首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Brain stimulation》2020,13(2):310-317
BackgroundThe ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value.ObjectiveTo investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects.MethodsQPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS).ResultsQPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions.ConclusionsQPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL.  相似文献   

2.
《Clinical neurophysiology》2020,131(5):1059-1067
ObjectiveSpinal cord injury (SCI) disrupts the communication between brain and body parts innervated from below-injury spinal segments, but rarely results in complete anatomical transection of the spinal cord. The aim of this study was to investigate residual somatosensory conduction in clinically complete SCI, to corroborate the concept of sensory discomplete SCI.MethodsWe used fMRI with a somatosensory protocol in which blinded and randomized tactile and nociceptive stimulation was applied on both legs (below-injury level) and one arm (above-injury level) in eleven participants with chronic complete SCI. The experimental design accounts for possible confounding mechanical (e.g. vibration) and cortico-cortical top-down mechanisms (e.g. attention/expectation).ResultsSomatosensory stimulation on below-level insensate body regions activated the somatotopically corresponding part of the contralateral primary somatosensory cortex in six out of eleven participants.ConclusionsOur results represent afferent-driven cortical activation through preserved somatosensory connections to the brain in a subgroup of participants with clinically complete SCI, i.e. sensory discomplete SCI.SignificanceIdentifying patients with residual somatosensory connections might open the door for new rehabilitative and restorative strategies as well as inform research on SCI-related conditions such as neuropathic pain and spasticity.  相似文献   

3.
《Clinical neurophysiology》2021,132(2):487-497
ObjectiveThe classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1.MethodsWe recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired.ResultsStimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical “homunculus”. And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions.ConclusionsOur results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield.SignificanceThe classical S1 homunculus was extended by providing further refinement and additional detail.  相似文献   

4.
Many neurological disorders can present similar symptomatology to degenerative cervical myelopathy (DCM) or myeloradiculopathy (DCMR). Therefore, to avoid misdiagnosis, it is important to recognise the differential diagnosis, which has been well described in previous literature. Additionally, DCM or DCMR can also coexist with other diseases that overlap some of its clinical manifestations, which may be overlooked before cervical surgery. Nevertheless, few studies have addressed this clinical situation. In clinical practice, the diagnosis of coexisting disease with DCM or DCMR would be typically made when some symptoms persist without improvement after cervical surgery. To inform the patients of this possibility preoperatively and arrive at the early diagnosis during the postoperative period, some knowledge of the possible coexisting diseases would be necessary. In this report, we reviewed 230 patients who underwent surgery for DCM or DCMR in an academic centre to examine the prevalence and kind of underlying disease that was overlooked preoperatively. The coexisting diseases relevant to their baseline symptoms were diagnosed only after cervical surgery in three patients (1.3%) and included amyotrophic lateral sclerosis, lung cancer and polymyalgia rheumatica. The overlapping symptoms were gait difficulty, scapular pain and neck pain, respectively. Surgeons should recognise that the coexisting disease with DCM or DCMR may be overlooked before cervical surgery because of overlapping symptomatology, although its prevalence is not certainly high. Further, when the specific symptom persisted without improvement after surgery for DCM or DCMR, the patient should be comprehensively examined, considering diverse pathological conditions, not only neurological disorders.  相似文献   

5.
《Clinical neurophysiology》2021,132(5):1018-1024
ObjectivesNon-invasive brain stimulation (NIBS) is beneficial to many neurological and psychiatric disorders by modulating neuroplasticity and cortical excitability. However, recent studies evidence that single type of NIBS such as transcranial direct current stimulation (tDCS) does not have meaningful clinical therapeutic responses due to their small effect size. Transcranial near-infrared stimulation (tNIRS) is a novel form of NIBS. Both tNIRS and tDCS implement its therapeutic effects by modulating cortical excitability but with different mechanisms. We hypothesized that simultaneous tNIRS and tDCS is superior to single stimulation, leading to a greater cortical excitability.MethodsSixteen healthy subjects participated in a double-blind, sham-controlled, cross-over designed study. Motor evoked potentials (MEPs) were used to measure motor cortex excitability. The changes of MEP were calculated and compared in the sham condition, tDCS stimulation condition, tNIRS condition and the simultaneous tNIRS and anodal tDCS condition.ResultstDCS alone and tNIRS alone both elicited higher MEP after stimulation, while the MEP amplitude in the simultaneous tNIRS and tDCS condition was significantly higher than either tNIRS alone or tDCS alone. The enhancement lasted up to at least 30 minutes after stimulation, indicating simultaneous 820 nm tNIRS with 2 mA anodal tDCS have a synergistic effect on cortical plasticity.ConclusionsSimultaneous application of tNIRS with tDCS produces a stronger cortical excitability effect.SignificanceThe simultaneous tNIRS and tDCS is a promising technology with exciting potential as a means of treatment, neuro-enhancement, or neuro-protection.  相似文献   

