首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse in adolescence, compared with abundant research using adult animal models. As smoking is typically initiated in adolescence, an important question to address is whether the adolescent brain responds differently to nicotine compared with the adult. To investigate this question, we examined the expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. Baseline expression of arc and c-fos was higher in adolescent brains compared with adults. Following acute nicotine treatment (0.1, 0.4mg/kg), we found a marked induction of arc mRNA in the prefrontal cortex of nicotine-treated adolescents compared with a less pronounced increase of arc in the adult. c-fos and NGFI-B were also upregulated by nicotine, but not in an age-related manner. In contrast, nicotine induced less arc, c-fos, and NGFI-B expression in the somatosensory cortex of adolescents compared with adults. A fourth gene, quinoid dihydropteridine reductase was expressed at lower levels in white matter of the adolescent forebrain compared with the adult, but was not affected by nicotine. These results suggest that in adolescence, the activity of specific early response genes is higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may represent a neurobiologically vulnerable period with regard to nicotine exposure.  相似文献   

2.
The objective of the current study was to examine how periadolescent nicotine exposure affects dendritic morphology of medium spiny neurons from the nucleus accumbens shell. Male Long-Evans hooded rats were chronically administered nicotine or saline for a period extending from postnatal day 22 (p22) to p69. Nicotine and saline administration was via subcutaneously implanted osmotic pumps. At p144, 75 days after conclusion of nicotine administration, brains were processed for Golgi-Cox staining. Medium spiny neurons from the nucleus accumbens shell were digitally reconstructed. It was found that neurons from nicotine-treated animals possessed significantly longer dendrites and a greater number of dendritic segments than control animals. A branch order analysis indicated that differences in dendritic length and segment number were most pronounced in third and fourth order segments. A subsequent behavioral experiment suggests that the observed anatomical changes are associated with enduring psychomotor differences. These findings indicate that periadolescent exposure to nicotine can result in long-lasting structural changes in the nucleus accumbens shell and are consistent with behavioral data suggesting that adolescent nicotine exposure may result in vulnerability to nicotine addiction in adulthood.  相似文献   

3.
In adult rats, acute nicotine, the major psychoactive ingredient in tobacco smoke, stimulates the hypothalamic-pituitary-adrenal axis (HPA), resulting in activation of brain areas involved in stress and anxiety-linked behavior. However, in rat pups the first two postnatal weeks are characterized by hypo-responsiveness to stress, also called the 'stress non-responsive period' (SNRP). Therefore, we wanted to address the question if acute nicotine stimulates areas involved in the stress response during SNRP. To determine neuronal activation, the expression of the immediate-early genes c-fos and activity-regulated cytoskeletal associated protein (Arc) was studied in the central nucleus of the amygdala (CeA), bed nucleus stria terminalis (BST) and paraventricular hypothalamic nucleus (PVN), which are areas involved in the neuroendocrine and central stress response. Rat pups received nicotine tartrate (2 mg/kg) or saline by i.p. injection at postnatal days (P) 5, 7 and 10 and their brains were removed after 30 min. We used semi-quantitative radioactive in situ hybridization with gene specific antisense cRNA probes in coronal sections. In control pups, c-fos expression was low in most brain regions, but robust Arc hybridization was found in several areas including cingulate cortex, hippocampus and caudate. Acute nicotine resulted in significant induction of c-fos expression in the PVN and CeA at P5, P7 and P10, and in the BST at P7 and P10. Acute nicotine significantly induced expression of Arc in CeA at P5, P7 and P10, and in the BST at P10. In conclusion, acute nicotine age dependently activated different brain areas of the HPA axis during the SNRP. After P7, the response was more pronounced and included the BST, suggesting differential maturation of the HPA axis in response to nicotine.  相似文献   

