首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca(2+). The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizure-like activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.  相似文献   

2.
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.  相似文献   

3.
Neuropeptide Y (NPY) immunoreactivity and gene expression was investigated in the hippocampus after kainic acid-induced seizures and pentylenetetrazol kindling in the rat. Pronounced increases of NPY immunoreactivity were found in the terminal field of mossy fibers in both animal models. In kainic acid-treated rats the peptide progressively accumulated in the hilus and the stratum lucidum of CA3, 5-60 days after injection of the toxin and, at the later intervals, extended to the supragranular molecular layer of the dentate gyrus indicating sprouting of these neurons. Unilateral injection of colchicine into the hilus abolished NPY staining of the mossy fibers. Using in situ hybridization, in both animal models markedly enhanced expression of prepro-NPY mRNA was observed in the granular layer, containing the perikarya of the mossy fibers. It is suggested that sustained expression of the neuromodulatory neuropeptide NPY, in addition to the observed plastic changes, may contribute to altered excitability of hippocampal mossy fibers in epilepsy. Neither somatostatin immunoreactivity nor gene expression were enhanced in granule cells/mossy fibers.  相似文献   

4.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.  相似文献   

5.
Synaptopodin, a 100 kD protein, associated with the actin cytoskeleton of the postsynaptic density and dendritic spines, is thought to play a role in modulating actin-based shape and motility of dendritic spines during formation or elimination of synaptic contacts. Temporal lobe epilepsy in humans and in rats shows neuronal damage, aberrant sprouting of hippocampal mossy fibers and subsequent synaptic remodeling processes. Using kainic acid (KA) induced epilepsy in rats, the postictal hippocampal expression of synaptopodin was analyzed by in situ hybridization (ISH) and immunohistochemistry. Sprouting of mossy fibers was visualized by a modified Timm's staining. ISH showed elevated levels of Synaptopodin mRNA in perikarya of CA3 principal neurons, dentate granule cells and in surviving hilar neurons these levels persisted up to 8 weeks after seizure induction. Synaptopodin immunoreactivity in the dendritic layers of CA3, in the hilus and in the inner molecular layer of the dentate gyrus (DG) was initially reduced. Eight weeks after KA treatment Synaptopodin protein expression returned to control levels in dendritic layers of CA3 and in the entire molecular layer of the DG. The recovery of protein expression was accompanied by simultaneous supra- and infragranular mossy fiber sprouting. Postictal upregulation of Synaptopodin mRNA levels in target cell populations of limbic epilepsy-elicited damage and subsequent Synaptopodin protein expression largely co-localized with remodeling processes as demonstrated by mossy fiber sprouting. It may thus represent a novel postsynaptic molecular correlate of hippocampal neuroplasticity.  相似文献   

6.
Temporal lobe epilepsy is usually associated with a latent period and an increased seizure frequency following a precipitating insult. After kainate treatment, the mossy fibers of the dentate gyrus are hypothesized to form recurrent excitatory circuits between granule cells, thus leading to a progressive increase in the excitatory input to granule cells. Three groups of animals were studied as a function of time after kainate treatment: 1-2 wk, 2-4 wk, and 10-51 wk. All the animals studied 10-51 wk after kainate treatment were observed to have repetitive spontaneous seizures. Whole cell patch-clamp recordings in hippocampal slices showed that the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in granule cells increased with time after kainate treatment. This increased excitatory synaptic input was correlated with the intensity of the Timm stain in the inner molecular layer (IML). Flash photolysis of caged glutamate applied in the granule cell layer evoked repetitive EPSCs in 10, 32, and 66% of the granule cells at the different times after kainate treatment. When inhibition was reduced with bicuculline, photostimulation of the granule cell layer evoked epileptiform bursts of action potentials only in granule cells from rats 10-51 wk after kainate treatment. These data support the hypothesis that kainate-induced mossy fiber sprouting in the IML results in the progressive formation of aberrant excitatory connections between granule cells. They also suggest that the probability of occurrence of electrographic seizures in the dentate gyrus increases with time after kainate treatment.  相似文献   

