首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

Introduction: Amorphous solid dispersions are considered as one of the most powerful strategies to formulate poorly soluble drugs. They are made up of an active pharmaceutical ingredient (API) dispersed at the molecular level in an amorphous polymeric carrier. As the latter component constitutes the largest part of the formulation, its characteristics will contribute to a large extent to the properties and behavior of the solid dispersion.

Areas covered: Amorphous polymers are most often used in modern solid dispersion formulations. This review discusses carrier properties like molecular weight, conformation, hygroscopicity, their stabilization effects, issues related to solid dispersion manufacturing technology, response to downstream processing, and potential to generate supersaturation, next to criteria to select a carrier to formulate stable amorphous solid dispersions.

Expert opinion: Different amorphous carriers lead to solid dispersions with various properties in terms of physical stability, phase behavior and drug release rate and extent. Despite more than 50 years of intensive research in this field it remains difficult to predict what carrier is best suited for a given API, pointing to the complex nature of this formulation strategy. Sustained efforts to understand the link and complex interplay between material properties, processing parameters, physical stability and dissolution behavior are required from pharmaceutical scientists with a strong physicochemical background to shift the development from trial and error to science driven.  相似文献   

2.
Introduction: Many new drug substances have low aqueous solubility which can cause poor bioavailability after oral administration. The application of solid dispersions is a useful method to increase the dissolution rate of these drugs and thereby improve their bioavailability. So far, several methods have been developed to prepare solid dispersions. To obtain a product with the desired attributes, both the formulation and production processes should be considered.

Areas covered: The most currently used methods to produce solid dispersions, such as the fusion method, hot melt extrusion, spray drying, freeze drying and supercritical fluid precipitation, are reviewed in this paper. In addition, the physicochemical characteristics of the obtained solid dispersions are discussed.

Expert opinion: Solid dispersions can be successfully prepared by simple fusion, hot melt extrusion, spray drying, freeze drying and supercritical fluid precipitation. Hot melt extrusion, spray drying and freeze drying are processes that can be applied for large scale production. The simple fusion method is not very suitable for large scale production, but is particularly suitable for screening formulations. The most recent method to produce sold dispersions is supercritical fluid precipitation. The process conditions of this method need extensive investigation, in particular in relationship with the selection of the type of carrier and/or solvent. Both processes and formulation aspects strongly affect the characteristics of solid dispersion products. Furthermore, application of crystalline solid dispersions is gaining increasing interest because they are thermodynamically more stable than amorphous solid dispersions.  相似文献   

3.
Introduction: In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems.

Areas covered: Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes–Whitney equation, while the wetting properties of the used polymer may also play an important role.

Expert opinion: The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.  相似文献   

4.
Introduction: Poor aqueous solubility of active pharmaceutical ingredients (APIs) is one of the main challenges in the development of new small molecular drugs. Additionally, the proportion of poorly soluble drugs among new chemical entities is increasing. The transfer of a crystalline drug to its amorphous counterpart is often seen as a potential solution to increase the solubility. However, amorphous systems are physically unstable. Therefore, pharmaceutical formulations scientists need to find ways to stabilise amorphous forms.

Areas covered: The use of polymer-based solid dispersions is the most established technique for the stabilisation of amorphous forms, and this review will initially focus on new developments in this field. Additionally, newly discovered formulation approaches will be investigated, including approaches based on the physical restriction of crystallisation and crystal growth and on the interaction of APIs with small molecular compounds rather than polymers. Finally, in situ formation of an amorphous form might be an option to avoid storage problems altogether.

Expert opinion: The diversity of poorly soluble APIs formulated in an amorphous drug delivery system will require different approaches for their stabilisation. Thus, increased focus on emerging techniques can be expected and a rational approach to decide the correct formulation is needed.  相似文献   