4.
目的 观察尼古丁处理大鼠脑内多巴胺转运体(DAT)和酪氨酸羟化酶(TH)的表达变化,探讨尼古丁处理对大鼠脑内多巴胺(DA)能神经体系的影响. 方法 选用雄性Wistar大鼠按每日 0.4 mg/kg 腹腔注射尼古丁 7d;利用免疫组织化学和免疫印迹法,检测尼古丁处理大鼠有关脑区DAT和TH的表达改变. 结果 与对照组相比:1. 免疫组织化学显示,尼古丁处理组大鼠伏核(NACC)和腹则被盖区(VTA)的DAT灰度值降低了12.43 %和12.85 %;TH的灰度值则降低了11.87 %和10.09 %.2. 免疫印迹法显示,尼古丁处理组大鼠尾壳核(CPu)-NACC、黑质(SN)-VTA的DAT与β-肌动蛋白(β-actin)条带相对吸光度比值增加了75.68 %和117.14 %;而TH的比值则分别增加了66.32 %和60.31 %. 结论 尼古丁处理增加大鼠脑内DAT和TH的表达,这可能与尼古丁的成瘾机制有关.  相似文献   

5.
The context in which amphetamine is administered modulates its ability to induce both behavioral sensitization and immediate early gene expression. When given in a novel test environment amphetamine produces greater levels of c-fos and arc mRNA expression in many brain regions relative to when it is given in the home cage. The purpose of the current study was to determine if environment and drug history interact to influence amphetamine-induced c-fos mRNA expression. Rats with a unilateral 6-hydroxydopamine lesion were treated for 7 days with saline or 0.5 mg/kg of d-amphetamine (i.v.) in a distinct and relatively novel test environment (Novel), or in their home cage (Home). Following a 10-12-day withdrawal period, a challenge injection of either saline or 0.5 mg/kg d-amphetamine was administered. In situ hybridization histochemistry was used to examine c-fos mRNA expression in several regions of the basal ganglia, the central extended amygdala, and limbic forebrain. In most brain regions amphetamine given in the Novel environment produced greater c-fos mRNA expression than when given it was given at Home, and drug history had no effect on amphetamine-induced c-fos mRNA expression. However, within the subthalamic nucleus, substantia nigra reticulata, and central nucleus of the amygdala prior experience with amphetamine in the Novel but not Home environment enhanced the effect of an amphetamine challenge injection on c-fos mRNA expression. In contrast, there was a decrease in c-fos mRNA expression in amphetamine-pretreated animals, regardless of environmental context, in the ventral portion of the far caudal striatum. Reexposure to an environment previously paired with amphetamine produced a conditioned increase in c-fos mRNA expression in portions of the caudate-putamen, the subthalamic nucleus, the nucleus accumbens shell and a conditioned decrease in c-fos mRNA expression in the central nucleus of the amygdala. We conclude that environmental context and drug history interact to alter the basal ganglia and central extended amygdala circuitry engaged by subsequent exposure to amphetamine, or exposure to an environment previously paired with amphetamine.  相似文献   

6.
Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.  相似文献   

7.
Protein phosphorylation is an important mechanism for the post-translational modulation of N-methyl-d-aspartate (NMDA) receptor functions. In the present study, we investigated the levels of NR2B phosphorylation at Tyr1472 and Ser1303 in the nucleus accumbens, striatum, frontal cortex, and hippocampus of rats that exhibit behavioral sensitization to nicotine. Repeated treatment of rats with nicotine (0.6mg/kg, s.c., for 7 days) produced locomotor sensitization accompanied by increased NR2B phosphorylation at Tyr1472 in the nucleus accumbens and striatum, brain regions involved in behavioral sensitization. In contrast, no changes in NR2B phosphorylation were observed after a single treatment with nicotine in these brain regions. In addition, no changes in NR2B phosphorylation at Ser1303 were observed after repeated treatment with nicotine in any examined brain regions. These results suggest that repeated treatment with nicotine induces NR2B phosphorylation at Tyr1472 in the nucleus accumbens and striatum, which might contribute to the development of synaptic and behavioral plasticity in response to nicotine.  相似文献   