7.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

8.
目的 探讨海马齿状回苔状纤维侧枝发芽与癫痫发作敏感性形成之间的关系。方法 在颈部皮下注射惊厥剂量的海人酸 (KA ,10mg/kg)诱发大鼠出现癫痫发作后 ,采用Timm’s染色法 ,分别在注射KA后3d、7d和 1个月 3个时间点观察致痫大鼠海马齿状回内苔状纤维发芽的情况。结果 Timm’s染色发现 ,注射KA后 7d ,海马齿状回分子层内带和颗粒细胞上层出现苔状纤维的异常发芽 ,注射KA后 1个月海马齿状回内Timm’s染色颗粒颜色加深 ,范围增大。提示海马苔状纤维发芽形成的时间过程与癫痫发作敏感性形成的时间过程一致。结论 海马齿状回分子层内带和颗粒细胞上层出现异常的苔状纤维发芽可能与癫痫发作敏感性形成有关。  相似文献   

9.
Jeub M  Lie A  Blümcke I  Elger CE  Beck H 《Neuroscience》1999,94(2):465-471
The endogenous kappa receptor selective opioid peptide dynorphin has been shown to inhibit glutamate receptor-mediated neurotransmission and voltage-dependent Ca2+ channels. It is thought that dynorphin can be released from hippocampal dentate granule cells in an activity-dependent manner. Since actions of dynorphin may be important in limiting excitability in human epilepsy, we have investigated its effects on voltage-dependent Ca2+ channels in dentate granule cells isolated from hippocampi removed during epilepsy surgery. One group of patients showed classical Ammon's horn sclerosis characterized by segmental neuronal cell loss and astrogliosis. Prominent dynorphin-immunoreactive axon terminals were present in the inner molecular layer of the dentate gyrus, indicating pronounced recurrent mossy fiber sprouting. A second group displayed lesions in the temporal lobe that did not involve the hippocampus proper. All except one of these specimens showed a normal pattern of dynorphin immunoreactivity confined to dentate granule cell somata and their mossy fiber terminals in the hilus and CA3 region. In patients without mossy fiber sprouting the application of the kappa receptor selective opioid agonist dynorphin A ([D-Arg6]1-13, 1 microM) caused a reversible and dose-dependent depression of voltage-dependent Ca2+ channels in most granule cells. These effects could be antagonized by the non-selective opioid antagonist naloxone (1 microM). In contrast, significantly less dentate granule cells displayed inhibition of Ca2+ channels by dynorphin A in patients with mossy fiber sprouting (Chi-square test, P < 0.0005). The lack of dynorphin A effects in patients showing mossy fiber sprouting compares well to the loss of kappa receptors on granule cells in Ammon's horn sclerosis but not lesion-associated epilepsy. Our data suggest that a protective mechanism exerted by dynorphin release and activation of kappa receptors may be lost in hippocampi with recurrent mossy fiber sprouting.  相似文献   

10.
The influence of sustained epileptic seizures evoked by intraperitoneal injection of kainic acid on the gene expression of the neuropeptides somatostatin and neuropeptide Y and on the damage of neurons containing these peptides was studied in the rat brain. Injection of kainic acid induced an extensive loss of somatostatin and, though less pronounced, of neuropeptide Y neurons in the inner part of the hilus of the dentate gyrus. Neuropeptide Y-immunoreactive neurons located in the subgranular layer of the hilus, presumably pyramidal-shaped basket cells, were spared by the treatment. Although neuropeptide Y messenger RNA was not detected in granule cells of control rats, it was found there after kainic acid seizures at all time intervals investigated (12 h to 90 days after injection of kainic acid). High concentrations of neuropeptide Y messenger RNA were especially observed 24 h after injection of kainic acid. At this time neuropeptide Y messenger RNA was also transiently observed in CA1 pyramidal cells. Neuropeptide Y synthesis in granule cells in turn gave rise to an intense immunoreactivity of the peptide in the terminal field of mossy fibers which persisted for the entire time period (90 days) investigated. In addition, neuropeptide Y messenger RNA concentrations were also drastically elevated in presumptive basket cells located at the inner surface of the granule cell layer, especially at the “late” time intervals investigated (30–90 days after kainic acid).

These data support the concept that extensive activation of granule cells by limbic seizures contributes to the observed neuronal cell death in CA3 pyramidal neurons and interneurons of the hilus. Consecutively, basket cells containing neuropeptide Y and presumably GABA might be activated and participate in recurrent inhibition of granule cells. Neuropeptide Y-immunoreactive fibers observed in the inner molecular layer at “late” time intervals after kainic acid may result either from collateral sprouting of mossy fibers or from basket cells extensively expressing the peptide.