5.
Abstract

The solid dispersion technique is one of the most effective methods for improving the dissolution rate of poorly water-soluble drugs; however this is reliant on a suitable carrier and solvent being selected. The work presented explores amino sugars (d-glucosamine HCl and d-gluconolactone) as potential hydrophilic carriers to improve dissolution rate of a poorly water-soluble drug, piroxicam, from physical mixtures and solid dispersion formulations. Solid dispersions of the drug and carrier were prepared using different ratios by the conventional solvent evaporation method. Acetone was used as solvent in the preparation of solid dispersions. Physical mixtures of piroxicam and carrier were also prepared for comparison. The properties of all solid dispersions and physical mixtures were studied using a dissolution tester, Fourier transform infrared, XRD, SEM and differential scanning calorimetry. These results showed that the presence of glucosamine or gluconolactone can increase dissolution rate of piroxicam compared to pure piroxicam. Glucosamine or Gluconolactone could be used as carrier in solid dispersion formulations and physical mixtures to enhance the dissolution rate. Solid state studies showed that no significant changes occurred for piroxicam in physical mixtures and solid dispersion.  相似文献   

6.
摘要:目的 制备大黄素固体分散体,提高其体外溶出度并探究其释药机制。方法 采用分子对接技术,辅助筛选聚合物载体。以大黄素为原料药,Kollidon VA64为聚合物载体,采用热熔挤出工艺制备大黄素固体分散体。通过溶出仪测定其体外溶出,利用SEM,DCS和PXRD对原料药和固体分散体的表面形态和晶型进行表征,最后采用FTIR,NMR和分子动力学模拟对固体分散体的释药机制进行探究。结果 相较于大黄素原料药,大黄素固体分散体在4种介质中的溶出被明显改善,大黄素由结晶态转化为无定形态,药物与聚合物载体间形成了氢键。结论 固体分散体中药物晶型的转变和氢键的产生是改善药物体外溶出的主要因素。  相似文献   

7.
Biopolymers have rarely been used so far as carriers in the formulation of amorphous solid dispersions (ASD) to overcome poor solubility of active pharmaceutical ingredients (APIs). In an attempt to enlarge our knowledge on this topic, gelatin, type 50PS was selected. A screening study was initiated in which twelve structurally different poorly soluble biopharmaceutical classification system (BCS) Class II drugs (carbamazepine, cinnarizine, diazepam, itraconazole, nifedipine, indomethacin, darunavir (ethanolate), ritonavir, fenofibrate, griseofulvin, ketoconazole and naproxen) were selected for evaluation. Solid dispersions of five different drug loadings of these twelve compounds were prepared by lyophilization and evaluated for their solid state properties by mDSC and XR(P)D, and in vitro dissolution performance. Even without any process optimization it was possible to form either fully amorphous or partially amorphous systems, depending on the API and API to carrier ratio. Hence in this respect, gelatin 50PS behaves as any other carrier. Dissolution of the API from the solid dispersions significantly exceeded that of their crystalline counterparts. This study shows the potential of gelatin as a carrier to formulate amorphous solid dispersions.  相似文献   

8.
Solid dispersions made up of itraconazole and Inutec SP1, a new polymeric surfactant, were prepared by spray drying and hot-stage extrusion. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were used to evaluate the miscibility of the components of the dispersions, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGFsp) to evaluate the pharmaceutical performance of itraconazole from the solid dispersions. DSC analysis showed that the solid dispersions are phase separated systems made up of glassy and crystalline itraconazole and amorphous Inutec SP1. The amount of crystalline drug substance was higher in the dispersions prepared by hot-stage extrusion and was clearly a function of the drug concentration. Since no crystallinity could be detected by XRD points to the fact that the crystallites formed are very small in size. Despite the presence of glassy and crystalline clusters, the dissolution properties of the solid dispersions were significantly improved in comparison to pure itraconazole (glassy or crystalline) or physical mixtures with Inutec SP1. This study proves the potential of the new polymeric surfactant as a carrier in the formulation of solid dispersions for poorly soluble drugs.  相似文献   

9.
Introduction: In the past two decades, there has been a spiraling increase in the complexity and specificity of drug–receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends.

Areas covered: Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends.