8.
Intermittent administration of cocaine can result in behavioral sensitization, which is indicated by an augmented behavioral response to a subsequent administration of cocaine. This increase in behavior can be seen after various periods of abstinence from the drug, and is believed to model the cravings of drug users and the onset of drug addiction. It is believed that behavioral sensitization is mediated by activity of the mesocorticolimbic dopamine system. In particular, the nucleus accumbens and prefrontal cortex have been shown to play integral roles in this phenomenon. Recently, it has been demonstrated that the shell portion of the nucleus accumbens can no longer be considered a homogeneous structure, and can be subdivided into five separate regions. The present study was designed to assess the activation of key neuronal populations in subdivisions of the accumbens and subdivisions of the medial prefrontal cortex in cocaine-sensitized rats, using the expression of the immediate early gene, c-fos, as a marker of neuronal activation. Repeated cocaine administration resulted in robust sensitization that correlated with a significant decrease in the density of c-fos nuclei in all three subdivisions of the medial prefrontal cortex, and two subdivisions of the nucleus accumbens only in animals challenged after a 2-day withdrawal period. After a 2-week withdrawal period, sensitized animals no longer showed any differences in the density of c-fos nuclei in any of the areas examined, with the exception of a significant increase in the intermediate zone of the shell.The results indicate that distinct adaptations in neural activation take place in cocaine-sensitized rats that have been drug-free for various lengths of time. Furthermore, while specific subregions of brain areas known to play a role in drug abuse can be uniquely involved in the manifestations of cocaine sensitization, the functional roles of these subregions may differ depending on the time at which the behavior is assessed.  相似文献   

9.
Long-term effects of nicotine on rat fungiform taste buds   总被引:1,自引:0,他引:1  
Nicotine, an alkaloid found in tobacco smoke, has been recognized as capable of inducing changes in taste functionality in conditions of chronic exposure. The mechanisms underlying these sensory alterations, however, are currently unknown. We addressed this issue by studying the long-term effects of nicotine on the anatomical features of taste buds, the peripheral end-organs of taste, in rat fungiform papillae. Nicotine was administered to rats via drinking water over a period of 3 weeks, which represents a standard method to achieve chronic drug exposure in laboratory animals. We found that prolonged administration of nicotine induced a significant reduction in the size of fungiform taste buds, without affecting their total number on the rat tongue. Morphometric measurements as well as evaluations of taste cell membrane capacitance suggested that the reduced size of taste organs was determined by a decrease in the number of cells per taste bud. In addition, chronic treatment with nicotine caused an increase in the relative density of cells expressing gustducin, a specific G protein alpha-subunit found in some taste cells and involved in bitter/sweet transduction. Interestingly, changes in the expression pattern of gustducin turned out to be more pronounced in periadolescent/adolescent than in adult rats. As a whole, our data indicate that long-term nicotine administration induces significant changes in the anatomical properties of taste buds in rat fungiform papillae. These changes could have a profound impact on the sensory information relayed to the brain; therefore, they may be responsible, at least in part, for the alterations in taste functionality observed during chronic nicotine exposure, a condition found in regular smokers.  相似文献   

10.
Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37–40) and adult (P55–60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi–Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development effects of cannabinoids on behavior.  相似文献   