It is speculated that neuropeptide Y synthesized and released at a high rate from granule cells and basket cells may exert a protective action against seizures.  相似文献   


11.
Immunohistological and in situ hybridization techniques were used to study the influence of kainic acid-induced seizures and of pentylenetetrazol kindling on neurokinin B immunoreactivity and neurokinin B mRNA in the rat hippocampus. Pronounced increases in neurokinin B immunoreactivity were observed in the terminal field of mossy fibres 10-60 days after intraperitoneal injection of kainic acid. These slow but persistent increases in immunoreactivity were accompanied by markedly enhanced expression of neurokinin B mRNA in the granule cells and in hilar interneurons adjacent to the granule cell layer. These changes were preceded by transient increases in neurokinin B mRNA and immunoreactivity in CA1 pyramidal cell layer two and 10 days after kainic acid, which, however, subsided later on. Pentylenetetrazol kindling caused similar increases in neurokinin B mRNA expression in granule cells and in CA1 pyramidal cells, but not in hilar interneurons. In CA1, increased neurokinin B message was present two days after termination of the kindling procedure but not after 10 days. Sixty days after kainic acid injection, neurokinin B immunoreactivity extended to the inner-third of the molecular layer of the dentate gyrus. After pentylenetetrazol kindling, a neurokinin B-immunoreactive band was observed in the infrapyramidal region of CA3. Lesions of the dentate granule cells by local injection of colchicine in kainic acid-treated rats abolished the supragranular neurokinin B-positive staining, whereas it was almost unchanged after transection of the ventral hippocampal commissure. These observations suggest that neurokinin B immunoreactivity may be located in ipsilateral mossy fibres undergoing collateral sprouting to the inner molecular layer or to the infrapyramidal region in CA3, respectively. Preprotachykinin A mRNA, which encodes for neurokinin A and substance P, and substance P immunoreactivity were not changed in the hippocampus of epileptic rats compared with untreated animals. The observed changes in neurokinin B immunoreactivity and mRNA indicate that specific functional and morphological changes may be induced in hippocampal neurons by recurrent limbic seizures.  相似文献   

12.
A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in approximately 74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4-6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.  相似文献   

13.
Tu B  Jiao Y  Herzog H  Nadler JV 《Neuroscience》2006,143(4):1085-1094
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and spontaneous release of neuropeptide Y (NPY). NPY inhibits glutamate release tonically through activation of presynaptic Y2 receptors. In the present study, the effects of endogenous and applied NPY were investigated in C57Bl/6 mice that had experienced pilocarpine-induced status epilepticus and subsequently developed a robust recurrent mossy fiber pathway. Whole cell patch clamp recordings made from dentate granule cells in hippocampal slices demonstrated that, as in rats, applied NPY inhibits recurrent mossy fiber synaptic transmission, the Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide (BIIE0246) blocks its action and BIIE0246 enhances synaptic transmission when applied by itself. Y5 receptor agonists had no significant effect. Thus spontaneous release of NPY tonically inhibits synaptic transmission in mice and its effects are mediated by Y2 receptor activation. However, both NPY and BIIE0246 were much less effective in mice than in rats, despite apparently equivalent expression of NPY in the recurrent mossy fibers. Immunohistochemistry indicated greater expression of Y2 receptors in the mossy fiber pathway of normal mice than of normal rats. Pilocarpine-induced status epilepticus markedly reduced the immunoreactivity of mouse mossy fibers, but increased the immunoreactivity of rat mossy fibers. Mossy fiber growth into the inner portion of the dentate molecular layer was associated with increased Y2 receptor immunoreactivity in rat, but not in mouse. These contrasting receptor changes can explain the quantitatively different effects of endogenously released and applied NPY on recurrent mossy fiber transmission in mice and rats.  相似文献   

14.
The most well-documented synaptic rearrangement associated with temporal lobe epilepsy is mossy fiber sprouting (MFS). MFS is a pronounced expansion of granule cell mossy fiber axons into the inner dentate molecular layer. The recurrent excitatory network formed by MFS is hypothesized to play a critical role in epileptogenesis, which is the transformation of the normal brain into one that is prone to recurrent spontaneous seizures. While many studies have focused on the functional consequences of MFS, relatively few have investigated the molecular mechanisms underlying the increased propensity of mossy fibers to invade the inner molecular layer. We hypothesized that changes in two components of the extracellular matrix, hyaluronan and its primary receptor, CD44, contribute to MFS. Hyaluronan contributes to laminar-specificity in the hippocampus and increases in hyaluronan and CD44 are associated with temporal lobe epilepsy. We tested our hypothesis in an in vitro model of MFS using a combination of histological and biochemical approaches. Application of kainic acid (KA) to organotypic hippocampal slice cultures induced robust MFS into the inner dentate molecular layer compared with vehicle-treated controls. Degradation of hyaluronan with hyaluronidase significantly reduced but did not eliminate KA-induced MFS, suggesting that hyaluronan played a permissive role in MFS, but that loss of hyaluronan signaling alone was not sufficient to block mossy fiber reorganization. Comparison of CD44 expression with MFS revealed that when CD44 expression in the molecular layers was high, MFS was minimal and when CD44 expression/function was reduced following KA treatment or with function blocking antibodies, MFS was increased. The time course of KA-induced reductions in CD44 expression was identical to the temporal progression of KA-induced MFS reported previously in hippocampal slice cultures, suggesting that reduced CD44 expression may help promote MFS. Understanding the molecular mechanisms underlying MFS may lead to therapeutic interventions that limit epileptogenesis.  相似文献   

