首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have designed a new mucoadhesive drug delivery formulation based on H-bonded complexes of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) with the poly(ethylene glycol) (PEG), of a (PEG)-drug conjugate. The PEGylated prodrugs are synthesized with degradable PEG-anhydride-drug bonds for eventual delivery of free drug from the formulation. In this work we have used indomethacin as the model drug which is PEGylated via anhydride bonds to the PEG. The complexes are designed first to dissociate as the formulation swells in contact with mucosal surfaces at pH 7.4, releasing PEG-indomethacin, which then hydrolyses to release free drug and free PEG. We found that as MW of PAA increases, the dissociation rate of the complex decreases, which results in decreased rate of release of the drug. On the other hand, the drug release from PEG-indomethacin alone and from solid mixture of PEG-indomethacin+PAA was much faster than that from the H-bonded complexes. Due to the differences in the thermal stability, PMAA complex exhibited slightly faster drug release than that of the PAA complex of comparable MW. These H-bonded complexes of degradable PEGylated drugs with bioadhesive polymers should be useful for mucosal drug delivery.  相似文献   

2.
Development of controlled drug release systems based on thiolated polymers.   总被引:3,自引:0,他引:3  
The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.  相似文献   

3.
To develop a new mucoadhesive drug carrier, poly(vinyl pyrrolidone) (PVP)/poly(acrylic acid) (PAA) interpolymer complexes were prepared by the template polymerization of acrylic acid using PVP as a template polymer. Fourier transform infrared results showed that the interpolymer complexes were formed by hydrogen bonds between the carboxyl groups of PAA and the carbonyl groups of PVP. The adhesive forces of the PVP/PAA interpolymer complexes were higher than that of commercial Carbopol 971. Moreover, the adhesive force and the release rate can be controlled by changing the mole ratios of PVP and PAA. The release rates of ketoprofen from the PVP/PAA interpolymer complexes showed pH-dependency, and were slower at lower pH. The release rate of ketoprofen from the complex seemed to be mainly controlled by the dissolution rate of the complex above a pK(a) of PAA (4.75) and by the diffusion rate below the pK(a). The prepared complex appears to be an adequate carrier for the mucoadhesive drug delivery system.  相似文献   

4.
The purpose of the present study was to design a novel carrier system based on a mucoadhesive polymer exhibiting improved properties concerning drug delivery to the vaginal mucosa. This was reached by the covalent attachment of L-cysteine to commercially available polyacrylic acid (Carbopol 974P). Mediated by a carbodiimide, increasing amounts of L-cysteine were covalently linked to the polymer. The resulting thiolated polyacrylic acid conjugates (NaC974P-Cys) displayed between 24.8 and 45.8 micromol thiol groups per gram of polymer. Because of the formation of intra- and/or intermolecular disulfide bonds, the viscosity of an aqueous thiolated polymer gel (3%) increased about 50% at pH 7.0 within 1 h. In oscillatory rheological measurements, it was shown that this increase in viscosity is mainly due to the increase in elasticity. Tensile studies carried out on freshly excised cow vagina demonstrated a significant (P<0.05) increase in the total work of adhesion (TWA) compared to the unmodified polymer. An amount of 24.8 micromol thiol groups per gram of polymer resulted in a 1.45-fold increase in the TWA, whereas an amount of 45.8 micromol showed an even 2.28-fold increase. These improved mucoadhesive properties can be explained by the formation of disulfide bonds between the thiolated polymer and cysteine rich subdomaines of the mucus layer. The release rate of the model drug progesterone from tablets based on microcrystalline cellulose serving as the reference was approximately 1% per hour, whereas it was 0.58% per hour for the unmodified polymer (NaC974P) and 0.12% per hour for the thiolated polymer (NaC974P-Cys). Therefore, this thiolated polymer is a promising carrier for progesterone providing a prolonged residence time and a controlled drug release.  相似文献   

