首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are ‘innately’ attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation.We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose.In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.  相似文献   

2.
Adult female mice are innately attracted to non-volatile pheromones contained in male-soiled bedding. In contrast, male-derived volatiles become attractive if associated with non-volatile attractive pheromones, which act as unconditioned stimulus in a case of Pavlovian associative learning. In this work, we study the chemoinvestigatory behaviour of female mice towards volatile and non-volatile chemicals contained in male-soiled bedding, in combination with the analysis of c-fos expression induced by such a behaviour to clarify: (i) which chemosensory systems are involved in the detection of the primary attractive non-volatile pheromone and of the secondarily attractive volatiles; (ii) where in the brain male-derived non-volatile and volatile stimuli are associated to induce conditioned attraction for the latter; and (iii) whether investigation of these stimuli activates the cerebral reward system (mesocorticolimbic system including the prefrontal cortex and amygdala), which would support the view that sexual pheromones are reinforcing. The results indicate that non-volatile pheromones stimulate the vomeronasal system, whereas air-borne volatiles activate only the olfactory system. Thus, the acquired preference for male-derived volatiles reveals an olfactory-vomeronasal associative learning. Moreover, the reward system is differentially activated by the primary pheromones and secondarily attractive odorants. Exploring the primary attractive pheromone activates the basolateral amygdala and the shell of nucleus accumbens but neither the ventral tegmental area nor the orbitofrontal cortex. In contrast, exploring the secondarily attractive male-derived odorants involves activation of a circuit that includes the basolateral amygdala, prefrontal cortex and ventral tegmental area. Therefore, the basolateral amygdala stands out as the key centre for vomeronasal-olfactory associative learning.  相似文献   

3.
While the mechanisms are not fully understood, olfactory bulbectomy (OBX) is a well-known rat model of depression and depression-related disorders such as anxiety and aggression. Alterations in neuropeptide Y (NPY) levels in the brain have been linked to depression and have been shown to be involved in the response to stress. This study explored the possible regulation of NPY immunoreactivity in specific regions of the amygdala 14 days after OBX in adult male Sprague-Dawley rats (n=6). Unilateral OBX and immunohistochemistry permitted comparisons of NPY in the ipsilateral amygdala with NPY in the contralateral (sham) amygdala. OBX resulted in significant increases (P<0.05) in NPY immunoreactivity in the anterior medial amygdala (threefold) and the posterior medial amygdala (2.5-fold). These regions receive projections from the accessory olfactory bulb (AOB). In contrast, the anterior and posterolateral cortical nuclei of the amygdala receive projections from the main olfactory bulb (MOB). NPY was not increased in these nuclei. These data show that not only does OBX increase NPY immunoreactivity in the amygdala, but also suggest that the AOB plays a prominent role in this regulation.  相似文献   

4.
A brain circuit (the accessory olfactory system) that originates in the vomeronasal organ (VNO) and includes the accessory olfactory bulb (AOB) plus additional forebrain regions mediates many of the effects of pheromones, typically comprised of a variety of non-volatile and volatile compounds, on aspects of social behavior. A second, parallel circuit (the main olfactory system) that originates in the main olfactory epithelium (MOE) and includes the main olfactory bulb (MOB) has also been shown to detect volatile pheromones from conspecifics. Studies are reviewed that point to specific roles of several different steroids and their water-soluble metabolites as putative pheromones. Other studies are reviewed that establish an adult, ‘activational’ role of circulating sex hormones along with sex differences in the detection and/or processing of non-steroidal pheromones by these two olfactory circuits. Persisting questions about the role of sex steroids in pheromonal processing are posed for future investigation.  相似文献   

5.
The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic ‘aggression area’, suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli.  相似文献   

6.
Olfactory and vomeronasal projections have been traditionally viewed as terminating in contiguous non-overlapping areas of the basal telencephalon. Original reports, however, described areas such as the anterior medial amygdala where both chemosensory afferents appeared to overlap. We addressed this issue by injecting dextran amines in the main or accessory olfactory bulbs of rats and the results were analyzed with light and electron microscopes. Simultaneous injections of different fluorescent dextran amines in the main and accessory olfactory bulbs were performed and the results were analyzed using confocal microscopy. Similar experiments with dextran amines in the olfactory bulbs plus FluoroGold in the bed nucleus of the stria terminalis indicate that neurons projecting through the stria terminalis could be integrating olfactory and vomeronasal inputs. Retrograde tracing experiments using FluoroGold or dextran amines confirm that areas of the rostral basal telencephalon receive inputs from both the main and accessory olfactory bulbs. While both inputs clearly converge in areas classically considered olfactory-recipient (nucleus of the lateral olfactory tract, anterior cortical amygdaloid nucleus, and cortex-amygdala transition zone) or vomeronasal-recipient (ventral anterior amygdala, bed nucleus of the accessory olfactory tract, and anteroventral medial amygdaloid nucleus), segregation is virtually complete at posterior levels such as the posteromedial and posterolateral cortical amygdalae. This provides evidence that areas so far considered receiving a single chemosensory modality are likely sites for convergent direct olfactory and vomeronasal inputs. Therefore, areas of the basal telencephalon should be reclassified as olfactory, vomeronasal, or mixed chemosensory structures, which could facilitate understanding of olfactory-vomeronasal interactions in functional studies.  相似文献   