11.
The endocannabinoid and serotonin systems share a high level of overlap in terms of the physiological processes that they regulate, however, little is known about their functional interactions particularly during adolescence, a vulnerable period for both the development of psychosis and for initiation to substance use. In the present study, the effects of cannabinoid treatment on serotonin 5HT1A receptor density and mRNA expression were investigated in two age groups: Adolescent (postnatal day 35) and adult (postnatal day 70) rats were injected with the synthetic cannabinoid HU210 (25, 50 or 100 μg/kg) or vehicle for 1, 4 or 14 days and sacrificed 24 h after the last injection. 5HT1A receptor density was measured in different brain regions using [3H]8-OH-DPAT quantitative autoradiography whereas mRNA expression was measured in adjacent brain sections. Higher levels of both serotonin 5HT1A receptor binding and mRNA expression were observed in limbic regions in adolescent control animals compared to adults. 5HT1A receptor density was increased by 23% in the CA1 region of the hippocampus of adult rats treated with 100 μg/kg HU210 for 4 days compared to vehicle treated controls. The same treatment increased mRNA expression by 27% and by 14% in the CA1 region and dentate gyrus of the hippocampus respectively. 5HT1A receptor density was increased by 22% in the CA1 of adult animals treated with 50 μg HU210, by 26% in the dentate gurus of adult rats treated with 100 μg for 14 days. By contrast, 5HT1A receptor density or mRNA expression was not affected in the brain of adolescent animals in any of the brain regions examined. These results suggest that cannabinoid treatment has differential effects on serotonin-related neurochemistry in adolescent compared to adult rats. The effects in the adult brain may compromise hippocampal function and could account for the cognitive deficits seen in habitual heavy cannabis users.  相似文献   

12.
The effects of i.c.v. administration of prolactin-releasing peptide on neurons in the paraventricular nucleus of rats and plasma corticosterone levels were examined by measuring changes in Fos-like immunoreactivity, c-fos mRNA using in situ hybridization histochemistry, and plasma corticosterone using a specific radioimmunoassay. Approximately 80% of corticotropin-releasing hormone immunoreactive cells exhibited Fos-like immunoreactivity in the parvocellular division of the paraventricular nucleus 90 min after i.c.v. administration of prolactin-releasing peptide. The greatest induction of the c-fos mRNA expression in the paraventricular nucleus was observed 30 min after administration of prolactin-releasing peptide, and occurred in a dose-related manner. Plasma corticosterone levels were also significantly increased 30 min after administration of prolactin-releasing peptide. Next, the effects of restraint stress, nociceptive stimulus and acute inflammatory stress on the expression of the prolactin-releasing peptide mRNA in the dorsomedial hypothalamic nucleus, nucleus of the solitary tract and ventrolateral medulla were examined using in situ hybridization histochemistry for prolactin-releasing peptide mRNA. Restraint stress and acute inflammatory stress upregulated the prolactin-releasing peptide mRNA expression in the nucleus of the solitary tract and ventrolateral medulla. Nociceptive stimulus upregulated the prolactin-releasing peptide mRNA expression in the ventrolateral medulla. Finally, we observed that pretreatment (i.c.v. administration) with an anti-prolactin-releasing peptide antibody significantly attenuated nociceptive stimulus-induced c-fos mRNA expression in the paraventricular nucleus. These results suggest that prolactin-releasing peptide is a potent and important mediator of the stress response in the brain through the hypothalamic paraventricular nucleus.  相似文献   

13.
Dopaminergic innervation of the frontal cortex in adults is important for a variety of cognitive functions and behavioral control. However, the role of frontal cortical dopaminergic innervation for neurobehavioral development has received little attention. In the current study, rats were given dopaminergic lesions in the frontal cortex with local micro-infusions of 6-hydroxydopamine (6-OHDA) at 1 week of age. The long-term behavioral effects of neonatal frontal cortical 6-OHDA lesions were assessed in a series of tests of locomotor activity, spatial learning and memory, and i.v. nicotine self-administration. In addition, neurochemical indices were assessed with tissue homogenization and HPLC in the frontal cortex, striatum, and nucleus accumbens of neonatal and adult rats after neonatal 6-OHDA lesions. In neonatal rats, frontal 6-OHDA lesions as intended caused a significant reduction in frontal cortical dopamine without effects on frontal cortical 5-HT and norepinephrine. The frontal cortical dopamine depletion increased 5-HT and norepinephrine levels in the nucleus accumbens. Locomotor activity assessment during adulthood in the figure-8 maze showed that lesioned male rats were hyperactive relative to sham-lesioned males. Locomotor activity of female rats was not significantly affected by the neonatal frontal 6-OHDA lesion. Learning and memory in the radial-arm maze was also affected by neonatal frontal 6-OHDA lesions. There was a general trend toward impaired performance in early maze acquisition and a paradoxical improvement at the end of cognitive testing. Nicotine self-administration showed significant lesion x sex interactions. The sex difference in nicotine self-administration with females self-administering significantly more nicotine than males was reversed by neonatal 6-OHDA frontal cortical lesions. Neurochemical studies in adult rats showed that frontal cortical dopamine and DOPAC levels significantly correlated with nicotine self-administration in the 6-OHDA-lesioned animals but not in the controls. Frontal cortical 5-HT and 5HIAA showed inverse correlations with nicotine self-administration in the 6-OHDA-lesioned animals but not in the controls. These results show that interfering with normal dopamine innervation of the frontal cortex during early postnatal development has persisting behavioral effects, which are sex-specific.  相似文献   

