首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Design strategies to improve soluble macromolecular delivery constructs   总被引:8,自引:0,他引:8  
Macromolecular therapeutics provide numerous benefits for the delivery of cytotoxic or poorly soluble drugs in vivo. However, these constructs often encounter barriers for drug delivery on both the systemic and subcellular level. Many soluble polymer carriers have been designed to surmount specific physiological barriers individually, but less work has been dedicated to designing an all-encompassing construct that addresses multiple therapeutic barriers at once. Incorporation of multiple agents already individually known to increase effectiveness into one carrier could further improve current drug delivery technology. Recent developments in subcellular delivery of therapeutic agents in soluble macromolecular carriers are discussed in the context of the future possibility for the design of an all-encompassing soluble multi-functional drug delivery vehicle.  相似文献   

3.
Polymer nano-sized hydrogels (nanogels) as drug delivery carriers have been investigated over the last few decades. Pullulan, a nontoxic and nonimmunogenic hydrophilic polysaccharide derived from fermentation of black yeast like Aureobasidium pullulans with great biocompatibility and biodegradability, is one of the most attractive carriers for drug delivery systems. In this review, we describe the preparation, characterization, and ‘switch-on/off’ mechanism of typical pullulan self-assembled nanogels (self-nanogels), and then introduce the development of hybrid hydrogels that are numerous resources applied for regenerative medicine. A major section is used for biomedical applications of different nanogel systems based on modified pullulan, which exert smart stimuli-responses at ambient conditions such as charge, pH, temperature, light, and redox. Pullulan self-nanogels have found increasingly extensive application in protein delivery, tissue engineering, vaccine development, cancer therapy, and biological imaging. Functional groups are incorporated into self-nanogels and contribute to expressing desirable results such as targeting and modified release. Various molecules, especially insoluble or unstable drugs and encapsulated proteins, present improved solubility and bioavailability as well as reduced side effects when incorporated into self-nanogels. Finally, the advantages and disadvantages of pullulan self-nanogels will be analyzed accordingly, and the development of pullulan nanogel systems will be reviewed.  相似文献   

4.
Finding adequate carriers for proteins/peptides and anticancer drugs delivery has become an urgent need, owing to the growing number of therapeutic macromolecules and the increasing amount of cancer incidence. Polysaccharide-based nanogels have attracted interest as carriers for proteins/peptides and anticancer drugs because of their characteristic properties like biodegradability, biocompatibility, stimuli-responsive behaviour, softness and swelling to help achieve a controlled, triggered response at the target site. In addition, the groups of the polysaccharide backbone are able to be modified to develop functional nanogels. Some polysaccharides have the intrinsic ability to recognise specific cell types, allowing the design of targeted drug delivery systems through receptor-mediated endocytosis. This review is aimed at describing and exploring the potential of polysaccharides that are used in nanogels which can help to deliver proteins/peptides and anticancer drugs.  相似文献   

5.
A major challenge in cancer chemotherapy is the selective delivery of small molecule anti cancer agents to tumor cells. Water-soluble polymer-drug conjugates exhibit good water solubility, increased half-life, and potent anti tumor effects. By localizing the drug at the desired site of action, macromolecular therapeutics have improved efficacy and enhanced safety at lower doses. Since small molecule drugs and macromolecular drugs enter cells by different pathways, multi-drug resistance (MDR) can be minimized. Anti-cancer polymer-drug conjugates can be divided into two targeting modalities: passive and active. Tumor tissues have anatomic characteristics that differ from normal tissues. Macromolecules penetrate and accumulate preferentially in tumors relative to normal tissues, leading to extended pharmacological effects. This "enhanced permeability and retention" (EPR) effect is the principal reason for current successes with macromolecular anti-cancer drugs. Both natural and synthetic polymers have been used as drug carriers, and several bioconjugates have been clinically approved or are in human clinical trials. While clinically useful anti-tumor activity has been achieved using passive macromolecular drug delivery systems, further selectivity is possible by active targeting. Attachment of targeting moieties to the polymer backbone can further exploit differences between cancer and normal cells through selective receptor-mediated endocytosis. This strategy would augment the EPR effect, thereby further improving the therapeutic index of the macromolecular drug. This review discusses the development and therapeutic potential of prototype macromolecular drugs for use in cancer chemotherapy. Specific examples are selected to illustrate the basic design principles for soluble polymeric drug delivery systems.  相似文献   