5.
Insulin-loaded polymer (ILP) microparticles composed of poly(methacrylic acid) and poly(ethylene glycol), which have pH-dependent complexation and mucoadhesive properties have been thought to be potential carriers for insulin via an oral route. Nevertheless, further optimization of the polymer delivery system is required to improve clinical application. Therefore, the effect of particle size of the ILP (L-ILP: 180-230 microm, S-ILP: 43-89 microm, SS-ILP: <43 microm) on insulin absorption was studied in the in situ loop system, hypothesizing smaller particle sizes of ILP could induce bigger hypoglycemic effects due to increase mucoadhesive capacity. To verify the hypothesis, the adhesive capacities of differently sized ILPs to the mucosal tissues were evaluated. Additionally, the intestinal site-specificity of ILP for insulin absorption was investigated. Intra- and inter-cellular integrity and/or damage were also examined by lactate dehydrogenase leakage and membrane electrical resistance change to ensure the safety of ILP as a carrier for oral route. As hypothesized, the smaller sized microparticles (SS-ILP) showed a rapid burst-type insulin release and higher insulin absorption compared with the microparticles having larger sizes, resulting in greater hypoglycemic effects without detectable mucosal damage. In fact, SS-ILP demonstrated higher mucoadhesive capacity to the jejunum and the ileum than those of L-ILP. Moreover, SS-ILP's enhancement effect of insulin mucosal absorption showed a site-specificity, demonstrating maximum effect at the ileal segment. These results imply that the particle size and delivery site are very important factors for ILP with respect to increasing the bioavailability of insulin following oral administration.  相似文献   

6.
The purpose of the present study was to improve the mucoadhesive properties of alginate by the covalent attachment of cysteine. Mediated by a carbodiimide, L-cysteine was covalently linked to the polymer. The resulting thiolated alginate displayed 340.4+/-74.9 micromol thiol groups per g conjugate (means+/-S.D.; n=4). Within 2 h the viscosity of an aqueous mucus/alginate-cysteine conjugate mixture pH 7.0 increased at 37 degrees C by more than 50% compared to a mucus/alginate mixture, indicating enlarged interactions between the mucus and the thiolated polymer. Tensile studies carried out on freshly excised porcine intestinal mucosa demonstrated a total work of adhesion (TWA) of 25.8+/-0.6 and 101.6+/-36.1 microJ for alginate and the alginate-cysteine conjugate, respectively (means+/-S.D.; n=5). The maximum detachment force (MDF) was thereby in good correlation with the TWA. Due to the immobilization of cysteine, the swelling velocity of the polymer was significantly accelerated (P<0.05). In aqueous media the alginate-cysteine conjugate was capable of forming inter- and/or intramolecular disulfide bonds. Because of this crosslinking process within the polymeric network, the cohesive properties of the conjugate were also improved. Tablets comprising the unmodified polymer disintegrated within 49+/-14.5 min, whereas tablets of thiolated alginate remained stable for 148.8+/-39.1 min (means+/-S.D.; n=3). These features should render thiolated alginate useful as excipient for various drug delivery systems providing an improved stability and a prolonged residence time on certain mucosal epithelia.  相似文献   

7.
The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.  相似文献   

8.
It was the aim of this study to develop a mucoadhesive, permeation enhancing delivery system for orally administered poorly absorbed drugs. Chitosan was modified by the immobilisation of thiol groups utilising 2-iminothiolane (Traut's reagent). The permeation enhancing effect of the resulting chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) in combination with the permeation mediator glutathione (GSH) was evaluated in Ussing chambers on freshly excised small intestinal mucosa from guinea pigs using rhodamine 123 as marker for passive drug uptake. The mucoadhesive properties of the chitosan-TBA conjugate adjusted to pH 3, 5 and 7 were evaluated via the rotating cylinder method and via tensile studies. Release studies were performed with tablets comprising 10% cefadroxil used as model drug, 10% GSH and 80% chitosan-TBA conjugate pH 3 in 100 mM phosphate buffer pH 6.8 at 37 degrees C. Results showed a 3-fold higher permeation enhancing effect of the chitosan-TBA conjugate/GSH system in comparison to unmodified chitosan. Mucoadhesion studies revealed that the lower the pH of the thiolated chitosan is, the higher are its mucoadhesive properties. Release studies showed a sustained release of both cefadroxil and GSH over several hours. This delivery system might represent a promising novel tool in order to improve the therapeutic efficacy of various drugs which are poorly absorbed from the gastrointestinal tract.  相似文献   