14.
Rats were injected with 3,4-methylenedioxymethamphetamine ("Ecstasy") and assessed for changes in locomotor activity and for the expression of the immediate early gene c-fos throughout the brain. A dose-dependent increase in locomotor activity was seen with 3,4-methylenedioxymethamphetamine (0, 5 and 20 mg/kg) that continued for at least 2 h following administration. Dose-dependent increases in c-fos expression were seen in much of the cortex, forebrain, brainstem and cerebellum in rats given 3,4-methylenedioxymethamphetamine. Expression was pronounced in 5-hydroxytryptamine terminal regions including the medial prefrontal cortex, caudate-putamen, nucleus accumbens, olfactory tubercle, islands of Calleja, lateral septum, paraventricular hypothalamus and paraventricular thalamus. High levels of c-fos expression were also seen in the supraoptic and median preoptic nuclei, regions involved in the control of fluid balance and body temperature, respectively. This is potentially important since deaths in 3,4-methylenedioxymethamphetamine users have been linked to hyperthermia and hyponatremia. In the brainstem, two regions of high c-fos expression were Barrington's nucleus, which is involved in micturition, and the pontine reticular nucleus oralis, a region involved in motor control of mastication. Activation of this latter structure may partly explain the bruxism (grinding of the jaw) reported by human 3,4-methylenedioxymethamphetamine users. Robust c-fos expression was seen in the cerebellum, particularly in the flocculus, and this may explain the reported deleterious effects of 3,4-methylenedioxymethamphetamine on balance and co-ordination. Significant c-fos expression was also seen in the ventral tegmental area, amidst the cell bodies of mesolimbic and mesocortical dopamine neurons, and in the median and dorsal raphe, where the serotonergic innervation of the forebrain originates. Double-labelling of fos-positive neurons with 5-hydroxytryptamine showed that only a small number of serotonergic neurons in the raphe expressed c-fos following 3,4-methylenedioxymethamphetamine. The widespread distribution of 3,4-methylenedioxymethamphetamine-induced c-fos expression seen in this study can be linked to the profound alterations in physiological function, mood and behaviour produced by this drug.  相似文献   

15.
Rats repeatedly exposed to restraint show a reduced hypothalamic–pituitary–adrenal axis response upon restraint re-exposure. This hypothalamic–pituitary–adrenal axis response habituation to restraint does not generalize to other novel stressors and is associated with a decrease in stress-induced c-fos expression in a number of stress-reactive brain regions. We examined whether habituation to repeated restraint is also associated with adaptation of immediate early gene expression in brain regions that process and relay primary sensory information. These brain regions may not be expected to show gene expression adaptation to repeated restraint because of their necessary role in experience discrimination. Rats were divided into a repeated restraint group (five 1-hour daily restraint sessions) and an unstressed group (restraint naïve). On the sixth day rats from each group were either killed with no additional stress experience or at 15, 30 or 60 min during restraint. Immediate early gene expression (corticotrophin-releasing hormone heteronuclear RNA, c-fos mRNA, zif268 mRNA) was determined by in situ hybridization. A reduction in stress-induced hypothalamic–pituitary–adrenal axis hormone secretion (plasma corticosterone and adrenocorticotropic hormone) and immediate early gene expression levels in the paraventricular nucleus of the hypothalamus, the lateral septum and the orbital cortex was observed in repeated restraint as compared with restraint naïve animals. This reduction was already evident at 15 min of restraint. Unexpectedly, we also found in repeated restraint rats a reduction in restraint-induced c-fos expression in primary sensory-processing brain areas (primary somatosensory cortex, and ventroposteriomedial and dorsolateral geniculate nuclei of thalamus). The overall levels of hippocampal mineralocorticoid receptor heteronuclear RNA or glucocorticoid receptor mRNA were not decreased by repeated restraint, as may occur in response to severe chronic stress. We propose that repeated restraint leads to a systems-level adaptation whereby re-exposure to restraint elicits a rapid inhibitory modulation of primary sensory processing (i.e. sensory gating), thereby producing a widespread attenuation of the neural response to restraint.  相似文献   