Expert opinion: Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.  相似文献   

10.
Kollicoat IR, a new pharmaceutical excipient developed as a coating polymer for instant release tablets, was evaluated as a carrier in solid dispersions of Itraconazole. The solid dispersions were prepared by hot stage extrusion. Modulated temperature differential scanning calorimetry and X-ray powder diffraction were used to evaluate the miscibility of the drug and the carrier. The pharmaceutical performance was evaluated by dissolution experiments, performed in simulated gastric fluid without pepsin (SGF(sp)). In the X-ray diffractograms no Itraconazole peaks were visible; the polymer on the other hand appeared to be semi-crystalline. Moreover, its crystallinity increased during the extrusion process due to exposure to heat and shear forces. Modulated temperature differential scanning calorimetry analysis showed that the drug and the polymer formed a two phase system. Separate clusters of glassy Itraconazole were present for drug loads of 40% or higher, indicating further phase separation. Dissolution measurements demonstrated a significantly increased dissolution rate for the solid dispersions compared to physical mixtures. Interestingly the physical mixture made up of glassy Itraconazole and Kollicoat IR (20/80, w/w) showed a dissolution rate and maximum that was much higher than that of the physical mixture made up of crystalline Itraconazole and that of pure glassy Itraconazole. The results of this study show that Kollicoat IR is a promising excipient for the formulation of solid dispersions of Itraconazole prepared by hot stage extrusion.  相似文献   

11.
Purpose The purpose of the study is to evaluate the effect of surfactant-plasticizers on the physical stability of amorphous drug in polymer matrices formed by hot melt extrusion.Method Solid dispersions of a poorly soluble drug were prepared using PVP-K30, Plasdone-S630, and HPMC-E5 as the polymeric carriers and surfactants as plasticizers. The solid dispersions were produced by hot melt extrusion at temperatures 10°C above and below the glass transition temperature (Tg) of the carrier polymers using a 16 mm-Haake Extruder. The surfactants tested in this study included Tween-80 and Docusate Sodium. The particle size of the extrudate was reduced to have mean of 100–200 micron. The physical stability of the solid dispersions produced was monitored at 30°C/60% for six-months and at 60°C/85% for two-months in open HDPE bottles. Modulated differential scanning calorimetry, polarized light microscopy, powder X-ray diffraction and dissolution testing was performed to assess the physical stability of solid dispersions upon stress testing.Results The dispersions containing HPMC-E5 were observed especially to be susceptible to physical instability under an accelerated stress conditions (60°C/85%RH) of the solid dispersion. About 6% conversion of amorphous drug to crystalline form was observed. Consequently, the system exhibits similar degree of re-crystallization upon addition of the surfactant. However, under 30°C/60%RH condition, the otherwise amorphous Drug-HPMC-E5 system has been destabilized by the addition of the surfactant. This effect is much more reduced in the extruded solid dispersions where polymeric carriers such as Plasdone S-603 and PVP-K30 (in addition to surfactants) are present. Furthermore, the drug release from the solid dispersions was unaffected at the stress conditions reported above.Conclusions Possible reasons for the enhanced stability of the dispersions are due to the surfactants ability to lower the viscosity of the melt, increase the API solubility and homogeneity in the carrier polymer. In contrast, while it is possible for the surfactants to destabilize the system by lowering the Tg and increasing the water uptake, the study confirms that this effect is minimal. By and large, the surfactants appear to be promising plasticizers to produce solid dispersions by hot melt extrusion, in so doing improving dissolution rate without compromising the physical stability of the systems.  相似文献   

12.
The aim of present study was to enhance the dissolution rate of poorly water-soluble drug aceclofenac by solid dispersion technique using corn starch, dicalcium phosphate, lactose, and microcrystalline cellulose as carriers. Solid dispersions were prepared by solvent wetting method using 32 full factorial design for each of the carrier. The prepared solid dispersions were evaluated for differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and angle of repose. In vitro dissolution studies were carried out in phosphate buffer (pH 7.5) and 0.1 N HCl (pH 1.2). The results of solid state characterization bring to view that in solid dispersions the crystalline drug gets converted to its amorphous form. FTIR study results indicated the absence of interaction between aceclofenac and carriers. For prepared solid dispersions, angle of repose was found to be in the range of 26.19° to 35.29°, which indicates good flowability. Enhanced drug dissolution was obtained with carrier in order lactose > corn starch > microcrystalline cellulose > dicalcium phosphate. Hence, these carriers could be used to enhance the dissolution rate of poorly water-soluble drug.  相似文献   

13.
Introduction: Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs.

Areas covered: The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize?, closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug–carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, SolumerTM used to prepare stable amorphous SD.