7.
In the field of sensory perception, one noticeable fact regarding olfactory perception is the existence of several olfactory subsystems involved in the detection and processing of olfactory information. Indeed, the vomeronasal or accessory olfactory system is usually conceived as being involved in the processing of pheromones as it is closely connected to the hypothalamus, thereby controlling reproductive function. By contrast, the main olfactory system is considered as a general analyzer of volatile chemosignals, used in the context of social communication, for the identification of the status of conspecifics. The respective roles played by the main and the accessory olfactory systems in the control of mate recognition and sexual behavior are at present still controversial. We summarize in this review recent results showing that both the main and accessory olfactory systems are able to process partially overlapping sets of sexual chemosignals and that both systems support complimentary aspects in mate recognition and in the control of sexual behavior.  相似文献   

8.
Salazar I  Brennan PA 《Brain research》2001,896(1-2):198-203
It has recently become apparent that there are two classes of vomeronasal receptor neurons that project to functionally separate anterior and posterior sub-regions of the mammalian accessory olfactory bulb. However, anterograde tracing of the projections from these sub-regions, in the mouse, has revealed that the processing pathways are not segregated at the level of the vomeronasal amygdala. Both sub-regions have overlapping projections to the superficial lamina of the medial and posterior medial cortical nuclei of the amygdala. However, differential projections have been found in the opossum, in which only the posterior sub-region projects to the deeper laminae of the medial amygdala. Therefore, there may be species differences in these projections that are important for the control of reproductive behaviour. This study used an alternative approach of retrogradely tracing mitral/tufted cell projections from different nuclei of the vomeronasal amygdala back to the accessory olfactory bulb of mice. Local injections of the lipophilic tracer DiI were made into the antero-dorsal and postero-ventral divisions of the medial amygdala, and into the postero-medial cortical amygdala. In each case, provided the DiI affected the superficial lamina Ia, labelled mitral/tufted cells were found distributed throughout the anterior-posterior extent of the accessory olfactory bulb. These results confirm that mitral/tufted cells of the anterior and posterior sub-regions of the accessory olfactory bulb project to both the medial and postero-medial cortical nuclei of the amygdala. There was no evidence for differential projections from the anterior and posterior sub-regions accessory olfactory bulb in mice, as has been reported to occur in other species.  相似文献   

9.
Projections from the olfactory bulbs have been traditionally described as 'nontopographically organized'. Olfactory and vomeronasal projections have been reported to reach nonoverlapping cortical areas. Four receptor expression zones have been described in the olfactory epithelium, maintained in the main olfactory bulb, but none in the olfactory cortex. Recent data have demonstrated convergence in the basal telencephalon of olfactory and vomeronasal projections. Injections of methanesulfonate hydroxystilbamidine (FluoroGold) in the chemosensory cortex were done to map retrograde labeling in the bulbs. Topography was not observed in the four zones of the main olfactory bulb. Areas of the rostral telencephalon were shown to receive simultaneous inputs from the main and accessory olfactory bulbs.  相似文献   

10.
The amygdala of anurans is currently considered as a complex of nuclei that share many features with their counterparts in amniotes. In the present study, the subdivisions of the amygdala that are directly related to olfactory and vomeronasal information, were investigated in the anurans Rana perezi and Xenopus laevis. In particular, the connectivity of the main and accessory olfactory bulbs and their related amygdaloid nuclei was studied by means of in vivo and in vitro tract-tracing with dextran amines. The projections observed from the main olfactory bulb clearly innervate the newly redefined lateral amygdala within the ventral pallium and, to a lesser extent, the rostral portion of the medial amygdala. Injections into the accessory olfactory bulb exclusively revealed projections to the medial amygdala. Tracer applications into the lateral and medial nuclei revealed abundant intra-amygdaloid connections. The dual flow of olfactory and vomeronasal projections throughout the telencephalon was not strictly segregated since the lateral pallium and the lateral amygdala, both receiving olfactory information, were found to project to the medial amygdala (the only target of vomeronasal information), which in turn projects to the lateral amygdala. Additionally, both the lateral and the medial amygdala strongly project to the hypothalamus through the anuran equivalent of the stria terminalis. The main hodological features found in the present study suggest that forerunners of the olfactory and vomeronasal amygdaloid nuclei can be distinguished in anurans. This supports the notion that all tetrapods share a common pattern of organization of the amygdaloid complex, which links environmental (olfactory/vomeronasal) information and the behavioural response of the animal.  相似文献   