9.
Rapid mucociliary clearance of intranasally administered drugs is often a key factor in determining the bioavailability of such therapeutic agents. The use of mucoadhesive microparticles provide a potential strategy for improving retention of drugs within the nasal cavity, and thereby improve the resultant pharmacokinetic profile. This study describes the comparison of a number of novel, potentially mucoadhesive microspheres, prepared by solvent evaporation, composed of hyaluronic acid (HA), chitosan glutamate (CH) and a combination of the two with microcapsules of HA and gelatin prepared by complex coacervation. The microspheres had a mean particle size of 19.91+/-1.57 microm (HA), 28.60+/-1.34 microm (HA/CH), 29.47+/-3.58 microm (CH). The incorporation of a model drug, gentamicin sulphate (%) was 46.90+/-0.53 (HA), 28.04+/-1.21 (HA/CH) and 13.32+/-1.04 (CH). The in vitro release profiles of microsphere formulations prepared by solvent evaporation were determined. The release of gentamicin from HA and HA/CH was 50% longer than CH and was best modelled as a release from a matrix. The degree of mucoadhesion of each formulation was investigated by determining the mucociliary transport rate (MTR) of the microparticles across an isolated frog palate. Acacia/gelatin microcapsules were used as a positive control. The rank order of mucoadhesion for the microspheres and the microparticles was HA=HA/CH>CH>HA/gelatin>CHins. The entrapment of gentamicin did not affect the mucoadhesive properties (P>0.05, Mann--Whitney U-test). The combination of HA with chitosan may afford additional advantages in combining the mucoadhesive potential of HA with the penetration enhancing effect of chitosan.  相似文献   

10.
Mucus lines the moist cavities throughout the body, acting as barrier by protecting the underlying cells against the external environment, but it also hinders the permeation of drugs and drug delivery systems. As the rate of diffusion is low, the development of a system which could increase retention time at the mucosal surface would prove beneficial. Here, we have designed a range of branched copolymers to act as functional mucus-responsive oil-in-water emulsifiers comprising the hydrophilic monomer oligo(ethylene glycol) methacrylate and a hydrophobic dodecyl initiator. The study aimed to investigate the importance of chain end functionality on successful emulsion formation, by systematically replacing a fraction of the hydrophobic chain ends with a secondary poly(ethylene glycol) based hydrophilic initiator in a mixed-initiation strategy; a decrease of up to 75 mole percent of hydrophobic chain ends within the branched polymer emulsifiers was shown to maintain comparative emulsion stability. These redundant chain ends allowed for functionality to be incorporated into the polymers via a xanthate based initiator containing a masked thiol group; thiol groups are known to have mucoadhesive character, due to their ability to form disulfide bonds with the cysteine rich areas of mucus. The mucoadhesive nature of emulsions stabilised by thiol-containing branched copolymers was compared to non-functional emulsions in the presence of a biosimilar mucosal substrate and enhanced adherence to the mucosal surface was observed. Importantly, droplet rupture and mucus triggered release of dye-containing oil was seen from previously highly-stable thiol-functional emulsions; this observation was not mirrored by non-functional emulsions where droplet integrity was maintained even in the presence of mucus.