Expert opinion: Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.  相似文献   

14.
Abstract

Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, or Soluplus®, is a relatively new copolymer and a promising carrier of amorphous solid dispersions. Knowledge on the inherent properties of Soluplus® (e.g. cloud points, critical micelle concentrations, and viscosity) in different conditions is relatively inadequate, and the application characteristics of Soluplus®-based solid dispersions made by microwave methods still need to be clarified. In the present investigation, the inherent properties of a Soluplus® carrier, including cloud points, critical micelle concentrations, and viscosity, were explored in different media and in altered conditions. Ibuprofen, a BCS class II non-steroidal anti-inflammatory drug, was selected to develop Soluplus®-based amorphous solid dispersions using the microwave-quench cooling (MQC) method. Scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Raman spectroscopy (RS), and Fourier transform infrared spectroscopy (FT-IR) were adopted to analyze amorphous properties and molecular interactions in ibuprofen/Soluplus® amorphous solid dispersions generated by MQC. Dissolution, dissolution extension, phase solubility, equilibrium solubility, and supersaturated crystallization inhibiting experiments were performed to elucidate the effects of Soluplus® on ibuprofen in solid dispersions. This research provides valuable information on the inherent properties of Soluplus® and presents a basic understanding of Soluplus® as a carrier of amorphous solid dispersions.  相似文献   

15.
Introduction: The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest.

Areas covered: This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles.

Expert opinion: Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.  相似文献   

16.
Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.KEY WORDS: Amorphous solid dispersions, Crosslinked hydrogels, Poly(2-hydroxyethylmethacrylate), Supersaturation, Kinetic solubility  相似文献   

17.
Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP–HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (T g) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP–HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.  相似文献   

18.
ABSTRACT

Objective: This study aims to illustrate the applicability of solid supersaturated self-nanoemulsifying drug delivery system (sat-SNEDDS) for the improvement of rosuvastatin calcium (RC) oral bioavailability.

Methods: Different sat-SNEDDS were prepared by incorporating different ratios of RC into SNEDDS using tween80/PEG400 (77.2%) as surfactant/cosurfactant mixture and garlic /olive oil (22.8%) as oil phase. The prepared systems were characterized viz; size, zeta potential, TEM and stability. Various hydrophilic and hydrophobic carriers were employed to solidify the optimized RC sat-SNEDDS. The influence of the carrier was investigated by SEM, XRPD, DSC, flow properties, in vitro precipitation, drug release and oral bioavailability study.

Results: The adsorption of the stable positively charged nanocarrier RC sat-SNEDDS onto solid carriers provided free flowing amorphous powder. The carrier could amend the morphological architecture and in vitro release of the RC solid sat-SNEDDS. Hydrophobic carriers as microcrystalline cellulose 102 (MCC) showed superior physical characters and higher dissolution rate over hydrophilic carriers as maltodextrin with respective T100% 30 min and 45 min. The rapid spontaneous emulsification, the positively nanosized MCC-sat-SNEDDS improved oral bioavailability of RC by 2.1-fold over commercial tablets.

Conclusion: Solid MCC-sat-SNEDDS combined dual benefits of sat-SNEDDS and solid dosage form was successfully optimized to improve RC oral bioavailability.  相似文献   

19.
Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.  相似文献   

20.
An increasing number of drugs with low aqueous solubility are being formulated and marketed as amorphous solid dispersions because the amorphous form can generate a higher solubility compared to the crystalline solid. The amorphous solubility of a drug can be determined experimentally using various techniques. Most studies in this area investigate the drug in its pure form and do not evaluate any effects from other formulation ingredients. In this study, we use 6 marketed amorphous oral drug products, capsules containing 5 mg of tacrolimus, and various excipients, consisting of 1 innovator product and 5 generics. The amorphous solubility of tacrolimus was evaluated using different techniques and was compared to the crystalline solubility of the drug. Dissolution of the different products was conducted under non-sink conditions to compare the maximum achieved concentration with the amorphous solubility. Diffusion studies were performed to elucidate the maximum flux across a membrane and to evaluate whether there was any difference in the thermodynamic activity of the drug released from the formulation and the pure drug. The amorphous solubility of tacrolimus was found to be a factor of 35 higher than the crystalline solubility. The maximum concentration obtained after dissolution of the capsule contents in non-sink conditions was found to match the experimentally determined amorphous solubility of the pure drug. Furthermore, the membrane flux of tacrolimus following dissolution of the various formulations was found to be similar and maximized. This study demonstrates a link between key physicochemical properties (amorphous solubility) and in vitro formulation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号