首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
While the peripheral nervous system has regenerative ability,restoration of sufficient function remains a challenge.Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration,including myelination,neuroplasticity,kinase signaling in nerve axoplasm,and cell migration;however,the mechanisms regulating its expression within Schwann cell(SC) remain unexplored.The aim of this study was to profile the spatial and temporal expression profile of micro RNA(mi RNA) in a regenerating rat sciatic nerve after transection,and explore the potential role of mi R-138-5 p targeting vimentin in SC proliferation and migration.A rat sciatic nerve transection model,utilizing a polyethylene nerve guide,was used to investigate mi RNA expression at 7,14,30,60,and 90 days during nerve regeneration.Relative levels of mi RNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction.In vitro assays were conducted with cultured Schwann cells transfected with mi RNA mimics and assessed for migratory and proliferative potential.The top seven dysregulated mi RNAs reported in this study have been implicated in cell migration elsewhere,and GO and KEGG analyses predicted activities essential to wound healing.Transfection of one of these,mi RNA-138-5 p,into SCs reduced cell migration and proliferation.mi R-138-5 p has been shown to directly target vimentin in cancer cells,and the luciferase assay performed here in rat Schwann cells confirmed it.These results detail a role of mi R-138-5 p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system.  相似文献   

3.
《中国神经再生研究》2016,(6):1001-1005
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. Howev-er, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-disso-ciated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migrationin vitro. Further experiments conifrmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migra-tion of Schwann cells by directly targeting Cand1in vitro.  相似文献   

4.
Macica CM  Liang G  Lankford KL  Broadus AE 《Glia》2006,53(6):637-648
Parathyroid hormone-related peptide (PTHrP) is widely distributed in the rat nervous system, including the peripheral nervous system, where its function is unknown. PTHrP mRNA expression has recently been shown to be significantly elevated following axotomy of sympathetic ganglia, although the role of PTHrP was not investigated. The role of PTHrP in peripheral nerve injury was investigated in this study using the sciatic nerve injury model and dorsal root ganglion (DRG) explant model of nerve regeneration. We find that PTHrP is a constitutively secreted peptide of proliferating Schwann cells and that the PTHrP receptor (PTH1R) mRNA is expressed in isolated DRG and in sciatic nerve. Using the sciatic nerve injury model, we show that PTHrP is significantly upregulated in DRG and in sciatic nerve. In addition, in situ hybridization revealed significant localization of PTHrP mRNA to Schwann cells in the injured sciatic nerve. We also find that PTHrP causes a dramatic increase in the number of Schwann cells that align with and bundle regrowing axons in explants, characteristic of immature, dedifferentiated Schwann cells. In addition to stimulating migration of Schwann cells along the axonal membrane, PTHrP also stimulates migration on a type 1 collagen matrix. Furthermore, treatment of purified Schwann cell cultures with PTHrP results in the rapid phosphorylation of the cAMP response element protein, CREB. We propose that PTHrP acts by promoting the dedifferentiation of Schwann cells, a critical requirement for successful nerve regeneration and an effect consistent with known PTHrP functions in other cellular differentiation programs.  相似文献   

5.
Schwann cell movement and proliferation occur during peripheral nerve regeneration and remyelination. We asked whether soluble factors promoting these activities were present in fluid surrounding rat sciatic nerves regenerating across a 10-mm gap bridged by a silicone tube. In this model, regenerated and remyelinated axons extend across the gap by 28 days following nerve transection and tube implantation. Fluid conditioned by cells participating in nerve regeneration (RCF) was assayed for its ability to promote Schwann cell adhesion, migration and proliferation in vitro. RCFs collected at post-transectional days 1-28 were equally effective in promoting Schwann cell-substratum adhesion. In contrast, the motility-promoting activity of RCF was minimal at 1-2 days following nerve-transection, peaked at 7 days and remained elevated through 21 days. The RCF peak response was 87-fold greater than control. Schwann cell proliferative activity of RCF exhibited peaks of activity at 1 and 14 days post-transection. The biological potency of this fluid for each activity assayed in vitro correlated well with the behavior of Schwann cells chronicled during nerve repair in vivo. These findings suggest that soluble factors promoting Schwann cell adhesion, migration, and proliferation accumulate extracellularly during peripheral nerve regeneration and remyelination.  相似文献   

6.
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration(0–4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt and ERK1/2 pathways. Further studies revealed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.  相似文献   