Mucoadhesion and mucus-sensitive materials have many applications. Redundant chain-ends within branched polymer emulsifiers have been functionalized with thiols, without compromising emulsion stability, to create mucus-interacting emulsions.  相似文献   

11.
Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.  相似文献   

12.
To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.  相似文献   

13.
A multiple unit dosage form for oral delivery based on the microencapsulation of anti-inflammatory drugs using different biodegradable polymers, poly(epsilon-caprolactone), polylactic acid and poly(lactic-co-glycolic acid), prepared either by the water-in-oil-in-water (w/o/w) or the solid-in-oil-in-water (s/o/w) solvent evaporation method was developed. Microparticles were characterized for their size, morphology, encapsulation efficiency and drug release. The physical state of drugs and polymers was determined by differential scanning calorimetry (DSC), imaging of the particles was performed by scanning electron microscopy and confocal laser scanning microscopy. Sulfasalazine and betamethasone used for the treatment of inflammatory bowel disease, were chosen as model drugs. The microparticles were spherical with diameters in the range of 91 to 258 microm by the w/o/w-method, and in the range of 102 to 277 microm by the s/o/w-method. The encapsulation efficiency (EE) varied between 11 and 16% for sulfasalazine and 50 and 67% for betamethasone with the w/o/w-method, and between 73 and 79% for sulfasalazine and 60 and 70% for betamethasone with the s/o/w-method. DSC showed no interaction between polymers and drugs, while the drugs were dispersed in the polymer. In vitro release studies showed a controlled release of sulfasalazine and betamethasone from microparticles prepared by the s/o/w-method; a pronounced burst release of sulfasalazine was observed from microparticles prepared by the w/o/w-method.  相似文献   

14.
To develop a platform for tumor chemotherapy, poly(acrylic acid-co-methyl methacrylate) microparticles have been synthesized. Carboxylate containing monomers were included to complex therapeutic agents, specifically cisplatin. Microparticles were prepared by free radical emulsion polymerization in aqueous media. Particle diameter, zeta-potential, in vitro cytotoxicity, and in vivo acute toxicity were characterized for both cisplatin-loaded microparticles and unloaded microparticles. In vitro cytotoxicity and FT-IR were used to characterize cisplatin released from cisplatin-loaded microparticles. Acrylic acid feed mole fraction determined several key microparticle properties, including particle size, zeta-potential, and yield. A burst release of cisplatin (40%) in the first day was followed by a zero-order release phase. The interaction between cisplatin and microparticles allowed approximately 20% additional cisplatin release in the next five days. Cisplatin-loaded and unloaded microparticles are non-toxic (LC50>15 mM) to the cell line used in in vitro tests. Cisplatin released from cisplatin-loaded microparticles retained activity, but that activity was slightly lower than freshly prepared cisplatin. Other than a slight reduction in cisplatin activity, microparticles exhibited low in vivo acute toxicity (LD50>170 mg/kg), which suggests that this hydrogel particulate system and the hydrogel complexation mechanism should further be studied for drug delivery.  相似文献   

15.
A novel pH-sensitive hydrogel system composed of a water-soluble chitosan derivative (N,O-carboxymethyl chitosan, NOCC) and alginate blended with genipin was developed for controlling protein drug delivery. Genipin, a naturally occurring cross-linking agent, is significantly less cytotoxic than glutaraldehyde and may provide a less extent of cross-linking to form a semiinterpenetrating polymeric network (semi-IPN) within the developed hydrogel system. The drug-loading process used in the study was simple and mild. All procedures used were performed in aqueous medium at neutral environment. In the study, preparation of the NOCC/alginate-based hydrogels was reported. Swelling characteristics of these hydrogels as a function of pH values were investigated. Additionally, release profiles of a model protein drug (bovine serum albumin, BSA) from test hydrogels were studied in simulated gastric and intestinal media. The semi-IPN formation of the genipin-cross-linked NOCC/alginate hydrogel was confirmed by means of the scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS) and the ninhydrin assays. The percentage of decrease of free amino groups and cross-linking density for the NOCC/alginate hydrogel cross-linked with 0.75 mM genipin were 18% and 26 mol/m(3), respectively. At pH 1.2, the swelling ratio of the genipin-cross-linked NOCC/alginate hydrogel was limited (2.5) due to formation of hydrogen bonds between NOCC and alginate. At pH 7.4, the carboxylic acid groups on the genipin-cross-linked NOCC/alginate hydrogel became progressively ionized. In this case, the hydrogel swelled more significantly (6.5) due to a large swelling force created by the electrostatic repulsion between the ionized acid groups. The amount of BSA released at pH 1.2 was relatively low (20%), while that released at pH 7.4 increased significantly (80%). The results clearly suggested that the genipin-cross-linked NOCC/alginate hydrogel could be a suitable polymeric carrier for site-specific protein drug delivery in the intestine.  相似文献   

