. The low dose caused no significant changes in striatal 5-HT uptake sites in any of the groups. The high dose caused marked decreases (−74%) in striatal 5-HT uptake sites in Non-Tg mice. In contrast, 5-HT uptake sites showed only a 31% decrease in homozygous SOD-Tg mice whereas heterozygous SOD-Tg mice showed 63% depletion. These results show that increased SOD activity can protect against METH-induced neurotoxicity in striatal serotonergic terminals. These data provide further evidence for a role of oxidative stress in the neurotoxic effects of METH.  相似文献   

7.
8.
Pretreatment with methamphetamine (METH) can attenuate toxicity due to acute METH challenges. The majority of previous reports have focused mainly on the effects of the drug on the striatal dopaminergic system. In the present study, we used a regimen that involves gradual increases in METH administration to rats in order to mimic progressively larger doses of the drug used by some human METH addicts. We found that this METH preconditioning was associated with complete protection against dopamine depletion caused by a METH challenge (5 mg/kg × 6 injections given 1 h apart) in the striatum and cortex. In contrast, there was no preconditioning-mediated protection against METH-induced serotonin depletion in the striatum and hippocampus, with some protection being observed in the cortex. There was also no protection against METH-induced norepinephrine (NE) depletion in the hippocampus. These results indicate that, in contrast to the present dogmas, there might be differences in the mechanisms involved in METH toxicity on monoaminergic systems in the rodent brain. Thus, chronic injections of METH might activate programs that protect against dopamine toxicity without influencing drug-induced pathological changes in serotoninergic systems. Further studies will need to evaluate the cellular and molecular bases for these differential responses.  相似文献   

9.
Methamphetamine (METH) is a drug of abuse that causes deleterious effects to brain monoaminergic systems. These toxic effects are thought to be due to oxidative stress. The pineal hormone, melatonin, has been shown to have neuroprotective effects against toxic quinones and oxidative stress produced by catecholamines. The present study was thus undertaken to assess possible protective effects of melatonin against METH-induced neurotoxic effects on the striatum and the nucleus accumbens by using autoradiographic techniques. Four dosages (5, 20, 40, 80 mg/kg) of melatonin were administered to mice intraperitoneally 30 minutes prior to the injections of METH (4 × 5 mg/kg) given at 2-hour intervals. The lowest doses of melatonin (5 mg/kg) had no significant effects against METH-induced toxicity. However, the higher doses (40 or 80 mg/kg) of melatonin significantly attenuated METH-induced toxic effects on both dopamine and serotonin systems. These data provide further evidence for a possible role of oxidative stress in METH-induced toxicity. Synapse 30:150–155, 1998. © 1998 Wiley-Liss, Inc. This article is a US government work and, as such, is in the public domain of the United States of America.  相似文献   

10.
Previous studies have indicated that the activation of poly(ADP-ribose) polymerase (PARP), an enzyme involved in DNA plasticity-related phenomena, is an early event occurring in glutamate-induced neurotoxicity in vitro, and that inhibitors of PARP, including benzamide, are protective against both glutamate- and methamphetamine (METH)-induced neurotoxicity in vitro. To evaluate a central neuroprotective potential of benzamide in vivo, the present study examined the effect of benzamide on the nigrostriatal dopamine toxicity (i.e. long-lasting striatal dopamine depletion) induced by METH in the C57B1/6N mouse. Intraperitoneal injection of METH at 2-h intervals (4 injections of 5 mg/kg, 4 injections of 10 mg/kg, or 2 injections of 20 mg/kg) dose-dependently reduced the levels of striatal dopamine in male C57B1/6N mice by up to 53% at 7 days post-treatment. Administration of benzamide (2 injections of 160 mg/kg spaced by a 4 h interval) during the different METH treatment protocols partially and significantly attenuated the METH-induced dopamine depletions. Benzamide (160 mg/kg i.p.) by itself had no acute effect on striatal dopamine metabolism and did not reduce body temperature. The concentrations of benzamide measured in the striatum at different times following this same dose of drug were in a range (0.09–0.64 mM) reported in in vitro studies to be both neuroprotective and effective in inhibiting PARP activity. These results indicate a neuroprotective potential of benzamide in vivo and suggest a role of PARP in METH neurotoxicity.  相似文献   