16.
The effects of nicotine on gamma-aminobutyric acid (GABA) and glutamate mechanisms were studied in several rat brain regions both in vivo and in vitro. In vivo acute intermittent injections of nicotine decrease GABA utilization in the hypothalamus and glutamate levels within the nucleus caudatus and the subcortical limbic forebrain (mainly tuberculum olfactorium and nucleus accumbens). Glutamic acid decarboxylase activity was slightly increased in several regions, when the rats were treated with a single convulsant dose of nicotine and killed at the moment of the convulsions but it was not affected by a single injection nor by intermittent acute administration of non-convulsant doses of nicotine. In vitro nicotine elicited release of L-[3H]glutamate from synaptosomal preparations obtained from the frontoparietal cortex, nucleus caudatus and hypothalamus. The effect was dose-dependent and it was not blocked by mecamylamine. It was also Ca2+ independent. The possibilities are discussed that the decreased GABA utilization in the hypothalamus may be related to certain neuroendocrine actions of nicotine and that the nicotine-induced glutamate release might be involved in some of the physiological and toxicological effects of nicotine.  相似文献   

17.
Due to the cognitive-enhancing properties of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists, they have attracted interest for the treatment of cognitive disturbances in schizophrenia. Schizophrenia typically presents in late adolescence or early adulthood. It is therefore important to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile and adult rat forebrain using two markers, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos, to map neuronal activity. Acute administration of A-582941 (1, 3, 10 mg/kg) induced a dose-dependent increase in Arc mRNA expression in the medial prefrontal cortex (mPFC) and the ventral/lateral orbitofrontal (VO/LO) cortex of juvenile, but not adult rats. This effect was mitigated by the alpha7 nAChR antagonist methyllycaconitine. A-582941 also increased c-Fos mRNA expression in the mPFC of juvenile, but not adult rats. Furthermore, A-582941 increased the number of Arc and c-Fos immunopositive cells in the mPFC, VO/LO, and shell of the nucleus accumbens, in both juvenile and adult rats. The A-582941-induced c-Fos protein expression was significantly greater in the mPFC and VO/LO of juvenile compared with adult rats. These data indicate that A-582941-induced alpha7 nAChR stimulation activates brain regions critically involved in working memory and attention. Furthermore, this effect is more pronounced in juvenile than adult rats, indicating that the juvenile forebrain is more responsive to alpha7 nAChR stimulation. This observation may be relevant in the treatment of juvenile-onset schizophrenia.  相似文献   