16.
Insulin-loaded polymer microparticles (ILP) composed of crosslinked poly(methacrylic acid) and poly(ethylene glycol) are multi-functional carriers showing high insulin incorporation efficiency, a rapid insulin release in the intestine based on their pH-dependent complexation properties, enzyme-inhibiting effects and mucoadhesive characteristics. Thus, they are potential carriers for insulin delivery via an oral route. Recent studies suggest that the polymer composition and particle size of ILP strongly influenced insulin bioavailability. Therefore, the present study aimed at finding an optimal formulation and designing carriers for oral insulin delivery using in vivo experiments. Various types of ILPs were prepared and administered orally to healthy and type 1 and 2 diabetic rats. The most promising formulation was subsequently used for in vivo multiple oral administration studies using diabetic rats. The microparticles of diameters of < 53 μm (SS-ILP) composed of a 1 : 1 molar ratio of methacrylic acid / ethylene glycol units showed the most pronounced hypoglycaemic effects following oral administration to healthy rats, achieving a 9.5% pharmacological availability compared to subcutaneous insulin injection. Their usefulness was also confirmed with both type 1 and 2 diabetic rat groups. In a multiple administration study, SS-ILP significantly suppressed the postprandial rise in blood glucose and showed continuous hypoglycaemic effects following 3 times/day oral administration to both diabetic rat groups in the presence of foods. These results indicate that the blood glucose levels of diabetic rats can be effectively controlled by oral SS-ILP administration, and thus SS-ILP would be a promising delivery carrier of insulin via the oral route.  相似文献   

17.
It was the aim of this study to develop a delivery system providing an improved efficacy of orally administered insulin utilizing a thiolated polymer. 2-Iminothiolane was covalently linked to chitosan. The resulting chitosan-TBA (chitosan-4-thiobutylamidine) conjugate exhibited 453.5+/-64.1 micromol thiol groups per gram polymer. 3.1% of these thiol groups were oxidised. Additionally, the enzyme inhibitors BBI (Bowman-Birk-Inhibitor) and elastatinal were covalently linked to chitosan representing 3.5+/-0.1% and 0.5+/-0.03% of the total weight of the resulting polymer conjugate, respectively. Chitosan-TBA conjugate (5 mg), insulin (2.75 mg), the permeation mediator reduced glutathione (0.75 mg) and the two inhibitor conjugates (in each case 0.75 mg) were compressed to so-called chitosan-TBA-insulin tablets. Control tablets consisted of unmodified chitosan (7.25 mg) and insulin (2.75 mg). Chitosan-TBA-insulin tablets showed a controlled release of insulin over 8 h. In vitro mucoadhesion studies showed that the mucoadhesive/cohesive properties of chitosan were at least 60-fold improved by the immobilisation of thiol groups on the polymer. After oral administration of chitosan-TBA-insulin tablets to non-diabetic conscious rats, the blood glucose level decreased significantly for 24 h corresponding to a pharmacological efficacy of 1.69+/-0.42% (means+/-S.D.; n=6) versus s.c. injection. In contrast, neither control tablets nor insulin given in solution showed a comparable effect. According to these results the combination of chitosan-TBA, chitosan-enzyme-inhibitor conjugates and reduced glutathione seems to represent a promising strategy for the oral application of insulin.  相似文献   