11.
Abuse of amphetamine analogues, such as methamphetamine (METH), represents an important health problem because of their powerful addictive and neurotoxic effects. Abuse of METH induces dopamine neuron terminals loss and cell death in the striatum similar to what is found in other neurodegenerative processes. Exposing mice and rats to enriched environments (EE) has been shown to produce significant protective effects against drug-induced reward as well as against neurodegenerative processes. Here, we investigated whether exposure to EE could reduce the METH-induced reward and neurotoxicity. For this, we reared mice for 2 months during early stages of life in standard environments or EE and then, at adulthood, we tested the ability of METH to induce conditioned place preference and neurotoxicity. We found that, contrary to what we found with other drugs such as cocaine and heroin, EE was unable to reduce the rewarding effects of METH. In addition, contrary to what we found with other toxins such as MPTP, EE did not diminish the striatal neurotoxicity induced by METH (4 × 10 mg/kg) as measured by dopamine content, tyrosine hydroxylase protein levels and apoptosis. Our results demonstrate that the rewarding and neurotoxic effects of METH are not reduced by EE and highlight the great risks associated with the increased popularity of this drug amongst the young population.  相似文献   

12.
13.
High doses of methamphetamine (METH) cause the depletion of striatal dopaminergic markers; however, little is known about the behavioral consequences of METH-induced neurotoxicity. In the present study, the authors investigated the effect of a neurotoxic dose of METH (5 mg/kg; every 3 h x3) on the subsequent response of Swiss Webster mice to (a) the psychomotor-stimulating effect of METH and (b) the acquisition and maintenance of conditioned place preference (CPP) by METH. The latter is a paradigm for the assessment of the rewarding properties of abused substances. The administration of the high dose of METH resulted in significant depletion of dopamine (DA) and its metabolites and dopamine transporter (DAT) binding sites in the striatum. The dopaminergic markers were below control levels until the 95th day after METH administration. METH-pretreated mice were sensitized to the psychomotor-stimulating effect of METH (1 mg/kg) as determined on Days 3 and 74 after the initial exposure to the neurotoxic dose of METH. However, the acquisition of CPP by METH (0.5 mg/kg) was markedly reduced in the mice pretreated with the neurotoxic dose of METH compared with the control group. The CPP was maintained for 8 weeks in the control group but not in the METH group. A priming injection of METH (0.5 mg/kg) caused marked reinstatement of place preference in the control group; this response was maintained for three additional weeks. However, the priming injection of METH resulted in diminished place preference in the METH group and the conditioned response dissipated within 3 weeks. These findings suggest that METH-induced striatal dopaminergic neurotoxicity is associated with two opposing and long-lasting behavioral outcomes: (a) sensitization to the psychomotor-stimulating effect of the drug and (b) desensitization to the rewarding properties of the drug. These consequences may be relevant to the psychopathology of METH abuse.  相似文献   

14.
We investigated the role of μ-opioid receptor (μ-OR) and dopamine receptor in the modulation of methamphetamine (METH)-induced expression of zif268 mRNA in the striatum of mice. Four groups of wild-type and μ-OR knockout mice were given a single daily intraperitoneal injection of saline (control; group 1) or METH (10 mg/kg; groups 2–4) for 7 consecutive days. On day 11 (after 4 abstinent days), groups 1 and 2 were challenged with saline, group 3 was challenged with METH (10 mg/kg), and group 4 was challenged with dopamine receptor antagonist haloperidol (0.06 mg/kg, subcutaneous injection) plus METH (10 mg/kg). Two hours after the last saline or METH injection, mouse brain tissues were taken for zif268 mRNA analysis using in situ hybridization histochemistry. In comparison to corresponding saline control group (group 1), striatal zif268 mRNA levels were unchanged in group 2 and increased in group 3 in both wild-type and μ-OR knockout mice and without genotype difference. METH challenge-enhanced expression of zif268 mRNA was completely abolished by pre-administration of haloperidol (group 4) in μ-OR knockout mice but not in wild-type mice. The results suggest a crosstalk of the two neurotransmitter systems in modulation of METH-induced IEG expression, because only in μ-OR knockout mice in which dopamine receptors were blocked were METH-induced zif268 expression abolished. METH-induced zif268 expression was not altered in μ-OR knockout mice without blockade of dopamine receptors or wild-type mice with blockade of dopamine receptors.  相似文献   

15.
To investigate changes in striatal dopamine release over a series of brief methamphetamine (METH) exposures, METH was pulsed three times at 2-h intervals, with the first exposure occurring 2 h after microdialysis probe insertion. Whether METH was administered directly into the striatum via the microdialysate (20 μM of METH for 10 min), or via peripheral intraperitoneal (i.p.) injection (1 mg/kg METH, i.p.), the dopamine (DA) peak elicited by the third METH exposure was only 50% as large as that elicited by the first exposure, 4 h earlier. This decline in the magnitude of METH-induced DA release probably continued over at least 24 h, since the magnitude of a single peak 26 h after probe implantation was only one-seventh of that at 2 h. This reduction in the response to METH was a function of time post-probe insertion, and not of prior METH exposure. Thus, peak size was the same at 6 h post-implantation in animals which received two prior METH pulses or no prior METH pulses, and in both cases this 6-h peak was substantially lower than that at 2 h post-implantation. Circadian influences were also excluded as a factor, because size of the initial METH-induced DA peak did not vary as a function of time of probe implantation. It is concluded that METH-stimulated striatal DA release declines rapidly over time post-probe insertion. When METH exposures occur repeatedly at short intervals, this decline can mimic, but is not caused by, desensitization or depletion in response to prior METH exposure.  相似文献   