15.
The mossy fiber system in the hippocampus of amygdaloid-kindled rats was examined by using highly polysialylated neural cell adhesion molecule (PSA-NCAM) as a marker for immunohistochemical detection of immature dentate granule cells and mossy fibers in combination with bromodeoxyuridine (BrdU) labeling of newly generated granule cells. Statistically significant increases in BrdU-labeled cells and PSA-NCAM-positive cells occurred in the dentate gyrus following kindling. The increase in PSA-NCAM-immunoreactive neurites was confined to the entire stratum lucidum of CA3. Immunoelectron-microscopic examination also revealed that PSA-NCAM-positive immature synaptic terminals of the sprouting mossy fibers increased in the stratum lucidum of CA3 in the kindled rats. The increase in the numbers of PSA-NCAM-positive granule cells correlated well with the increase in the immunopositive neurites and synaptic terminals on the mossy fiber trajectory. The increase in these PSA-NCAM-immunopositive structures is thought to reflect the enhancement of sprouting and synaptogenesis of mossy fibers by a subset of granule cells newly generated during amygdaloid-kindling and suggests that the reorganization of the mossy fiber system on the normal trajectory at least in part contributes to the acquisition and maintenance of an epileptogenic state.  相似文献   

16.
海人酸诱导癫痫大鼠齿状回神经肽Y能苔状纤维侧枝发芽   总被引:1,自引:1,他引:0  
目的:探讨海马苔状纤维侧枝发芽与癫痫发作敏感性形成的关系。材料与方法:在海人酸诱发大鼠出现癫痫发作后,采用免疫组织化学染色法观察大鼠海马齿状回内神经肽Y能纤维的异常发芽。结果:首次证实在癫痫发作后7天时,在海马齿状回内分子层就已出现神经肽Y能纤维的异常增生。结论:这可能是对癫痫发作后齿状回门区神经肽Y能神经元缺失的一种代偿性变化。  相似文献   

17.
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. The simulations also indicated that the spatially restricted, lamellar distribution of the sprouted mossy fiber contacts reported in in vivo studies was an important factor in sustaining seizure-like activity in the network. In contrast to the robust hyperexcitability-inducing effects of mossy fiber sprouting, removal of mossy cells resulted in decreased granule cell responses to perforant-path activation in agreement with recent experimental data. These results indicate the crucial role of mossy fiber sprouting even in situations where there is only relatively weak mossy fiber sprouting as is the case after moderate concussive experimental head injury.  相似文献   