6.
《Clinical neurophysiology》2020,131(11):2657-2666
ObjectiveThe goal of this study was to investigate the spatial extent and functional organization of the epileptogenic network through cortico-cortical evoked potentials (CCEPs) in patients being evaluated with intracranial stereoelectroencephalography.MethodsWe retrospectively included 25 patients. We divided the recorded sites into three regions: epileptogenic zone (EZ); propagation zone (PZ); and noninvolved zone (NIZ). The root mean square of the amplitudes was calculated to reconstruct effective connectivity network. We also analyzed the N1/N2 amplitudes to explore the responsiveness influenced by epileptogenicity. Prognostic analysis was performed by comparing intra-region and inter-region connectivity between seizure-free and non-seizure-free groups.ResultsOur results confirmed that stimulation of the EZ caused the strongest responses on other sites within and outside the EZ. Moreover, we found a hierarchical connectivity pattern showing the highest connectivity strength within EZ, and decreasing connectivity gradient from EZ, PZ to NIZ. Prognostic analysis indicated a stronger intra-EZ connection in the seizure-free group.ConclusionThe EZ showed highest excitability and dominantly influenced other regions. Quantitative CCEPs can be useful in mapping epileptic networks and predicting surgical outcome.SignificanceThe generated computational connectivity model may enhance our understanding of epileptogenic networks and provide useful information for surgical planning and prognosis prediction.  相似文献   

7.
《Clinical neurophysiology》2020,131(4):791-798
ObjectiveMotor learning is relevant in chronic stroke for acquiring compensatory strategies to motor control deficits. However, the neurophysiological mechanisms underlying motor skill acquisition with the paretic upper limb have received little systematic investigation. The aim of this study was to assess the modulation of corticomotor excitability and intracortical inhibition within ipsilesional primary motor cortex (M1) during motor skill learning.MethodsTen people at the chronic stage after stroke and twelve healthy controls trained on a sequential visuomotor isometric wrist extension task. Skill was quantified before, immediately after, 24 hours and 7 days post-training. Transcranial magnetic stimulation was used to examine corticomotor excitability and short- and long-interval intracortical inhibition (SICI and LICI) pre- and post-training.ResultsThe patient group exhibited successful skill acquisition and retention, although absolute skill level was lower compared with controls. In contrast to controls, patients’ ipsilesional corticomotor excitability was not modulated during skill acquisition, which may be attributed to excessive ipsilesional LICI relative to controls. SICI decreased after training for both patient and control groups.ConclusionsOur findings indicate distinct inhibitory networks within M1 that may be relevant for motor learning after stroke.SignificanceThese findings have potential clinical relevance for neurorehabilitation adjuvants aimed at augmenting the recovery of motor function.  相似文献   

8.
The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.  相似文献   

9.
《Clinical neurophysiology》2021,132(1):191-199
ObjectivesReduced corticospinal excitability at rest is associated with post-stroke fatigue (PSF). However, it is not known if corticospinal excitability prior to a movement is also altered in fatigue which may then influence subsequent behaviour. We hypothesized that the levels of PSF can be explained by differences in modulation of corticospinal excitability during movement preparation.Methods73 stroke survivors performed an auditory reaction time task. Corticospinal excitability was measured using transcranial magnetic stimulation. Fatigue was quantified using the fatigue severity scale. The effect of time and fatigue on corticospinal excitability and reaction time was analysed using a mixed effects model.ResultsThose with greater levels of PSF showed reduced suppression of corticospinal excitability during movement preparation and increased facilitation immediately prior to movement onset (β = −0.0066, t = −2.22, p = 0.0263). Greater the fatigue, slower the reaction times the closer the stimulation time to movement onset (β = 0.0024, t = 2.47, p = 0.0159).ConclusionsLack of pre-movement modulation of corticospinal excitability in high fatigue may indicate poor sensory processing supporting the sensory attenuation model of fatigue.SignificanceWe take a systems-based approach and investigate the motor system and its role in pathological fatigue allowing us to move towards gaining a mechanistic understanding of chronic pathological fatigue.  相似文献   