11.
The cytoarchitecture and axonal connection pattern of centers in the ventral telencephalon of the salamander Plethodon shermani were studied using biocytin for anterograde and retrograde labeling of cell groups, as well as by intracellular injections. Application of biocytin to the main and accessory olfactory bulbs identified the olfactory pallial regions and the vomeronasal portion of the amygdala, respectively. According to our results, the amygdala of Plethodon is divided into (1) a rostral part projecting to visceral and limbic centers and receiving afferents from the dorsal thalamus, and (2) a caudal part receiving accessory olfactory input. The striatopallial transition area (SPTA) lies rostrodorsally to the caudal (vomeronasal) amygdala and is similar in connections and possibly in function. The rostral striatum has few descending projections to the medulla, whereas the intermediate striatum sends strong projections to the tegmentum and medulla. The caudal striatum has strong ascending projections to the striatum and descending projections to the ventral hypothalamus. The dendritic trees of neurons labeled below the striatum and in the SPTA spread laterally from the soma, whereas dendrites of striatal neurons converge into the laterally situated striatal neuropil. In the caudal amygdala, three distinct types of neurons are found differing in dendritic arborization. It is concluded that, hodologically, the rostral part of the urodele amygdala corresponds to the central and basolateral amygdala and the caudal part to the cortical/medial amygdala of mammals. The urodele striatum is divided into a rostral striatum proper, an intermediate dorsal pallidum, and a caudal part, with distinct connections described here for the first time in a vertebrate.  相似文献   

12.
In many mammalian species the neuroendocrine regulation of male and female reproductive behavior is sexually dimorphic. By contrast, many features of female sexual behavior in the musk shrew (Suncus murinus) more closely resemble those of males than of females of other species. Female musk shrews require testosterone (T), which is neurally aromatized to estrogen, to induce sexual behavior. Aromatization occurs in the medial preoptic area (MPOA), and this region is critical for the expression of female receptivity. To compare neural responses to sexual behavior in females and males, we compared the number of Fos-like immunoreactive (Fos-ir) neurons after mating in musk shrews. In both males and females the number of Fos-ir neurons was increased by mating activity in the granule layer of the accessory olfactory bulb (gr-AOB), the bed nucleus of the stria terminalis (BNST), MPOA, the medial amygdala (MeA), and the region corresponding to the midbrain central tegmental field (CTF). Although Fos was induced by mating in several regions, this response was only dimorphic in the ventral medial nucleus of the hypothalamus (VMN), where mating significantly increased Fos-ir in females, but not in males. In both sexes, only the gr-AOB displayed an increase in Fos-ir after exposure to chemosensory cues alone. Thus, the pattern of Fos expression in the brain after mating is only sexually dimorphic in one region, the VMN. Further, in spite of past behavioral studies done in this species, which show a role for pheromones in induction of receptivity, these data show that exposure to pheromones does not induce Fos in structures caudal to the olfactory bulbs.  相似文献   

13.
In rodent species, such as the Syrian hamster, the expression of sexual preference requires neural integration of social chemosensory signals and steroid hormone cues. Although anatomical data suggest that separate pathways within the nervous system process these two signals, the functional significance of this separation is not well understood. Specifically, within the medial amygdala, the anterior region (MEa) receives input from the olfactory bulbs and other chemosensory areas, whereas the posterodorsal region (MEpd) contains a dense population of steroid receptors and receives less substantial chemosensory input. Consequently, the MEa may subserve a primarily discriminative function, whereas the MEpd may mediate the permissive effects of sex steroids on sexual preference. To test these hypotheses, we measured preference and attraction to female and male odors in males with lesions of either the MEa or MEpd. In Experiment 1, lesions of either region eliminated opposite-sex odor preferences. Importantly, MEpd-lesioned males displayed decreased attraction toward female odors, suggesting decreased sexual motivation. In contrast, MEa-lesioned males displayed high levels of investigation of both male and female odors, suggesting an inability to categorize the relevance of the odor stimuli. In Experiment 2, we verified that both MEa- and MEpd-lesioned males could discriminate between female and male odors, thereby eliminating the possibility that the observed lack of preference reflected a sensory deficit. Taken together, these results suggest that both the MEa and MEpd are critical for the expression of opposite-sex odor preference, although they appear to mediate distinct aspects of this behavior.  相似文献   