7.
8.
《中国神经再生研究》2016,(10):1653-1659
Schwann cells play an important role in the peripheral nervous system, especially in nerve repair following injury, so artificial nerve regeneration requires an effective technique for obtaining purified Schwann cells. In vivo and in vitro pre-degeneration of peripheral nerves have been shown to obtain high-purity Schwann cells. We believed that in vitro pre-degeneration was simple and controllable, and available for the clinic. Thus, we co-cultured the crushed sciatic nerves with bone marrow-derived cells in vitro. Results demonstrated that, 3 hours after injury, a large number of mononuclear cells moved to the crushed nerves and a large number of bone marrow-derived cells infiltrated the nerve segments. These changes promoted the degradation of the nerve segments, and the dedifferentiation and proliferation of Schwann cells. Neural cell adhesion molecule and glial fibrillary acidic protein expression were detected in the crushed nerves. Schwann cell yield was 9.08 ± 2.01 × 104/mg. The purity of primary cultured Schwann cells was 88.4 ± 5.79%. These indicate a successful new method for obtaining Schwann cells of high purity and yield from adult crushed sciatic nerve using bone marrow-derived cells.  相似文献   

9.
Schwann cell proliferation,migration and remyelination of regenerating axons contribute to regeneration after peripheral nervous system injury.Lithium promotes remyelination by Schwann cells and improves peripheral nerve regeneration.However,whether lithium modulates other phenotypes of Schwann cells,especially their proliferation and migration remains elusive.In the current study,primary Schwann cells from rat sciatic nerve stumps were cultured and exposed to 0,5,10,15,or 30 mM lithium chloride(LiCl)for 24 hours.The effects of LiCl on Schwann cell proliferation and migration were examined using the Cell Counting Kit-8,5-ethynyl-2′-deoxyuridine,Transwell and wound healing assays.Cell Counting Kit-8 and 5-ethynyl-2′-deoxyuridine assays showed that 5,10,15,and 30 mM LiCl significantly increased the viability and proliferation rate of Schwann cells.Transwell-based migration assays and wound healing assays showed that 10,15,and 30 mM LiCl suppressed the migratory ability of Schwann cells.Furthermore,the effects of LiCl on the proliferation and migration phenotypes of Schwann cells were mostly dose-dependent.These data indicate that lithium treatment significantly promotes the proliferation and inhibits the migratory ability of Schwann cells.This conclusion will inform strategies to promote the repair and regeneration of peripheral nerves.All of the animal experiments in this study were ethically approved by the Administration Committee of Experimental Animal Center of Nantong University,China(approval No.20170320-017)on March 2,2017.  相似文献   

10.
Zhu L  Yan Y  Ke K  Wu X  Gao Y  Shen A  Li J  Kang L  Zhang G  Wu Q  Yang H 《Journal of neuroscience research》2012,90(8):1557-1565
Numbl, as a conserved homolog of Drosophila Numb, has been implicated in early development of the nervous system, but its expression and roles in nervous system lesion and repair remained unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Numbl expression in the sciatic nerve. Temporally, Numbl expression was sharply decreased after sciatic nerve crush and reached a valley at day 7. Spatially, Numbl was widely expressed in the normal sciatic nerve, including axons and Schwann cells, whereas, after injury, Numbl expression was decreased predominantly in Schwann cells. In vitro, we induced Schwann cell differentiation with cAMP and found that Numbl expression was decreased in the differentiated process. Depletion of Numbl could promote Schwann cell differentiation. In addition, we demonstrated that in vitro myelination was suppressed by overexpression of Numbl in Schwann cells. Collectively, we hypothesized peripheral nerve injury induced a downregulation of Numbl in the sciatic nerve, which was associated with Schwann cell differentiation.  相似文献   

11.
Netrin-1 and peripheral nerve regeneration in the adult rat   总被引:8,自引:0,他引:8  
Axonal guidance during development of the nervous system is thought to be highly regulated through interactions of axons with attractive, repulsive, and trophic cues. Similar mechanisms regulate axonal regeneration after injury. The netrins have been shown to influence the guidance of several classes of developing axons. Although netrins have been implicated as axonal guidance cues in the developing peripheral nervous system, there has been no direct evidence of netrin-1 expression in either developing or adult peripheral nerve. The present study utilized competitive PCR and immunohistochemistry to demonstrate the localization of netrin-1 within adult rat sciatic nerve. The expression of netrin-1 mRNA and protein was compared for normal or regenerated sciatic nerve 2 weeks following either a crush or a transection and repair injury. The PCR data show that netrin-1 mRNA is normally expressed at low levels in peripheral nerve, and similar low levels are found 2 weeks following a crush injury. However, 2 weeks following nerve transection and repair there is approximately a 40-fold increase in netrin-1 mRNA levels. Immunohistochemistry data show that Schwann cells are the major source of netrin-1 protein in peripheral nerve. Our results suggest that netrin-1 mRNA levels are profoundly affected during peripheral nerve injury and regeneration. The localization of netrin-1 to Schwann cells suggests that this protein is strategically situated to influence axon regeneration in adult peripheral nerve.  相似文献   