10.
《Clinical neurophysiology》2020,131(10):2440-2451
ObjectiveThe myelin impairment in demyelinating Charcot-Marie-Tooth (CMT) disease leads to various degrees of axonal degeneration, the ultimate cause of disability. We aimed to assess the pathophysiological changes in axonal function related to the neuropathy severity in hypo-/demyelinating CMT patients associated with myelin protein zero gene (MPZ) deficiency.MethodsWe investigated four family members (two parents and two sons) harboring a frameshift mutation (c.306delA, p.Asp104ThrfsTer14) in the MPZ gene, predicted to result in a nonfunctional P0, by conventional conduction studies and multiple measures of motor axon excitability. In addition to the conventional excitability studies of the median nerve at the wrist, we tested the spinal accessory nerves. Control measures were obtained from 14 healthy volunteers.ResultsThe heterozygous parents (aged 56 and 63) had a mild CMT1B whereas their two homozygous sons (aged 31 and 39 years) had a severe Dejerine-Sottas disease phenotype. The spinal accessory nerve excitability could be measured in all patients. The sons showed reduced deviations during depolarizing threshold electrotonus and other depolarizing features which were not apparent in the accessory and median nerve studies of the parents. Mathematical modeling indicated impairment in voltage-gated sodium channels. This interpretation was supported by comparative modeling of excitability measurements in MPZ deficient mice.ConclusionOur data suggest that axonal depolarization in the context of abnormal voltage-gated sodium channels precedes axonal degeneration in severely hypo-/demyelinating CMT as previously reported in the mouse models.SignificanceMeasures of the accessory nerve excitability could provide pathophysiological markers of neurotoxicity in severe demyelinating neuropathies.  相似文献   

11.
《Clinical neurophysiology》2020,131(2):529-541
ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.  相似文献   

12.
《Clinical neurophysiology》2021,132(9):2191-2198
ObjectiveTo explore whether abnormal thalamic resting-state functional connectivity (rsFC) contributes to altered sensorimotor integration and hand dexterity impairment in multiple sclerosis (MS).MethodsTo evaluate sensorimotor integration, we recorded kinematic features of index finger abductions during somatosensory temporal discrimination threshold (STDT) testing in 36 patients with relapsing-remitting MS and 39 healthy controls (HC). Participants underwent a multimodal 3T structural and functional MRI protocol.ResultsPatients had lower index finger abduction velocity during STDT testing compared to HC. Thalamic rsFC with the precentral and postcentral gyri, supplementary motor area (SMA), insula, and basal ganglia was higher in patients than HC. Intrathalamic rsFC and thalamic rsFC with caudate and insula bilaterally was lower in patients than HC. Finger movement velocity positively correlated with intrathalamic rsFC and negatively correlated with thalamic rsFC with the precentral and postcentral gyri, SMA, and putamen.ConclusionsAbnormal thalamic rsFC is a possible substrate for altered sensorimotor integration in MS, with high intrathalamic rsFC facilitating finger movements and increased thalamic rsFC with the basal ganglia and sensorimotor cortex contributing to motor performance deterioration.SignificanceThe combined study of thalamic functional connectivity and upper limb sensorimotor integration may be useful in identifying patients who can benefit from early rehabilitation to prevent upper limb motor impairment.  相似文献   

13.
《Clinical neurophysiology》2021,132(2):315-322
ObjectivePrevious studies have demonstrated voluntary movement alterations as well as motor cortex excitability and plasticity changes in patients with mild cognitive impairment (MCI). To investigate the pathophysiology of movement abnormalities in MCI, we tested possible relationships between movement abnormalities and primary motor cortex alterations in patients.MethodsFourteen amnestic MCI (aMCI) patients and 16 healthy controls were studied. Cognitive assessment was performed using clinical scales. Finger tapping was recorded by a motion analysis system. Transcranial magnetic stimulation was used to test the input/output curve of motor evoked potentials, intracortical inhibition, and short-latency afferent inhibition. Primary motor cortex plasticity was probed by theta burst stimulation. We investigated correlations between movement abnormalities, clinical scores, and cortical neurophysiological parameters.ResultsMCI patients showed less rhythmic movement but no other movement abnormalities. Cortical excitability measures were normal in patients, whereas plasticity was reduced. Movement rhythm abnormalities correlated with frontal dysfunction scores.ConclusionOur study in MCI patients demonstrated abnormal voluntary movement and plasticity changes, with no correlation between the two. Altered rhythm correlated with frontal dysfunction.SignificanceOur results contribute to the understanding of pathophysiological mechanisms of motor impairment in MCI.  相似文献   