6.
Colon targeted drug delivery has the potential to deliver bioactive agents for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. Various strategies, currently available to target the release of drugs to colon, include formation of prodrug, coating of pH-sensitive polymers, use of colon-specific biodegradable polymers, timed released systems, osmotic systems, and pressure controlled drug delivery systems. Among the different approaches to achieve targeted drug release to the colon, the use of polymers especially biodegradable by colonic bacteria holds great promise. Polysaccharidases are bacterial enzymes that are available in sufficient quantity to be exploited in colon targeting of drugs. Based on this approach, various polysaccharides have been investigated for colon-specific drug release. These polysaccharides include pectin, guar gum, amylose, inulin, dextran, chitosan, and chondroitin sulphate. This family of natural polymers has an appeal to drug delivery as it is comprised of polymers with a large number of derivatizable groups, a wide range of molecular weights, varying chemical compositions, and, for the most part, low toxicity and biodegradability yet high stability. The most favorable property of these materials is their approval as pharmaceutical excipients.  相似文献   

7.
Polysaccharides for colon targeted drug delivery   总被引:7,自引:0,他引:7  
Colon targeted drug delivery has the potential to deliver bioactive agents for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. Various strategies, currently available to target the release of drugs to colon, include formation of prodrug, coating of pH-sensitive polymers, use of colon-specific biodegradable polymers, timed released systems, osmotic systems, and pressure controlled drug delivery systems. Among the different approaches to achieve targeted drug release to the colon, the use of polymers especially biodegradable by colonic bacteria holds great promise. Polysaccharidases are bacterial enzymes that are available in sufficient quantity to be exploited in colon targeting of drugs. Based on this approach, various polysaccharides have been investigated for colon-specific drug release. These polysaccharides include pectin, guar gum, amylose, inulin, dextran, chitosan, and chondroitin sulphate. This family of natural polymers has an appeal to drug delivery as it is comprised of polymers with a large number of derivatizable groups, a wide range of molecular weights, varying chemical compositions, and, for the most part, low toxicity and biodegradability yet high stability. The most favorable property of these materials is their approval as pharmaceutical excipients.  相似文献   

8.
Drug delivery systems, offering controlled delivery of biologically active agents, are rapidly gaining importance in pharmaceutical research and development. To achieve controlled drug delivery, i.e., the administration of drugs so that optimal amount reaches the target site to cure or control the disease state, increasingly sophisticated systems containing different carriers have been developed. Macromolecules represent one of the carriers involved, and they have taken on a significantly prominent role in various modes of administration of therapeutic agents. Among macromolecules, for example, synthetic copolymers, polysaccharides, liposomes, polyanions and antibodies, as drug carriers, liposomes have proved most effective for diseases affecting the reticuloendothelial system and blood cells in particular. Liposomes, which are vesicles consisting of one or more concentrically ordered assemblies of phospholipids bilayers, range in size from a nanometer to several micrometers. Phospholipids such as egg phosphatidylcholine, phosphatidylserine, synthetic dipalmitoyl-DL-alpha-phosphatidylcholine or phosphatidylinositol, have been used in conjunction with cholesterol and positively or negatively charged amphiphiles such as stearylamine or phosphatidic acid. Alteration of surface charge has been shown to enhance drug incorporation and also influence drug release. Because of the multifold characteristics as drug carriers, liposomes have been investigated extensively as carriers of anticancer agents for the past several years. Liposomal entrapments include a variety of pharmacologically active compounds such as antimalarial, antiviral, anti-inflammatory and anti-fungal agents as well as antibiotics, prostaglandins, steroids and bronchodilators to name a few. The liposomal entrapment has been shown to have considerable effect on the pharmacokinetics and tissue distribution of administered drugs. Despite the potential value of liposomes as unique carriers, the major obstacles are the first order targeting of a systemically given liposomes, physical stability and manufacture of the liposomal products and these problems still remain to be overcome. Drug delivery systems evolving in the 1980s have become increasingly dependent on fundamental cell-biology and receptor-mediated endocytotic mechanisms. Drug delivery systems during the 1990s may take advantage of the specificity of receptor-mediated uptake mechanisms as well as polymer chemistry and cell-biology in order to introduce more precise and efficient target-specific delivery systems that are based especially on the liposome technology.  相似文献   

9.
Some recent advances pertaining to the biopharmaceutical aspects of drug delivery are briefly given, followed by a review of the current status of the application of soluble macromolecular carriers for drug delivery. The dextran conjugates were selected as model compounds to demonstrate the implications of the biopharmaceutical approach in the design, evaluation, and delivery of macromolecular conjugates.  相似文献   

10.
PLGA is a FDA-approved biocompatible and biodegradable polymer that is widely used in biomedical fields including drug delivery. Micro and nanoparticles based on PLGA have been extensively studied as drug delivery systems. Numerous studies proved that PLGA particulate systems are highly promising drug carriers for tumor targeting as well as pulmonary, oral, ophthalmic and vaginal delivery. PLGA particles can load a variety of classes of drugs including peptides, proteins and siRNA, protect unstable drugs in the body and have an ability to adapt versatile surface functionalities. PLGA particle systems have evolved with advancement of nano and biotechnology in the past decade. This review focuses on novel and innovative PLGA-based particulate drug delivery carriers in recent years.  相似文献   