12.
Schwann cells are not only myelinating cells, but also function as immune cells and express numerous innate pattern recognition receptors, including the Toll-like receptors. Injury to peripheral nerves activates an inflammatory response in Schwann cells. However, it is unclear whether specific endogenous damage-associated molecular pattern molecules are involved in the inflammatory response following nerve injury. In the present study, we demonstrate that a key damage-associated molecular pattern molecule, high mobility group box 1(HMGB1), is upregulated following rat sciatic nerve axotomy, and we show colocalization of the protein with Schwann cells. HMGB1 alone could not enhance expression of Toll-like receptors or the receptor for advanced glycation end products(RAGE), but was able to facilitate migration of Schwann cells. When Schwann cells were treated with HMGB1 together with lipopolysaccharide, the expression levels of Toll-like receptors and RAGE, as well as inflammatory cytokines were upregulated. Our novel findings demonstrate that the HMGB1 pathway activates the inflammatory response in Schwann cells following peripheral nerve injury.  相似文献   

13.
Li X  Gonias SL  Campana WM 《Glia》2005,51(4):254-265
Erythropoietin (Epo) expresses potent neuroprotective activity in the peripheral nervous system; however, the underlying mechanism remains incompletely understood. In this study, we demonstrate that Epo is upregulated in sciatic nerve after chronic constriction injury (CCI) and crush injury in rats, largely due to local Schwann cell production. In uninjured and injured nerves, Schwann cells also express Epo receptor (EpoR), and its expression is increased during Wallerian degeneration. CCI increased the number of Schwann cells at the injury site and the number was further increased by exogenously administered recombinant human Epo (rhEpo). To explore the activity of Epo in Schwann cells, primary cultures were established. These cells expressed cell-surface Epo receptors, with masses of 71 and 62 kDa, as determined by surface protein biotinylation and affinity precipitation. The 71-kDa species was rapidly but transiently tyrosine-phosphorylated in response to rhEpo. ERK/MAP kinase was also activated in rhEpo-treated Schwann cells; this response was blocked by pharmacologic antagonism of JAK-2. RhEpo promoted Schwann cell proliferation, as determined by BrdU incorporation. Cell proliferation was ERK/MAP kinase-dependent. These results support a model in which Schwann cells are a major target for Epo in injured peripheral nerves, perhaps within the context of an autocrine signaling pathway. EpoR-induced cell signaling and Schwann cell proliferation may protect injured peripheral nerves and promote regeneration.  相似文献   

14.
The monoclonal antibody 4C5 recognizes a cell surface antigen of the developing central nervous system (CNS) and peripheral nervous system (PNS). In vitro antibody perturbation experiments have shown that the 4C5 antigen is involved in horizontal and vertical migration processes of granule cells during development of the rodent cerebellum. Moreover, results concerning the cellular localization and temporal expression of the 4C5 antigen during development and after injury of the rat sciatic nerve suggested that it may participate in Schwann cell migrations that occur during the above processes. To test this possibility, we examined the effects of our function-blocking antibody on Schwann cell migration in three in vitro bioassays: in tissue cultures from developing sciatic nerve, in dorsal root ganglion cultures on cryostat sections of normal or denervated adult sciatic nerve, and in pure Schwann cell cultures. The results showed that the presence of monoclonal antibody 4C5 in all the above culture systems strongly inhibited Schwann cell migration, indicating that the 4C5 antigen participates in migration processes that take place during development and regeneration of the peripheral nervous system. Moreover, staining of migrating Schwann cells in the presence of monoclonal antibody 4C5 with rhodamine-phalloidin showed that 4C5 antigen activity is associated with actin cytoskeletal organization of these cells, and more specifically with lamellipodia formation.  相似文献   

15.
We have investigated expression of the axon growth-inhibitory proteoglycan NG2 in peripheral nerve. In the adult, NG2 was present on endoneurial and perineurial fibroblasts, but not on Schwann cells. At birth, peripheral nerve NG2 was heavily glycanated, but was much less so in the adult. In vitro, sciatic nerve fibroblasts also produced heavily glycanated NG2. After peripheral nerve injury in rats and humans, an accumulation of NG2-positive cells was observed at the injury site. In the rat, there was an increase in NG2 glycanation for at least 2 weeks following injury. In mixed cultures of Schwann cells and peripheral nerve fibroblasts, the axons preferred to grow on the Schwann cells and seldom crossed onto the fibroblasts. Three-dimensional cultures of sciatic nerve fibroblasts were inhibitory to the growth of dorsal root ganglion axons. Inhibition of proteoglycan synthesis made the cells more permissive. NG2 may play a part in blocking axon regeneration through scar tissue in injured human peripheral nerve.  相似文献   