16.
Methamphetamine (METH) causes significant loss of some striatal projection and interneurons. Recently, our group reported on the proliferation of new cells 36 h after METH and some of the new cells survive up to 12 weeks (Tulloch et al., Neuroscience 193:162–169, 2011b). We hypothesized that some of these cells will differentiate and express striatal neuronal phenotypes. To test this hypothesis, mice were injected with METH (30 mg/kg) followed by a single BrdU injection (100 mg/kg) 36 h after METH. One week after METH, a population of BrdU-positive cells expressed the neuronal progenitor markers nestin (18 %) and β-III-tubulin (30 %). At 8 weeks, 14 % of the BrdU-positive cells were also positive for the mature neuron marker, NeuN. At 12 weeks, approximately 7 % of the BrdU-positive cells co-labeled with ChAT, PV or DARPP-32. We measured motor coordination on the rotarod and psychomotor activity in the open-field. At 12 weeks, METH–injected mice exhibited delayed motor coordination deficits. In contrast, open-field tests revealed that METH-injected mice compared to saline mice displayed psychomotor deficits at 2.5 days but not at 2 or more weeks after METH. Taken together, these data demonstrate that some of the new cells generated in the striatum differentiate and express the phenotypes of striatal neurons. However, the proportion of these new neurons is low compared to the proportion that died by apoptosis 24 h after the METH injection. More studies are needed to determine if the new neurons are functional.  相似文献   

17.
The mechanisms involved in methamphetamine (METH)-induced damage to nigrostriatal dopaminergic neurons in experimental animals are unknown. We have examined the possibility that perturbations in energy metabolism contribute to METH-induced toxicity by investigating the effects of systemic METH treatment in mice which received a unilateral intrastriatal infusion of malonate, a metabolic inhibitor which decreases ATP levels. Malonate (1–4 μmol) produced a dose-dependent decrease in striatal dopamine (DA). The combined treatment of intrastriatal malonate with systemic METH resulted in greater damage to dopaminergic neurons than by METH or malonate treatment alone. In parallel studies, MPTP was administered to mice which received intrastriatal infusions of saline or malonate. Similar to results obtained with METH, decreases in striatal DA content and tyrosine hydroxlase (TH) activity were greatest in MPTP-treated mice infused with malonate. The present results lend credence to the hypothesis that METH-induced increases in energy utilization create a state of metabolic stress for DA neurons which may ultimately contribute to the neurodegenerative effects of METH. Moreover, the fording that combined malonate and MPTP treatment produced greater damage than either substance alone is consistent with the hypothesis that perturbations in energy metabolism contribute to the neuronal death produced by MPP+.  相似文献   

18.
Itzhak Y  Martin JL  Ail SF 《Neuroreport》2000,11(13):2943-2946
Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.  相似文献   

19.
Zhu JP  Xu W  Angulo JA 《Brain research》2005,1049(2):171-181
Methamphetamine (METH) causes damage in the striatum at pre- and post-synaptic sites. Exposure to METH induces long-term depletions of dopamine (DA) terminal markers such as tyrosine hydroxylase (TH) and DA transporters (DAT). METH also induces neuronal apoptosis in some striatal neurons. The purpose of this study is to demonstrate which occurs first, apoptosis of some striatal neurons or DA terminal toxicity in mice. This is important because the death of striatal neurons leaves the terminals in a state of deafferentation. A bolus injection (i.p.) of METH (30 mg/kg) induces apoptosis (TUNEL staining) in approximately 25% of neurons in the striatum at 24 h after METH. However, in contrast to apoptosis, depletion of TH (Western blotting) begins to appear at 24 h after METH in dorsal striatum while the ventral striatum is unaffected. The peak of TH depletion (approximately 80% decrease relative to control) occurs at 48 h after METH. Autoradiographic analysis of DAT sites showed that depletion begins to appear 24 h after METH and peaks at 2 days (approximately 60% depletion relative to control). Histological analysis of the induction of glial fibrillary acidic protein (GFAP) by METH in striatal astrocytes revealed an increase at 48 h after METH that peaked at 3 days. These data demonstrate that striatal apoptosis precedes the depletion (toxicity) of DA terminal markers in the striatum of mice, suggesting that the ensuing state of deafferentation of the DA terminals may contribute to their degeneration.  相似文献   

20.
Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号