11.
The interaction between four different microparticulate drug carriers and macrophages was investigated in vitro. The microparticles, consisting of crosslinked starch (1,4-alpha-D-glucan with 1,6-alpha-branches), dextran (1,6-alpha-D-glucan with 1,3-alpha-branches), lichenan (1,3-beta-D-glucan), or mannan (1,6-alpha-D-mannan with 1,2-alpha- and 1,3-alpha-branches), were investigated for their macrophage stimulatory properties. Macrophage stimulation was assayed by the uptake of [14C]glucosamine and stimulatory indices were calculated. Microparticles made of crosslinked lichenan were most stimulatory, followed by the biologically inert mannan and dextran microparticles. Biodegradable starch microparticles were less stimulatory to the macrophages than the other microparticles. All microparticles were phagocytosed to the same extent and stimulated the macrophages to release oxygen radicals. Lichenan, mannan, and dextran microparticles induced morphological changes in the macrophages when given in nontoxic doses. No morphological changes were observed when the macrophages were exposed to starch microparticles or soluble polysaccharides.  相似文献   

12.
《Drug delivery》2013,20(1):75-82
Abstract

The body distribution of pullulan and dextran, which are nonionic polysaccharides, was studied. After intravenous injection of 125I-labeled polysaccharides with different molecular weights, the half-life period in the blood circulation and the body distribution were pharmacokinetically investigated and compared with those of polyethylene glycol (PEG) and polyvinyl alcohol (PVA). Polysaccharides of higher molecular weights circulated in the bloodstream for a longer period than those of lower molecular weights. The half-life period of pullulan ranged from 15 to 90 min, changing remark-ably around molecular weight 30,000, and was shorter than that of dextran. Body distribution studies demonstrated that pullulan tended to accumulate in the liver to a greater extent than dextran, whereas PEG and PVA were hardly disposed there. This preferable accumulation of polysaccharides in the liver was observed over the whole molecular weight range studied. Eighty percent of pullulan with large molecular weights was localized in the liver without any accumulation in other organs, suggesting an inherent affinity of pullulan for the liver. In addition, the excretion clearance of pullulan and dextran decreased with an increase in molecular weight, although the clearance of pullulan was smaller than that of dextran over the high-molecularweight range. It is likely that the remarkable affinity of pullulan for liver causes a short half-life period in the circulation compared with that of dextran. These findings indicate that pullulan is promising as a polymeric carrier for drugs targeted to the liver.  相似文献   

13.
The ever increasing improvements of pharmaceutical formulations have been often obtained by means of the use of hydrogels. In particular, environmentally sensitive hydrogels have been investigated as “smart” delivery systems capable to release, at the appropriate time and site of action, entrapped drugs in response to specific physiological triggers. At the same time the progress in the tissue engineering research area was possible because of significant innovations in the field of hydrogels. In recent years multicomponent hydrogels, such as semi-Interpenetrating Polymer Networks (semi-IPNs) and Interpenetrating Polymer Networks (IPNs) have emerged as innovative biomaterials for drug delivery and as scaffolds for tissue engineering. These interpenetrated hydrogel networks, which can be obtained by either chemical or physical crosslinking, in most cases show physico-chemical properties that can remarkably differ from those of the macromolecular constituents. Among the synthetic and natural polymers that have been used for the preparation of semi-IPNs and IPNs, polysaccharides represent a class of macromolecules of particular interest because they are usually abundant, available from renewable sources and have a large variety of composition and properties that may allow appropriately tailored chemical modifications. Sometimes both macromolecular systems are based on polysaccharides but often also synthetic polymers are present together with polysaccharide chains.  相似文献   

14.
Bioadhesive microspheres as a controlled drug delivery system   总被引:15,自引:0,他引:15  
The concept of controlled drug delivery has been traditionally used to obtain specific release rates or spatial targeting of active ingredients. The phenomenon of bioadhesion, introduced by Park and Robinson [Park, K., Robinson, J.R., 1984. Bioadhesive polymers as platforms for oral controlled drug delivery: method to study bioadhesion. Int. J. Pharm. 198, 107-127], has been studied extensively in the last decade and applied to improve the performance of these drug delivery systems. Recent advances in polymer science and drug carrier technologies have promulgated the development of novel drug carriers such as bioadhesive microspheres that have boosted the use of "bioadhesion" in drug delivery. This article presents the spectrum of potential applications of bioadhesive microspheres in controlled drug delivery ranging from the small molecules, to peptides, and to the macromolecular drugs such as proteins, oligonucleotides and even DNA. The development of mucus or cell-specific bioadhesive polymers and the concepts of cytoadhesion and bioinvasion provide unprecedented opportunities for targeting drugs to specific cells or intracellular compartments. Developments in the techniques for in vitro and in vivo evaluation of bioadhesive microspheres have also been discussed.  相似文献   