18.
To investigate the potential of physiological lipids as an alternative to synthetic polymeric materials such as poly(lactide-co-glycolide), peptide-containing glyceryl tripalmitate microparticles were prepared. A modified solvent evaporation method and a melt dispersion technique without the use of organic solvent were employed. Thymocartin (TP-4), an immunomodulating tetrapeptide and insulin were chosen as model peptides and incorporated as a solid or dissolved in 100 microl aqueous solution. The resulting microparticles were characterized with respect to particle size and morphology, biocompatibility, drug content (encapsulation efficiency) and in vitro release behavior. Electron spectroscopy for chemical analysis was used to investigate the adsorption of the model peptides to the lipid matrix material. The modified solvent evaporation as well as the melt dispersion method were suitable for the preparation of microparticles in the size range of 20-150 microm with an acceptable yield. The biocompatibility of the glyceryl tripalmitate microparticles after implantation into NMRI-mice was comparable to poly(lactide-co-glycolide) microparticles. The encapsulation efficiency for both model peptides was high (>80%) even at high theoretical loadings when the peptide was incorporated as a solution with the melt dispersion technique. The in vitro release behavior was substantially influenced by the physicochemical properties of the model peptides used in this study.  相似文献   

19.
New acrylic type polymeric systems having degradable ester or amide bonds linked to the bioactive agent 5-amino salicylic acid (5-ASA), were prepared and evaluated as materials for colon-specific drug delivery. Methacryloyloxyethyl 5-amino salicylate (MOES), and N-methacryloylaminoethyl 5-amino salicylamide (MAES) were prepared as the polymerizable derivatives of 5-ASA using activated ester methodology. The drug-containing monomers were free radically copolymerized with methacrylic acid or hydroxyethyl methacrylate, utilizing azobisisobutyronitrile as initiator. The polymer bearing 5-ASA units as side substituents of the acrylic backbone were obtained in the form of poly pendent esters or poly pendent amides. The drug release studies were performed by hydrolysis in buffered solutions (pH 1, 7.2, 8.5), or simulated intestinal fluid containing pancreatin to measure the chemical degradation expected to occur in the intestinal tract. The release profiles indicated that the hydrolytic behavior of polymers strongly depends on their degree of swelling, type of comonomer, and the nature of hydrolyzable bond. Implication of the results for use of these polymers for colon targeting are discussed.  相似文献   

20.
An original dosage form for oral delivery based on the encapsulation of both, lipophilic and hydrophilic drugs, in poly(epsilon-caprolactone) (PCL) microparticles prepared either by the oil-in-water (o/w) or the water-in-oil-in-water (w/o/w) solvent evaporation method was developed. Microparticles were characterized in terms of morphology, size, encapsulation efficiency and drug release. The physical state of the drugs and the polymer was determined by scanning electron microscopy (SEM), X-ray powder diffractometry, and differential scanning calorimetry (DSC). Nifedipine (calcium antagonist) and propranolol HCl (beta-blocker), used for the treatment of hypertension, were chosen as lipophilic and hydrophilic drugs. The microparticles were spherical with diameters in the range of 191-351 microm by the o/w-method, and in the range of 302-477 microm by the w/o/w-method. The encapsulation efficiency (EE) was 91% for nifedipine and 37% for propranolol HCl with the o/w-method, and 83% for nifedipine and 57% for propranolol HCl with the w/o/w-method. DSC and X-ray diffraction studies showed that PCL maintained its semi-crystalline structure, while the drugs were either dispersed or dissolved in the polymer. In vitro release studies revealed a controlled release of nifedipine and propranolol HCl from microparticles prepared by the o/w-method; a burst release of propranolol HCl was observed from microparticles prepared by the w/o/w-method. In conclusion, microparticles containing both a hydrophilic and a lipophilic drug were successfully prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号