14.
Pheromonal stimuli elicit rapid behavioral and reproductive endocrine changes in the ewe. The neural pathways responsible for these effects in sheep are unknown, in part, because the olfactory bulb projections have not been examined in this species. Using the anterograde and retrograde neuronal tracer, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), we describe the afferent and efferent olfactory bulb connections of the Suffolk ewe. Injections of WGA-HRP limited to the main olfactory bulb resulted in retrograde labeling of cells in numerous telencephalic, diencephalic, and metencephalic regions. Terminal labeling was limited to layer Ia of ipsilateral cortical structures extending rostrally from the anterior olfactory nucleus (AON), piriform cortex, anterior-, and posterolateral-cortical amygdaloid nuclei to lateral entorhinal cortex caudally. Injections involving the accessory olfactory bulb and AON produced additional labeling of cells within the bed nucleus of the stria terminalis (BNST), medial nucleus of the amygdala, and a few cells in the posteromedial cortical nucleus of the amygdala. Terminal labeling included a small dorsomedial quadrant of BNST and also extended to the far lateral portions of the supraoptic nucleus. A clearly defined accessory olfactory tract and nucleus was not evident, perhaps due to limitations in the sensitivity of the method. With this possible exception, the afferent and efferent olfactory connections in the sheep appear similar to those reported for other species.  相似文献   

15.
The olfactory system (accessory) implicated in reproductive physiology and behavior in mammals is sexually dimorphic. These brain sex differences present two main characteristics: they are seen in neural circuits related to sexual behavior and sexual physiology and they take one of two opposite morphological patterns (male>female or female>male). The present work reports sex differences in the olfactory system in a large homogeneous sample of men (40) and women (51) using of voxel-based morphology. Gray matter concentration showed sexual dimorphism in several olfactory regions. Women have a higher concentration in the orbitofrontal cortex involving Brodmann's areas 10, 11 and 25 and temporomedial cortex (bilateral hippocampus and right amygdala), as well as their left basal insular cortex. In contrast, men show a higher gray matter concentration in the left entorhinal cortex (Brodmann's area 28), right ventral pallidum, dorsal left insular cortex and a region of the orbitofrontal cortex (Brodmann's area 25). This study supports the hypothesis that the mammalian olfactory system is a sexually dimorphic network and provides a theoretical framework for the morphofunctional approach to sex differences in the human brain.  相似文献   

16.
In social animals, the presence of an affiliative conspecific alleviates acute stress responses, and this is termed social buffering. However, the neural mechanisms underlying social buffering have not been elucidated. We have reported that the main olfactory system mediates social buffering of conditioned fear responses in male rats, and this is accompanied by suppression of the lateral and central amygdala. Therefore, olfactory signals are probably transmitted from the main olfactory system to the amygdala. Because the lateral and central amygdala do not receive projections from the main olfactory bulb, the site that links the main olfactory bulb and amygdala was presumed to be located within the main olfactory system. To find the linkage site, we generated lesions within the main olfactory system, and found that a bilateral lesion in the posteromedial region of the olfactory peduncle (pmOP) blocked social buffering. Next, we determined that the pmOP receives direct projections from the main olfactory bulb. Finally, we demonstrated that the connection between the pmOP and ipsilateral amygdala is important for social buffering, and that the pmOP projects directly to the ipsilateral amygdala, including the lateral and central amygdala. On the basis of these results, we suggest that the pmOP links the main olfactory blub to the amygdala and enables social buffering of conditioned fear responses. These results provide the first comprehensive picture of the neural pathway underlying the social buffering phenomenon.  相似文献   

17.
Pavlovian fear conditioning procedures have been a fruitful means of exploring the neural substrates of associative learning. There is now substantial evidence suggesting that many aspects of conditioned fear depend critically upon the integrity of the amygdala and the perirhinal cortex. Recent studies in our laboratory examining the contributions of these areas to olfactory and contextual fear conditioning are reviewed; collectively the results of these studies suggest that the amygdala participates critically in the acquisition and expression of fear conditioned to both an olfactory conditioned stimulus (CS) and to the training context, while the perirhinal cortex contributes to olfactory, but not contextual, fear conditioning. Moreover, it appears that perirhinal cortex may play a prominent role in recognition of the CS following conditioning. These results are discussed in light of the extent to which they replicate and extend previous research examining the contributions of these areas to fear conditioned to auditory and visual CSs.  相似文献   