18.
Funk D  Li Z  Lê AD 《Neuroscience》2006,138(1):235-243
We have observed marked heterogeneity among different stressors in their ability to reinstate alcohol seeking in rats. Of the stressors we have tested, only the environmental stressor footshock and the pharmacological stressor yohimbine induce reinstatement. The reasons for such differences among stressors are not known. The purpose of the experiments presented here is to determine the neuroanatomical substrates that underlie these behavioral differences. To this end, we assessed whether stressors effective in inducing reinstatement of alcohol seeking activate a different set of neuronal pathways than do those that are ineffective, using the technique of in situ hybridization of the mRNAs for c-fos, a marker of neuronal activation, and corticotropin-releasing factor (CRF), a stress-related peptide we have shown to be critical to footshock-induced reinstatement of alcohol seeking. Exposure of rats to the environmental stressors footshock, restraint or social defeat, or the pharmacological stressors yohimbine or FG-7142 increased levels of the mRNAs for c-fos and CRF in the brain in a number of areas previously shown to be responsive to stressors. We found regionally specific effects of the stressors on c-fos and CRF mRNA in brain regions associated with the rewarding effects of alcohol and other abused drugs. The two stressors we have previously shown to be effective in inducing reinstatement of alcohol seeking, footshock and yohimbine, induced c-fos mRNA in the shell of the nucleus accumbens, and the basolateral and central amygdalar nuclei. These two stressors also induced CRF mRNA in the dorsal region of the bed nucleus of the stria terminalis. Taken together, these results provide evidence that activity in these regions may be involved in the reinstatement of alcohol seeking induced by these stressors. These results are also in keeping with the previously demonstrated role of CRF neurons in the dorsal bed nucleus of the stria terminalis in the reinstatement of alcohol seeking induced by stress.  相似文献   

19.
Funk D  Li Z  Fletcher PJ  Lê AD 《Neuroscience》2005,131(2):475-479
Inhibition of the median raphe nucleus (MRN) by the local injection of 5-HT(1A) or GABA(A) receptor agonists produces strong activational effects on feeding, drinking and locomotor activity. Using an animal model of relapse, we have shown that intra-MRN injection of the 5-HT(1A) autoreceptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) reinstates alcohol seeking in rats. The circuitry underlying the behavioral effects of intra-MRN injection of these drugs is not known. In order to identify the brain areas that may be involved, we measured levels of mRNA of the immediate early gene c-fos in discrete nuclei of the rat brain following intra-MRN infusions of these drugs. Male Wistar rats received intra-MRN infusions of 8-OH-DPAT (1 mug), muscimol (25 ng) or saline vehicle immediately prior to placement in locomotor activity chambers. Thirty minutes later, they were decapitated, and their brains processed for in situ hybridization of c-fos mRNA. In agreement with previous reports, injections of 8-OH-DPAT or muscimol into the MRN resulted in large increases in locomotor activity. Intra-MRN injections of these drugs increased c-fos in a number of brain nuclei previously shown to be involved in the rewarding effects of drugs of abuse in a regionally specific manner. Both drugs significantly increased the expression of c-fos mRNA in the medial frontal cortex, nucleus accumbens, lateral septum, dorsal bed nucleus of the stria terminalis and ventral tegmental area. In the ventral hippocampus, only 8-OH-DPAT increased c-fos, while in the basolateral nucleus of the amygdala and locus coeruleus, it was increased only by muscimol. These results are discussed in terms of the projections of the MRN and the pathways involved in relapse to alcohol and drug seeking.  相似文献   

20.
The effects of nicotine on y-aminobutyric acid (GABA) and glutamate mechanisms were studied in several rat brain regions both in vivo and in vitro. In vivo acuteintermittent injections of nicotine decrease GABA utilization in the hypothalamus and glutamate levels within the nucleus caudatus and the subcortical limbic forebrain (mainly tuberculum olfactorium and nucleus accumbens). Glutamic acid decarboxylase activity was slightly increased in several regions, when the rats were treated with a single convulsant dose of nicotine and killed at the moment of the convulsions but it was not affected by a single injection nor by intermittent acute administration of non-convulsant doses of nicotine. In vitro nicotine elicited release of L-[3H]glutamaftreo m synaptosomal preparations obtained from the frontoparietal cortex, nucleus caudatus and hypothalamus. The effect was dose-dependent and it was not blocked by mecamylamine. It was also Ca2+ independent. The possibilities are discussed that the decreased GABA utilization in the hypothalamus may be related to certain neuroendocrine actions of nicotine and that the nicotine-induced glutamate release might be involved in some of the physiological and toxicological effects of nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号