15.
Drug delivery has been greatly improved over the years by means of chemical and physical agents that increase bioavailability, improve pharmacokinetic and reduce toxicities. At the same time, cell based delivery systems have also been developed. These possesses a number of advantages including prolonged delivery times, targeting of drugs to specialized cell compartments and biocompatibility. Here we'll focus on erythrocyte-based drug delivery. These systems are especially efficient in releasing drugs in circulations for weeks, have a large capacity, can be easily processed and could accommodate traditional and biologic drugs. These carriers have also been used for delivering antigens and/or contrasting agents. Carrier erythrocytes have been evaluated in thousands of drug administration in humans proving safety and efficacy of the treatments. Erythrocyte-based delivery of new and conventional drugs is thus experiencing increasing interests in drug delivery and in managing complex pathologies especially when side effects could become serious issues.  相似文献   

16.
Lipoproteins, the endogenous lipid-protein associations responsible for lipid metabolism within the human body, have attracted interest in recent years for their potential as drug delivery carriers owing to, mainly, their lipophilic/amphiphilic nature, which makes them ideal for interacting with highly lipophilic drugs. After lipoprotein particles have been isolated from the blood, drugs can be "loaded" onto them with a variety of methods. Loading can be done either in soluble/suspended form in a liquid medium or as a dry film. Each method has advantages and disadvantages. The drug-loaded lipoproteins can be modified by the attachment of different ligands that target the particles to specific tissue/cell types within the body. A wide variety of drug molecules both from small molecular or macromolecular structures have been tested successfully, mostly in vitro, for their potential for delivery by lipoprotein carriers.  相似文献   

17.
Targeted intracellular delivery of therapeutics: an overview   总被引:1,自引:0,他引:1  
During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.  相似文献   

18.
Azo compounds have the potential to act as drug carriers that facilitate the selective release of therapeutic agents to the colon, and also to effect the oral administration of those macromolecular drugs that require colon-specific drug delivery. With some further research-driven refinements, these materials may lead to more efficient treatments for local conditions, such as colonic cancer or inflammatory bowel disease. This article provides an overview of the azo-based systems developed to date, identifies the requirements for an ideal carrier, and highlights the directions for further developments in the field of azo group-facilitated colonic delivery.  相似文献   

19.
Tumoritropic and lymphotropic principles of macromolecular drugs   总被引:15,自引:0,他引:15  
The advantages and disadvantages of macromolecular drugs, particularly on synthetic polymer-protein conjugates, are described in this article. Improvements in protein drugs, after tailoring with polymers, are as follows: increased plasma half-life, loss of antigenecity, lymphotropism, and, especially, preferred tumor-targeting efficiency and long-term retention in the tumor tissues. Hydrophobic character can make a drug also possible for oily formulation. Explained are the rationales of macromolecular drugs to preferential delivery to the tumor and lymphatic tissues based on our finding on pathological/anatomical differences of the blood and lymphatic vasculatures. Enhanced vascular permeability, which facilitates the macromolecular drug-leakage out of the blood vessel, is discussed. A model compound, which is discussed in detail, is smancs--styrene-co-maleic acid conjugated neocarzinostatin (MW 16 K). Some data on polymer-conjugated enzymes as potential therapeutic agents are described as well.  相似文献   

20.
Targeted drug delivery systems have been used extensively to improve the pharmacological and therapeutic activities of a wide variety of drugs and genes. In this article, we summarize the factors determining the tissue disposition of delivery systems: the physicochemical and biological characteristics of the delivery system and the anatomic and physiological characteristics of the tissues. There are several modes of drug and gene targeting, ranging from passive to active targeting, and each of these can be achieved by optimizing the design of the delivery system to suit a specific aim. After entering the systemic circulation, either by an intravascular injection or through absorption from an administration site, however, a delivery system encounters a variety of blood components, including blood cells and a range of serum proteins.These components are by no means inert as far as interaction with the delivery system is concerned, and they can sometimes markedly effect its tissue disposition. The interaction with blood components is known to occur with particulate delivery systems, such as liposomes, or with cationic charge-mediated delivery systems for genes. In addition to these rather nonspecific ones, interactions via the targeting ligand of the delivery system can occur. We recently found that mannosylated carriers interact with serum mannan binding protein, greatly altering their tissue disposition in a number of ways that depend on the properties of the carriers involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号