18.
The connections of the olfactory bulbs of Podarcis hispanica were studied by tract-tracing of injected horseradish peroxidase. Restricted injections into the main olfactory bulb (MOB) resulted in bilateral terminallike labeling in the medial part of the anterior olfactory nucleus (AON) and in the rostral septum, lateral cortex, nucleus of the lateral olfactory tract, and ventrolateral amygdaloid nucleus. Bilateral retrograde labeling was found in the rostral lateral cortex and in the medial and dorsolateral AON. Ipsilaterally the dorsal cortex, nucleus of the diagonal band, lateral preoptic area, and dorsolateral amygdala showed labeled cell bodies. Retrogradely labeled cells were also found in the midbrain raphe nucleus. Results from injections into the rostral lateral cortex and lateral olfactory tract indicate that the mitral cells are the origin of the centripetal projections of the MOB. Injections in the accessory olfactory bulb (AOB) produced ipsilateral terminallike labeling of the ventral AON, bed nucleus of the accessory olfactory tract, central and ventromedial amygdaloid nuclei, medial part of the bed nucleus of the stria terminalis, and nucleus sphericus. Retrograde labeling of neurons was observed ipsilaterally in the bed nucleus of the accessory olfactory tract and stria terminalis, in the central amygdaloid nucleus, dorsal cortex, and nucleus of the diagonal band. Bilateral labeling of somata was found in the ventral AON, the nucleus sphericus (hilus), and in the mesencephalic raphe nucleus and locus coeruleus. Injections into the dorsal amygdala showed that the mitral neurons are the cells of origin of the AOB centripetal projections. Reciprocal connections are present between AOB and MOB. To our knowledge, this is the first study to address the afferent connections of the olfactory bulbs in a reptile. On the basis of the available data, a discussion is provided of the similarities and differences between the reptilian and mammalian olfactory systems, as well as of the possible functional role of the main olfactory connections in reptiles.  相似文献   

19.
Previous studies suggest that the rostral corticomedial amygdala (CMA), particularly the medial nucleus, is an important site where vomeronasal and olfactory stimuli critical to male hamster copulatory behavior are processed. To test the possibility that mating deficits seen after lesions of the rostrally-placed medial nucleus may be due to the interruption of chemosensory afferents to more caudal areas, we injected tritiated amino acids into the accessory and main olfactory bulbs of male hamsters in which we had first produced bilateral electrolytic lesions or sham lesions in either the rostral CMA or basolateral amygdala, and then observed mating behavior. Autoradiographic analysis of ‘vomeronasal’ projections from the accessory olfactory bulb and ‘olfactory’ projections from the main bulb, revealed that rostral CMA lesions which damaged the medial nucleus and extended to the ventral surface of the brain (ventral lesions) interrupted vomeronasal input to the more caudally-placed posteromedial cortical nucleus, but spared olfactory inputs to adjacent caidal areas of the amygdala and piriform lobe. In contrast, lesions which damaged a major portion of the medial nucleus but left its ventral surface intact (dorsal lesions) spared both vomeronasal and olfactory inputs to more caudal areas. Animals with both dorsal and ventral lesions failed to mate posteperatively, whereas animals bearing sham lesions of basolateral amygdaloid lesions, which, like dorsal lesions, spared caudally-directed chemosensory afferents, continued to mate normally. We conclude that mating deficits seen after rostral CMA lesions are due primarily to destruction of the medial nucleus.  相似文献   

20.
Immunohistochemical, in situ hybridization histochemical, and Northern blot methods were used to demonstrate and characterize the distribution of corticotropin-releasing factor immunoreactivity (CRF-IR) and mRNA in the rat olfactory system. Northern analysis demonstrated the presence of an mRNA species in the olfactory bulb indistinguishable from, and in greater abundance than, CRF mRNA isolated from whole hypothalamus. Results from hybridization histochemical and immunohistochemical studies converged to indicate that CRF is expressed in a majority of mitral and tufted cells in the main and accessory bulbs, and in subsets of granule and periglomerular cells. Consistent with cellular localizations in primary output neurons, a dense network of fine CRF-immunoreactive varicosities was demonstrated in the external plexiform layer of the olfactory bulb and in layer Ia of piriform cortex. Other acknowledged terminal fields of the projection neurons of the main and accessory bulbs also displayed CRF-IR. The results suggest that CRF is the most broadly distributed neuroactive agent yet charted in olfactory bulb somata. This peptide may serve as a modulator or co-transmitter of importance in several cell types in the main and accessory olfactory bulbs, including the principal output neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号