16.
17.
We present here a fast protocol that could be used to obtain highly purified cultures of maximal proliferating adult rat Schwann cells. These adult rat Schwann cells can be transfected in a nonbiological way using the physical transfection method of electroporation. Schwann cells are decisive in recovery of peripheral nerves after injury. In a clinical context, the use of enriched adult Schwann cells is necessary for autologous cell transplantation within nerve transplants for peripheral nerve repair. Different parameters such as tissue preparation, culture conditions, and protocols for enrichment, elevation of proliferation rates, and transfection were evaluated in cell cultures harvested from adult rat peripheral nerves. Cell preparation from in vivo predegenerated adult rat sciatic nerves combined with the use of melanocyte growth medium supplemented with forskolin, fibroblast growth factor (FGF)-2, and pituitary extract as a selective, serum-free culture medium, with a secondary cell-enrichment step using specific detachment, resulted in highly enriched cultures of adult rat Schwann cells (>90%) with enhanced proliferation rates (>or=40%). About 20% of these adult Schwann cells could be modified genetically using an optimized electroporation protocol.  相似文献   

18.
Differential expression of miRNAs occurs in injured proximal nerve stumps and includes miRNAs that are firstly down-regulated and then gradually up-regulated following nerve injury. These miRNAs might be related to a Schwann cell phenotypic switch. miR-30c, as a member of this group, was further investigated in the current study. Sprague-Dawley rats underwent sciatic nerve transection and proximal nerve stumps were collected at 1, 4, 7, 14, 21, and 28 days post injury for analysis. Following sciatic nerve injury, miR-30c was down-regulated, reaching a minimum on day 4, and was then upregulated to normal levels. Schwann cells were isolated from neonatal rat sciatic nerve stumps, then transfected with miR-30c agomir and co-cultured in vitro with dorsal root ganglia. The enhanced expression of miR-30c robustly increased the amount of myelin-associated protein in the co-cultured dorsal root ganglia and Schwann cells. We then modeled sciatic nerve crush injury in vivo in Sprague-Dawley rats and tested the effect of perineural injection of miR-30c agomir on myelin sheath regeneration. Fourteen days after surgery, sciatic nerve stumps were harvested and subjected to immunohistochemistry, western blot analysis, and transmission electron microscopy. The direct injection of miR-30c stimulated the formation of myelin sheath, thus contributing to peripheral nerve regeneration. Overall, our findings indicate that miR-30c can promote Schwann cell myelination fol-lowing peripheral nerve injury. The functional study of miR-30c will benefit the discovery of new therapeutic targets and the development of new treatment strategies for peripheral nerve regeneration.  相似文献   

19.
H. Li  C. Wigley  S.M. Hall 《Glia》1998,24(3):290-303
C-erbB receptor/neuregulin signalling plays a significant role in Schwann cell function. In vivo, Schwann cells up-regulate expression of c-erbB receptors in the first month after injury, but receptor expression is down-regulated with time to levels that are not detectable immunohistochemically. The inability of chronically denervated Schwann cells to respond adequately to signals derived from regenerating axons may be one reason why delayed repair of an injured peripheral nerve frequently fails. We have examined the effects of GGF on denervated Schwann cells in vitro. A modified delayed dissociation technique was used to obtain adult rat Schwann cells from the distal stumps of transected sciatic nerves which had been acutely (7 days) or chronically (2–6 month) denervated. We found that in vitro denervated Schwann cells invariably expressed p75NTR and c-erbB receptors. There was a progressive decrease in total cell yield and the percentage of cells with Schwann cell phenotype (p75NTR and/S-100 or/laminin or /GFAP or/c-erbB positive); proliferation rate; migratory potential; and expression of the cell adhesion molecules N-CAM and N-cadherin, with increasing time of denervation. Addition of GGF2 had a significant stimulatory effect upon Schwann cell proliferation and migration, and an increased proportion of Schwann cells expressed N-CAM and N-cadherin, suggesting that these responses were mediated via GGF/c-erbB signalling. Our results support the view that it may be possible to manipulate chronically denervated Schwann cells so that they become more responsive to signals derived from regrowing axons. GLIA 24:290–303, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge.Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury.Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration,and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury.This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No.30/3203) on April 12,2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号