14.
《Clinical neurophysiology》2021,132(12):3104-3115
ObjectiveWe aimed to establish an objective neurophysiological test protocol that can be used to assess the somatosensory nervous system.MethodsIn order to assess most fiber subtypes of the somatosensory nervous system, repetitive stimuli of seven different modalities (touch, vibration, pinprick, cold, contact heat, laser, and warmth) were synchronized with the electroencephalogram (EEG) and applied on the cheek and dorsum of the hand and dorsum of the foot in 21 healthy subjects and three polyneuropathy (PNP) patients. Latencies and amplitudes of the modalities were assessed and compared. Patients received quantitative sensory testing (QST) as reference.ResultsWe found reproducible evoked potentials recordings for touch, vibration, pinprick, contact-heat, and laser stimuli. The recording of warm-evoked potentials was challenging in young healthy subjects and not applicable in patients. Latencies were shortest within Aβ-fiber-mediated signals and longest within C-fibers. The test protocol detected function loss within the Aβ-fiber and Aδ-fiber-range in PNP patients. This function loss corresponded with QST findings.ConclusionIn this pilot study, we developed a neurophysiological test protocol that can specifically assess most of the somatosensory modalities. Despite technical challenges, initial patient data appear promising regarding a possible future clinical application.SignificanceEstablished and custom-made stimulators were combined to assess different fiber subtypes of the somatosensory nervous system using modality-specific evoked potentials.  相似文献   

15.
《Clinical neurophysiology》2021,132(10):2431-2439
ObjectiveThe purpose of this investigation was to better understand the effects of concussions on the ability to selectively up or down-regulate incoming somatosensory information based on relevance.MethodsMedian nerve somatosensory-evoked potentials (SEPs) were elicited from electrical stimulation and recorded from scalp electrodes while participants completed tasks that altered the relevance of specific somatosensory information being conveyed along the stimulated nerve.ResultsWithin the control group, SEP amplitudes for task-relevant somatosensory information were significantly greater than for non-relevant somatosensory information at the earliest cortical processing potentials (N20-P27). Alternatively, the concussion history group showed similar SEP amplitudes for all conditions at early processing potentials, however a pattern similar to controls emerged later in the processing stream (P100) where both movement-related gating and facilitation of task-relevant information were present.ConclusionsPreviously concussed participants demonstrated impairments in the ability to up-regulate relevant somatosensory information at early processing stages. These effects appear to be chronic, as this pattern was observed on average several years after participants’ most recent concussion.SignificanceGiven the role of the prefrontal cortex in relevancy-based facilitation during movement-related gating, these findings lend support to the notion that this brain area may be particularly vulnerable to concussive forces.  相似文献   

16.
《Clinical neurophysiology》2021,132(2):372-381
ObjectiveChanges in the N20/P25 amplitude of somatosensory evoked potentials (SEP) of the median nerve have been found to correlate with those in cortical regional cerebral blood flow (rCBF). Our study presents the use of median nerve SEP amplitude in predicting the clinical outcome of urgent surgical internal carotid artery (ICA) recanalization.MethodsA total of 27 patients suffering an acute ischemic stroke (AIS) with extracranial ICA occlusion within 24 h were prospectively recruited. The primary preoperative endpoints included the SEP amplitude absolute value (SEP-amp) and the SEP amplitude side-to-side ratio (SEP-ratio).Clinical outcome at 3 months postoperatively was assessed using the modified Rankin scale (mRS-3M).ResultsThe positive predictive values (PPVs) for SEP-amp and SEP-ratio were 95.5% and 100%, respectively, with the negative predictive values (NPVs) being 60.0% and 100%, respectively. The SEP-ratio correlated fully with mRS-3M.ConclusionThe median SEP side-to-side N20/P25 amplitude ratio seems to be a very strong positive and negative predictor of the clinical outcome of urgent recanalization of an extracranial ICA occlusion.SignificanceThe results suggest that cortical evoked activity may help in selection patient for surgical recanalization and predict clinical recovery after an acute ischemic stroke.  相似文献   

17.
《Brain stimulation》2021,14(3):622-634
BackgroundtDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults.Methods32 healthy, volunteers from two different age groups of Young-Old (50–65 years, n = 16) and Old-Old (66–80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation.ResultsAll active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min).ConclusionsOur study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.  相似文献   