18.
A feature of animal models of temporal lobe epilepsy and the human disorder is hippocampal sclerosis and Timm stain in the inner molecular layer (IML) of the dentate gyrus, which represents synaptic reorganization and may be important in epileptogenesis. We reassessed the hypothesis that pre-treatment with cycloheximide (CHX) prevents Timm staining in the IML following pilocarpine (PILO)-induced status epilepticus (a multifocal model of temporal lobe epilepsy), but allows epileptogenesis (i.e., chronic spontaneous seizures) after a latent period. Hippocampal slices from PILO-treated rats without Timm stain in the IML after CHX treatment were hypothesized to lack the electrophysiological abnormalities suggestive of recurrent excitation. The primary experimental groups were as follows: 1) CHX (1 mg/kg) 30-45 min prior to administration of PILO (320 mg/kg ip, 2) only PILO, and 3) only saline (0.5 ml, IP). The CHX pre-treatment significantly decreased the number of rats that responded to PILO with status epilepticus compared to rats that received only PILO. Pre-treatment with CHX did not significantly alter the spontaneous motor seizure rate post-treatment compared to treatment with PILO alone in those animals from each group that developed status epilepticus during PILO treatment. Timm stain in the IML was not significantly different between the PILO- and PILO+CHX-treated rats. Using quantitative methods, CHX did not prevent hilar, CA1, or CA3 neuronal loss compared to the PILO-treated rats. Extracellular responses to hilar stimulation in 30 microM bicuculline and 6 mM [K(+)](o) demonstrated all-or-none bursting in both the CHX+PILO- and PILO-treated rats but not in control rats. Whole cell recordings from granule cells, using glutamate flash photolysis to activate other granule cells, showed that both the CHX+PILO- and PILO-treated rats had excitatory synaptic interactions in the granule cell layer, which were not found after saline treatment. Some rats responded to PILO (with or without CHX pre-treatment) with only one or a few seizures at treatment, and some of these animals (n = 4) demonstrated spontaneous motor seizures within 2 mo after treatment. Timm staining and neuron loss in this group were not clearly different from saline-treated rats. These results suggest that in the PILO model, pre-treatment with CHX does not affect mossy fiber sprouting in the IML of epileptic rats and does not prevent the formation of recurrent excitatory circuits. However, the develoment of spontaneous motor seizures, in a small number of rats, could occur without detectable hippocampal neuron loss or mossy fiber sprouting, as assessed by the Timm stain method.  相似文献   

19.
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in many persons with temporal lobe epilepsy. The new connections among granule cells provide a novel mechanism of synchronization that could enhance the participation of these cells in seizures. Despite the presence of robust recurrent mossy fiber growth, orthodromic or antidromic activation of granule cells usually does not evoke repetitive discharge. This study tested the ability of modestly elevated [K(+)](o), reduced GABA(A) receptor-mediated inhibition and frequency facilitation to unmask the effect of recurrent excitation. Transverse slices of the caudal hippocampal formation were prepared from pilocarpine-treated rats that either had or had not developed status epilepticus with subsequent recurrent mossy fiber growth. During superfusion with standard medium (3.5 mM K(+)), antidromic stimulation of the mossy fibers evoked epileptiform activity in 14% of slices with recurrent mossy fiber growth. This value increased to approximately 50% when [K(+)](o) was raised to either 4.75 or 6 mM. Addition of bicuculline (3 or 30 microM) to the superfusion medium did not enhance the probability of evoking epileptiform activity but did increase the magnitude of epileptiform discharge if such activity was already present. (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (1 microM), which selectively activates type II metabotropic glutamate receptors present on mossy fiber terminals, strongly depressed epileptiform responses. This result implies a critical role for the recurrent mossy fiber pathway. No enhancement of the epileptiform discharge occurred during repetitive antidromic stimulation at frequencies of 0.2, 1, or 10 Hz. In fact, antidromically evoked epileptiform activity became progressively attenuated during a 10-Hz train. Antidromic stimulation of the mossy fibers never evoked epileptiform activity in slices from control rats under any condition tested. These results indicate that even modest changes in [K(+)](o) dramatically affect granule cell epileptiform activity supported by the recurrent mossy fiber pathway. A small increase in [K(+)](o) reduces the amount of recurrent mossy fiber growth required to synchronize granule cell discharge. Block of GABA(A) receptor-mediated inhibition is less efficacious and frequency facilitation may not be a significant factor.  相似文献   

20.
 Neuropeptide-Y (NPY) is expressed by granule cells and mossy fibres of the hippocampal dentate gyrus during experimental temporal lobe epilepsy (TLE). This expression may represent an endogenous damping mechanism since NPY has been shown to block seizure-like events following high-frequency stimulation in hippocampal slices. The pilocarpine (PILO) model of epilepsy is characterized by an acute period of status epilepticus followed by spontaneous recurrent seizures and related brain damage. We report peroxidase-antiperoxidase immunostaining for NPY in several brain regions in this model. PILO-injected animals exhibited NPY immunoreactivity in the region of the mossy fibre terminals, in the dentate gyrus inner molecular layer and, in a few cases, within presumed granule cells. NPY immunoreactivity was also dramatically changed in the entorhinal cortex, amygdala and sensorimotor areas. In addition, PILO injected animals exhibited a reduction in the number of NPY-immunoreactive interneurons compared with controls. The results demonstrate that changes in NPY expression, including expression in the granule cells and mossy fibres and the loss of vulnerable NPY neurons, are present in the PILO model of TLE. However, the significance of this changed synthesis of NPY remains to be determined. Received: 19 August 1996 / Accepted: 21 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号