18.
《Clinical neurophysiology》2020,131(11):2766-2776
ObjectiveSporadic inclusion body myositis (sIBM) has been associated with neuropathy. This study employs nerve excitability studies to re-examine this association and attempt to understand underlying pathophysiological mechanisms.MethodsTwenty patients with sIBM underwent median nerve motor and sensory excitability studies, clinical assessments, conventional nerve conduction testing (NCS) and quantitative thermal threshold studies. These results were compared to established normal controls, or results from a normal cohort of older control individuals.ResultsSeven sIBM patients (35%) demonstrated abnormalities in conventional NCS, with ten patients (50%) demonstrating abnormalities in thermal thresholds. Median nerve motor and sensory excitability differed significantly in sIBM patients when compared to normal controls. None of these neurophysiological markers correlated significantly with clinical markers of sIBM severity.ConclusionA concurrent neuropathy exists in a significant proportion of sIBM patients, with nerve excitability studies revealing changes possibly consistent with axolemmal depolarization or concurrent neuronal adaptation to myopathy. Neuropathy in sIBM does not correlate with muscle disease severity and may reflect a differing tissue response to a common pathogenic factor.SignificanceThis study affirms the presence of a concurrent neuropathy in a large proportion of sIBM patients that appears independent of the severity of myopathy.  相似文献   

19.
《Clinical neurophysiology》2021,132(9):2123-2129
ObjectiveTo analyze and quantify sacral spinal excitability through bulbocavernosus reflex (BCR) stimulus-response curves.MethodsThirty subjects with upper motor neuron lesions (UMN) and nine controls were included in this prospective, monocentric study. Sacral spinal excitability was assessed using stimulus-response curves of the BCR, modeled at different bladder filling volumes relative to the desire to void (as defined by the International Continence Society) during a cystometry. Variations in α (i.e. the slope of the stimulus-response curve) were considered as an indicator of the modulation of sacral spinal excitability.ResultsIn all subjects, α increased during bladder filling suggesting the modulation of spinal sacral excitability during the filling phase. This increase was over 30% in 96.7% of neurological subjects and 88.9% of controls. The increase was higher before the first sensation to void in the neurological population (163.15%), compared to controls, (29.91%), p < 0.001.ConclusionsWe showed the possibility of using BCR stimulus-response curves to characterize sacral spinal response with an amplification of this response during bladder filling as well as a difference in this response amplification in patients with UMN in comparison with a control group.SignificanceBCR, through stimulus-response curves, might be an indicator of pelvic-perineal exaggerated reflex response and possibly a tool for evaluating treatment effectiveness.  相似文献   

20.
BackgroundAcupuncture has been used to treat a wide variety of diseases, disorders, and conditions for more than 2500 years. While the anatomical structures of acupuncture points (or acupoints) are largely unknown, our previous studies have suggested that many acupoints can be identified as cutaneous neurogenic inflammatory spots (neurogenic spots or Neuro-Sps), arising from the release of neuropeptides from activated small diameter sensory afferents at topographically distinct body surfaces due to the convergence of visceral and somatic afferents. In turn, the neuropeptides released during neurogenic inflammation may play important roles in the effects of acupuncture as well as the formation of active acupoints. Thus, the present study has focused on the role of substance P (SP) in acupuncture signal transduction and effects.MethodsNeuro-Sps were detected by using in vivo fluorescence imaging after intravenous injection of Evans blue dye (EBD) and compared with traditional acupoints. Stimulatory effects of the Neuro-Sps were examined in a rat model of immobilization-induced hypertension (IMH). The roles of increased SP in Neuro-Sps were also investigated by using immunohistochemistry, in vivo single-fiber peripheral nerve recordings, and in vivo midbrain extracellular recordings.ResultsNeurogenic inflammation quickly appeared at acupoints on the wrist and was fully developed within 15 min in IMH model. The Neuro-Sps showed an increased release of SP from afferent nerve terminals. Mechanical stimulation of these Neuro-Sps increased cell excitability in the midbrain (rostral ventrolateral medulla) and alleviated the development of hypertension, which was blocked by the local injection of the SP receptor antagonist CP-99994 into Neuro-Sps prior to acupuncture and mimicked by the local injection of capsaicin. Single fiber recordings of peripheral nerves showed that increased SP into the Neuro-Sps elevated the sensitivity of A- and C-fibers in response to acupuncture stimulation. In addition, the discharge rates of spinal wide dynamic response (WDR) neurons significantly increased following SP or acupuncture treatment in Neuro-Sps in normal rats, but decreased following the injection of CP-99994 into Neuro-Sps in IMH rats.ConclusionsOur findings suggest that SP released during neurogenic inflammation enhances the responses of sensory afferents to the needling of acupoints and triggers acupuncture signaling to generate acupuncture effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号